
Course Script
IN 5110: Specification and
Verification of Parallel Sys-
tems
IN5110, autumn 2021

Martin Steffen

https://martinsteffen.github.io/

ii Contents

Contents

1 Formal methods 1
1.1 Introduction . 1
1.2 Exam . 1
1.3 Plan . 2
1.4 Motivating example . 2

1.4.1 A simple computational problem . 2
1.4.2 A straightforward implementation 2
1.4.3 The solution (?) . 3

1.5 How to guarantee correctness? . 7
1.5.1 Correctness . 7
1.5.2 How to guarantee correctness? . 8
1.5.3 Validation & verification . 9
1.5.4 Approaches for validation . 9

1.6 Software bugs . 10
1.6.1 Sources of errors . 10
1.6.2 Errors in the SE process . 11
1.6.3 Costs of fixing defects . 12
1.6.4 Hall of shame . 12

1.7 On formal methods . 14
1.7.1 What are formal methods? . 14
1.7.2 Terminology: Verification . 14
1.7.3 Limitations . 15
1.7.4 Any advantage? . 15
1.7.5 Another netfind: “bitcoin” and formal methods :-) 16
1.7.6 Using formal methods . 17
1.7.7 Formal specification . 17
1.7.8 Proving properties about the specification 17
1.7.9 Formal synthesis . 18
1.7.10 Verifying specifications w.r.t. implementations 18
1.7.11 A few success stories . 19
1.7.12 Classification of systems . 19
1.7.13 Classification of systems: architecture 19
1.7.14 Classification of systems: type of interaction 19
1.7.15 Taxonomy of properties . 20
1.7.16 When and which formal method to use? 20

1.8 Formalisms for specification and verification 21
1.8.1 Some formalisms for specification . 21
1.8.2 Some techniques and methodologies for verification 22

1.9 Summary . 22
1.9.1 Summary . 22
1.9.2 Ten Commandments of formal methods 22
1.9.3 Further reading . 23

1 Formal methods 1

1
Formal methods
Chapter

What
is it

about?Learning Targets of this Chapter
The introductory chapter gives
some motivational insight into the
field of “formal methods” (one
cannot even call it an overview).

Contents

1.1 Introduction 1
1.2 Exam 1
1.3 Plan 2
1.4 Motivating example 2
1.5 How to guarantee correctness? 7
1.6 Software bugs 10
1.7 On formal methods 14
1.8 Formalisms for specification

and verification 21
1.9 Summary 22

1.1 Introduction

This is the “script” or “handout” version of the lecture’s slides. It basically reproduces
the slides in a more condensed way but with additional comments added. The slides used
in class are kept not too full. Additional information and explanations that are perhaps
said in the classroom or when using the whiteboard, without being reproduced on the
shown slides, are shown here, as well as links and hints for further readings. In particular,
sources and bibliographic information is shown mostly only here.

It’s also best seen as “working document”, which means it will probably evolve during the
semester.

The lecture typically has not too many particpants, which means it becomes a bit more
of a seminar. With a small audience, we strongly encourage active participation.

1.2 Exam

The exam will be oral.

2 1 Formal methods
1.3 Plan

1.3 Plan

• see the homepage https://www.uio.no/studier/emner/matnat/ifi/IN5110
– check for updates
– only the master-webpages will be kept up-to date (not the PhD version)

• I might also be from time to time tangetially connected texts in the blogposts at
https://martinsteffen.github.io/programverification/.

• oral exam
• presentations

1.4 Motivating example

Let’s start with a small example. It’s atypical for the lecture, in that it’s not about
specifically concurrent or distributed systems but a numerical computation. Thanks to
César Muñoz (NASA, Langley) for he example (which is taken from “Arithm’etique des
ordinateurs” by Jean Michel Muller. See http://www.mat.unb.br/ayala/EVENTS/
munoz2006.pdf or https://hal.archives-ouvertes.fr/ensl-00086707.

1.4.1 A simple computational problem

a0 = 11
2

a1 = 61
11

an+2 = 111− 1130− 3000
an

an+1

(1.1)

The definition or specification from equation (1.1) seems so simple that it does not even
look like a “problem”, more like a first-semester task.

Real software, obviously, is mostly (immensely) more complicated. Nonetheless, certain
kinds of software may rely on subroutines which have to calculate some easy numerical
problems like the one sketched above (like for control tasks or signal processing).

You may easily try to “implement” it yourself, in your favorite programming language. If
your are not a seasoned expert in arithmetic programming with real numbers or floats,
you will come up probably with a small piece of code very similar to the one shown below
(in Java).

1.4.2 A straightforward implementation

public class Mya {

stat ic double a (int n) {
i f (n==0)

return 1 1 / 2 . 0 ;
i f (n==1)

return 6 1 / 1 1 . 0 ;
return 111 − (1130 − 3000/ a (n−2))/a (n−1);

}

https://www.uio.no/studier/emner/matnat/ifi/IN5110
https://martinsteffen.github.io/programverification/
http://www.mat.unb.br/ayala/EVENTS/munoz2006.pdf
http://www.mat.unb.br/ayala/EVENTS/munoz2006.pdf
https://hal.archives-ouvertes.fr/ensl-00086707

1 Formal methods
1.4 Motivating example 3

public stat ic void main (S t r i n g [] argv) {
for (int i =0; i <=20; i++)

System . out . p r i n t l n (" a ("+i+") = "+a (i)) ;
}

}

Listing 1.1: A straightforward implementation

The example is not meant as doing finger-pointing towards Java, so one can program the
same in other languages, for instance here in ocaml, a functional language.
(∗ The same example , in a d i f f e r e n t language ∗)

let rec a (n : i n t) : f l o a t =
i f n = 0
then 11 .0 / . 2 . 0
else (i f n = 1

then 61 .0 / . 11 .0
else (1 1 1 . 0 −. (1130 .0 −. 3000 .0 / . a (n−2)) / . a (n − 1))) ; ;

Listing 1.2: A different straightforward implementation

One can easily test the program for a given input of 20. In the output shown below,
every second line is omitted for shortness. Stabilization at more or less 100 is also not a
feature of Java. For instance, a corresponding ocaml program shows “basically” the same
behavior; the exact numbers are slightly off.

1.4.3 The solution (?)

$ java mya
a(0) = 5.5
a(2) = 5.5901639344262435
a(4) = 5.674648620514802
a(6) = 5.74912092113604
a(8) = 5.81131466923334
a(10) = 5.861078484508624
a(12) = 5.935956716634138
a(14) = 15.413043180845833
a(16) = 97.13715118465481
a(18) = 99.98953968869486
a(20) = 99.99996275956511

Alright, that’s what the program spits out and it’s not unplausible. We may vaguely
remember that there is such a thing as mathematical series. That’s sequences of numbers
summed up, where a number at a given position is calculated by some formula from the
value(s) of the previous one(s). Equation (1.1) is an example of (the specification of) a
series of rationals resp. reals. One may additionally remember that math concerns itself
with in particular infinite series and for those, the infinite sum may or may not stabilize or
converge to a finite number. That’s called the limit of the series. Looking at the printed

4 1 Formal methods
1.4 Motivating example

output from the implementation, it shows clear signs of convergence, stabilizing at 100,
and already being quite close to it after 20 iterations.

Let’s consult out knowledge or a textbook about behavior of series, and theory tells that
an for any n ≥ 0 may be computed by using the following expression.

an = 6n+1 + 5n+1

6n + 5n
.

With that alternative, non-recursive representation, it’s clear to which number the series
converges, and it’s not 100, not even close.

lim
n→∞

an = 6 . (1.2)

So, after 20 iterations, we should expect a20 ≈ 6, not what the program actually calcu-
lates.

The example should cause concern for various reasons. The obvious one is that a seemingly
correct program shows weird behavior. Of course, what is “seemingly” correct may lay in
the eyes of the beholder.

One could shrug it off, making the argument that even the not so experienced program-
mer should be aware that floats in a programming language is most often different from
“mathematical” real numbers and therefore the implementation is not to be expected to
be 100% correct anyway. Of course in this particular example, the numbers are not just a
bit off due to numerical imprecision, the implementation behaves completely different from
what one could expect, the result of the implementation for the higher numbers seems to
have nothing to do at all with the expected result.

But anyway, one conclusion to draw might be “be careful with floats” and accumulation
of rounding errors. And perhaps take an extra course or two on computer arithmetic if
you are serious about programming software that has to do with numerical calculations
(control software, etc.). That’s a valid conclusion, but this lecture will not follow the
avenue of getting a better grip on problems of floats and numerical stability, it’s a fields
of its own.

The example can also be discussed from a different angle. The slides claim that the
implementation is wrong insofar that the result should really be something like 6. One
can figure that out with university or even school level knowledge about real analysis,
series, and limits, etc. However, the problem statement is really easy. Actual problems
are mostly much more complex even if we stick to situations, when the problem can
be specified by a bunch of numerical equations, maybe modelling and representing some
physical environment that needs to be monitored and controlled. It’s unlikely to encounter
a software problem whose “correct” solution can be looked-up in a beginner’s textbook.
What’s correct anyway? In the motivational example, “math” tells us the correct answer
should be approximately 6, but what if the underlying math is too complex to have a simple
answer as to what the result is supposed to be (being unknown or even unobtainable as
closed expression).

1 Formal methods
1.4 Motivating example 5

When facing a complex numerical (or computational) problem, many people nowadays
would simply say “let’s use a computer to calculate the solution”, basically assuming “what
the computer says is the solution”. Actually, along that lines, one could even take the
standpoint that in problems like the ones from the example, the (Java) program is not the
solution but the specification of the task.

That’s not so unrealistic: the program uses recursion and other things, which can be seen
as quite high-level. Then the task would be, to implement a piece of hardware, or firmware
or some controller, that implements the specification, given by some high-level recursive
description in some other executable format.

One can also imagine that the Java program is used for testing whether the more low-level
implementation does the right thing, like comparing results or use the Java program to
monitor the results in the spirit of run-time verification. The cautioning about “beware
of numerical calculations” still applies, but the point more relevant to our lecture would
be, that sometimes specifications are not so clear either, not even if they are “computer-
aided”. Later in the introduction, we say a program is correct only relative to a (formal)
specification, but also the specifications themselves may be problematic and that includes
the checking, even the automatic one, whether the specification is satisfied.

And we still may draw another parallel. The example shows in a way that software is
brittle, in the sense that seemingly small deviations have large effects. In the example, small
numerical approximations did not result in a small deviation of the expected outcome,
but resulted in a different outcome. There, the cause is numerical instability, which is
a complicated thing and outside the range of our lecture. But the small-cause-big-effect
property is general in software. A misplaced comma or a loop- or array index wrong +/-
one when working with a loop or an array can have drastic consequences (throwing an
exception or derailing the program). In the context of parallel and concurrent programs,
misplaced (or forgotten) locks and synchronization may have the same show-stopping
effects.

Software in general is bad in tolerating deviations. A program with the array bound or
the loop-condition one-off and thereby crashing is not more or less correct. It makes no
sense to say that 1000 times the code looped perfectly through the loop body, only the
last 1001st iteration went wrong, that’s more than 99% correct. . .

This differentiates software and systems driven by software from traditional machines and
constructions. Material constructions, like tools, houses, engines, bridges etc. are never
perfect, there are all constructed with some tolerances, and each piece has its own toler-
ance, where tolerance is the accepted deviation from a piece’s ideal and perfect measure or
shape. Different constructions and different materials and different manufacturing meth-
ods have different tolerances, and for a particular kind of product, the lower the tolerances,
the higher the quality and typically the price. The word “tolerance” says it already: real
things can never perfect, but to some extent, deviations are acceptable. Each piece may
have an individual tolerance, perhaps a cylinder in a combustion engine must be near
perfect in its surface and wrt. its diameter, the plastic sealing ring for the exaust outlet at
the same motor may have higher tolerances (already from the fact that its produced from
a different material). Altogether, engineering science and enginering experience tells us
that as long as the parts keep their (perhaps standardized) tolerances, the overall engines
will do its job reliably (within its own tolerance and given side conditions, like it should

6 1 Formal methods
1.4 Motivating example

not be used below -40 degrees and only oil or grease of some physical and chemical quality
have to be use, and changed after a while etc.). And the producer is confident enough
that it offers a couple of years guarantee on the engine or dishwasher, resp. the laws may
enforce such a guarantee, so the producer better makes products that survive at least the
guarantee period on average. Quality assurance is intended to make sure that products
leaving the factory are in good shape. That will include checking said tolerances during
the process (perhaps not on every single screw but sampling) and there will perhaps a
quality end control of the finished product. If the engine shows signs of tearn and wear,
one can do some maintentance, fastening some screws, cleaning the valves, replacing the
sealing rings, and the machine is good for the next 2 years, the recommended mainte-
nance period. Often, physical constructions don’t have this “small-deviations-huge-effect”
brittleness. If one single screw is not manufactured within its tolerances, it will probably
overall be ok. Maybe even a missing screw is fine, and one beam slightly too short might
degrade perhaps a construction in terms of long-lasting-ness or robustness to some extent.
Of course, at some point too much is too much, and the whole system collapses or does not
work, but it’s typically a gradual thing. And engineers counter that with “redundancies”
like beams are designed more stongly and with more steel than would be precisely needed
not to collapse, and perhaps 10 screws are used, if 2 could do the job if guaranteed than
none is forgotten or bad.

For software, the situation is rather different. There’s no concept of tolerances, the “parts”
like routines, libraries, modules or subcomponents are perfect replica from each other
(ignoring the issue of deviations of versions and upgrades). There is never something
like “yesterday I bought a piece of software, but it was not really good, one if the parts,
the multiplication they used, was carelessly done, I brought it back and they fixed it
and exchanged the rotten multiplication routine be a new one, and now it works”. Sure,
software can be and routinely is patched. . .

There’s also typically no tear and wear in the material sense or maintenance intervals
(again, the evolving software enviroment, upgrades of routines and libraries used by a
piece of software may make it feels is if a piece if software “degrades”, since this or that
feature suddenly does not work any more as it used to).

And as far as producer guarantees are concerned, they often read like that:

<ACME> LICENSES THE LICENSED SOFTWARE "AS IS," AND MAKES NO EXPRESS OR
IMPLIED WARRANTY OF ANY KIND. <ACME> SPECIFICALLY DISCLAIMS ALL INDIRECT
OR IMPLIED WARRANTIES TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW,
INCLUDING WITHOUT LIMITATION ALL IMPLIED WARRANTIES OF, NON-INFRINGEMENT,
MERCHANTABILITY, TITLE OR FITNESS FOR ANY PARTICULAR PURPOSE. NO ORAL OR
WRITTEN INFORMATION OR ADVICE GIVEN BY <ACME>, ITS AGENTS OR EMPLOYEES
SHALL CREATE A WARRANTY.

It’s not really warranty, it’s a legal formulation to assure as much as possible the absence
of warranty, a disclaimer.

1 Formal methods
1.5 How to guarantee correctness? 7

1.5 How to guarantee correctness?

Formal methods is about to establish and assure that software works properly with math-
ematical rigor, resp. using tools baseed mathematical and logical principles. And the
lecture will look at some of those principles and logics and, to some extent, a few tools.

Working “properly” can mean many things. It can include that it meets user expectations,
that it’s user-friendly (which is difficult to achieve and difficult to determine), that it
does the job efficiently etc. Often, one differentiates between validation and verification.
Verification means to establish that a program or system does what is expected from
it. The expectations are layed down as specification. The specification as well as the
notion of conformance to the specification and process of establishing conformance are
formal, i.e., based on mathematical principles, in particular logics. A program that meets
its requirements or satisfies a the given specification is said to be correct (wrt. to that
specification).

So correctness in that sense is on the one hand rather strict and precise: a formal con-
nection between a specification and a system, carried out with mathematical rigor, ideally
with the help of a tool. On the other hand, it’s also restricted. Correctness for instance
is not absolute, it’s correct relative to a specification. Things not mentioned in the speci-
fication are not covered, and if the specification is “wrong” or ill-considered, same for the
implementation.

Another thing to keep in mind is the following. We stated that formal verification is
about a mathematical argument of logical proof that the specification is satisfied. A
mathematical proof operates on “mathematical objects”

1.5.1 Correctness

• A system is correct if it meets its “requirements” (or specification)

Examples:

• System: The previous program computing an Requirement: For any n ≥ 0, the
program should conform with the previous equation

(incl. limn→∞ an ≈ 6)

• System: A telephone system
• Requirement: If user A wants to call user B (and has credit), then eventually A

will manage to establish a connection
• System: An operating system Requirement: A deadly embrace (nowaday’s aka

deadlock) will never happen

The “specifications” here are obviously anything else but formal. A “deadly embrace” is
the original term for something that is now commonly called deadlock. It’s a classical
error condition in concurrent programs. In particular something that cannot occur in a
sequential program or a sequential algorithm. It occurs when two processes try to gain
access to two mutually dependent shared resources and each decide to wait indefinitely
for the other. A classical illustration is the “dining philosophers”.

8 1 Formal methods
1.5 How to guarantee correctness?

The requirements, apart from the first one and except that they are unreasonable small or
simple, are characteristic for “concurrent” or “reactive” system . As such, they are typical
also for the kind of requirements we will encounter often in the lecture. The second one
uses the word “eventually” which obtains a precise meaning in temporal logics. More
accurately, it depends even on what kind of temporal logic one chooses and also how the
system is modelled. Similarly for the last requirement, using the word “never”.

1.5.2 How to guarantee correctness?

• not enough to show that it can meet its requirements
• show that a system cannot fail to meet its requirements

Dijkstra’s dictum

“Program testing can be used to show the presence of bugs, but never to show their
absence”

A lesser known dictum from Dijktra (1965)

On proving programs correct: “One can never guarantee that a proof is correct, the best
one can say is: ’I have not discovered any mistakes’. ”

• automatic proofs? (Halting problem, Rice’s theorem)
• any hope?

Dijksta’s well-known dictum comes from [4]. The statements of Dijkstra can, of course,
be debated, and have been debated. What about automatic proofs? It is impossible to
construct a general proof procedure for arbitrary programs. It’s a well-known fact that
only programs in the most trivial “programming languages” can be automatically analysed
(i.e., programming without general loops or recursion or if one assumes bounded memory).
For clarity, one should perhaps be more precise, what can’t be analysed. First of all, the
undecidability of proplems refers to properties concerning the behavior or semantics of
programs. Syntactic properties or similar may well be analyzed. Questions referring to
the program text are typically decidable. A parser decides whether the source code is
syntactically correct, for instance, i.e., adheres to a given (context-free) grammar. In
most programming languages, type correctness is decidable (and the part of the compiler
that decides on that is the type checker). What is not decidable are semantics properties
of what happens when running the code. The most famous of such properties is the
question whether the program terminates or not; that’s known as the halting problem.
The halting problem (due to Alan Turing) is only one undecidable property, in fact,
all semantical questions are undecidable: every single semantical property is undecidable,
with the exception of only two which are decidable. Those 2 decidable one are the 2 trivial
ones, known as true and false, which hold for all programs resp. for none. The general
undecidability of all non-trivial semantical properties is known as Rice’s theorem.

As second elaboration: undecidability refers to analysis programs generally. Specific pro-
grams may well be analysed, of course. For instance, one may well establish for a particular

1 Formal methods
1.5 How to guarantee correctness? 9

program, that it terminates. It may even be quite easy, if one has only for-loops or perhaps
no loops at all. After all, verification is about establishing properties about programs. It’s
only that one cannot make an algorithmic analysis for all programs.

The third point is on the nature of what decidability means. A decision procedure is a
algorithm which makes a decision in a binary manner: yes or no. And that implies that
the decision procedure terminates. There is no “maybe”, and there is no non-termination
in which case one would not know either. A procedure that can diverge in some cases is
not a decision-procedure by a semi-decision procedure and the corresponding problem is
only semi-decidable (or partially recursive).

1.5.3 Validation & verification

• In general, validation is the process of checking if something satisfies a certain
criterion

• Do not confuse validation with verification

Validation

"Are we building the right product?", i.e., does the product do what the user requires

Verification:

"Are we building the product right?", i.e., does the product conform to the specification

The terminology and the suggested distinction is not uncommon, especially in the for-
mal methods community. It’s not, however, a universal consensus. Some authors define
verification as a validation technique, others talk about validation & verification as be-
ing complementary techniques. However, it’s a working definition in the context of this
lecture, and we are concerned with verification in that sense.

What is a proof?

1.5.4 Approaches for validation

testing • check the actual system rather than a model
• focused on sampling executions according to some coverage criteria
• not exhaustive (“coverage”)
• often informal, formal approaches exist (MBT)

simulation • A model of the system is written in a PL, which is run with different
inputs

• not exhaustive

10 1 Formal methods
1.6 Software bugs

verification “[T]he process of applying a manual or automatic technique for establishing
whether a given system satisfies a given property or behaves in accordance to some
abstract description (specification) of the system”

The quote is from Peled’s book [10].

1.6 Software bugs

1.6.1 Sources of errors

Errors may arise at different stages of the software/hardware development:

• specification errors (incomplete or wrong specification)
• transcription from the informal to the formal specification
• modeling errors (abstraction, incompleteness, etc.)
• translation from the specification to the actual code
• handwritten proof errors
• programming errors
• errors in the implementation of (semi-)automatic tools/compilers
• wrong use of tools/programs
• . . .

The list of errors is clearly not complete, sometimes a “system” is unusable, even if it’s hard
to point with the finger to an error or a bug (is it “a bug or a feature”?). Different kinds
of validation and verification techniques address different kinds of errors. Also testing as
one (huge) subfield is divided in many different forms of testing, trying to address different
kinds of errors.

1 Formal methods
1.6 Software bugs 11

1.6.2 Errors in the SE process

The picture borrowed from G. Holzmann’s slides. Most software is developed according to
some process with different phases or activities (and by different teams and with specific
tools); often, the institution of even the legal regulators insist on some procedures etc.
Many of such software engineering practices have more or less pronounced “top-down”
aspects (most pronounced in a rigid waterfall development, which, however, is more an
academic abstraction, less pronouced in agile processes). No matter how one organizes the
development process, “most” errors are detected quite late on the development process,
at least that’s what common wisdom, experience, and empirical results show. The figure
(perhaps unrealistically simplifying) shows a top-down process and illustrates that certain
kinds of errors (like design errors) are often detected only later. It should be clear (at
least for such kind of errors), that the later the errors are detected, the more costly they
are to repair.

http://spinroot.com/spin/Doc/course/index.html

12 1 Formal methods
1.6 Software bugs

1.6.3 Costs of fixing defects

The book
the figures are taken from is [9] (a quite well-known source). The book itself attributes
the shown figures to different other sources.

1.6.4 Hall of shame

• July 28, 1962: Mariner I space probe
• 1985–1987: Therac-25 medical accelerator
• 1988: Buffer overflow in Berkeley Unix finger daemon
• 1993: Intel Pentium floating point divide
• June 4, 1996: Ariane 5 Flight 501
• November 2000: National Cancer Institute, Panama City
• 2016: Schiaparelli crash on Mars

The information is taken from [5]. See also the link to that article.

July 28, 1962: Mariner I space probe The Mariner I rocket diverts from its intended
course and was destroyed by mission control. A software error caused the miscalcula-
tion of the rocket’s trajectory. Source of error : wrong transcription of a handwritten
formula into the implementation code.

1985-1987: Therac-25 medical accelerator A radiation therapy device delivers high ra-
diation doses. At least 5 patients died and many were injured. Under certain cir-
cumstances it was possible to configure the Therac-25, so the electron beam would
fire in high-power mode but with the metal X-ray target out of position. Source of
error: a race condition.

1988: Buffer overflow in the Berkeley Unix finger daemon An Internet worm infected
more than 6000 computers in a day. The use of a C routine gets() had no limits on
its input. A large input allows the worm to take over any connected machine. Kind
of error : Language design error (Buffer overflow).

https://www.wired.com/2005/11/historys-worst-software-bugs/

1 Formal methods
1.6 Software bugs 13

1993: Intel Pentium floating point divide A Pentium chip made mistakes when dividing
floating point numbers (errors of 0.006%). Between 3 and 5 million chips of the unit
have to be replaced (estimated cost: 475 million dollars). Kind of error: Hardware
error.

June 4, 1996: Ariane 5 Flight 501 Error in a code converting 64-bit floating-point num-
bers into 16-bit signed integer. It triggered an overflow condition which made the
rocket to disintegrate 40 seconds after launch. Error: exception handling error.

November 2000: National Cancer Institute, Panama City A therapy planning software
allowed doctors to draw some “holes” for specifying the placement of metal shields to
protect healthy tissue from radiation. The software interpreted the “hole” in different
ways depending on how it was drawn, exposing the patient to twice the necessary
radiation. 8 patients died; 20 received overdoses. Error: Incomplete specification /
wrong use.

2016: Schiaparelli crash on Mars “[..] the GNC Software [..] deduced a negative altitude
[..]. There was no check on board of the plausibility of this altitude calculation”

The errors on that list are quite known in the literature (and have been analyzed and
re-analyzed and discussed). Note, however, that in some cases, the cause of the error is
controversial, despite of lengthy (internal) investigations and sometimes even hearings in
the US congress or other external or political institutions. The list is from 2005, other
(and newer) lists certainly exists. A well-known collection of computer-related problems,
especially those which imply societal risks and often based on insider information is Peter
Neumann’s Risk forum (now hosted by ACM), which is moderated and contains reliable
information (in particular speculations are called speculations when the issues and causes
are unclear). Not all one finds on the internet is reliable, there are many folk tales on
“funny” software glitches.

Many errors may never see the public light or are openly analyzed, especially when the
touch security related issues, military or financial institutions. Of course, when a space
craft explodes moments after lift-off or crash-lands on Mars on live transmission from
ground control, it’s difficult to swipe it under the carpet. But not even then, it’s easy to
nail it down to the (or a) causing factor not to mention when it comes to put the blame
somewhere or find ways to avoid it the next time. For instance, if it’s determined that the
ultimate cause was a missing semicolon (as some say was the case for the failure of the
Mariner mission, but see below), then what does that mean and how to react? Tell all
NASA programmers to double-check semicolons next time, and that’s it? Actually, looking
more closely, one should not think of the bug as a “syntactic error” and it’s short-sighted
to think of it as a typo.

Indeed, in the Mariner I case, the error is often attributed to a “hyphen”, sometimes a
semicolon. Other sources (who seem well-informed) speak of an overbar, see the IT world
article, which refers to a post in the risk forum. Ultimately, the statement that it was a
“false transcription” is confirmed by those sources. It should be noted that “transcription”
means that someone had to punch in patterns with a type-writer like machine into punch
cards. The source code (in the form of punch cards) was, obviously, hard to “read” by
humans, so code inspection or code reviews were hard to do at that level. To mitigate the
problem of erronous transcription, machines called card verifiers where used. Bascially,

https://www.acm.org/about-acm/risks-forum
https://www.acm.org/about-acm/risks-forum
https://www.itworld.com/article/2717299/mariner-1-s--135-million-software-bug.html
https://www.itworld.com/article/2717299/mariner-1-s--135-million-software-bug.html
http://catless.ncl.ac.uk/Risks/8.75.html#subj1

14 1 Formal methods
1.7 On formal methods

it meant that two people punched in the same program and verification meant that the
result was automatically compared by the verifier.

1.7 On formal methods

The slides are inspired by introductory material of the books by K. Schneider and the one
by D. Peled ([12, Section 1.1] and [10, Chapter 1]).

1.7.1 What are formal methods?

FM

“Formal methods are a collection of notations and techniques for describing and analyzing
systems” [10]

• Formal: based on “math” (logic, automata, graphs, type theory, set theory . . .)
• formal specification techniques: to unambiguously describe the system itself and/or

its properties
• formal analysis/verification: techniques serve to verify that a system satisfies its

specification (or to help finding out why it is not the case)

1.7.2 Terminology: Verification

The term verification: used in different ways

• Sometimes used only to refer the process of obtaining the formal correctness proof
of a system (deductive verification)

• In other cases, used to describe any action taken for finding errors in a program
(including model checking and maybe testing)

Formal verification (reminder)

Formal verification is the process of applying a manual or automatic formal technique for
establishing whether a given system satisfies a given property or behaves in accordance to
some abstract description (formal specification) of the system

Saying ’a program is correct’ is only meaningful w.r.t. a given spec.!

The term “verification” is used (by different people, in different communities) in different
ways, as we hinted at already earlier. Sometimes, for example, testing is not considered
to be a verification technique.

1 Formal methods
1.7 On formal methods 15

1.7.3 Limitations

• Software verification methods do not guarantee, in general, the correctness of the
code itself but rather of an abstract model of it

• It cannot identify fabrication faults (e.g. in digital circuits)
• If the specification is incomplete or wrong, the verification result will also be wrong
• The implementation of verification tools may be faulty
• The bigger the system (number of possible states) more difficult is to analyze it (state

space explosion problem)

For a discussion of issues like these, one may see the papers “Seven myths of formal
methods” and “Seven more myths of formal methods” ([6] [2]).

1.7.4 Any advantage?

be modest

Formal methods are not intended to guarantee absolute reliability but to increase the
confidence on system reliability. They help minimizing the number of errors and in many
cases allow to find errors impossible to find manually.

• remember the VIPER chip

Parnas has a more dim view on formal methods. Basically he says, no one in industry is
using them and the reason for that is that they are (basically) useless (and an academic
folly). Parnas is a big name, so he’s not nobody, and his view is probably shared explicitly
by some. And implicitly perhaps shared by many, insofar that formal methods has a niche
existance in real production software.

However, the view is also a bit silly. The argument that no one uses it is certainly an
exaggeration. There are areas where formal methods are at least encouraged by regulatory
documents, for instance in the avionics industry. One could make the argument that high-
security applications (like avionics software) is a small niche, therefore formal method
efforts in that direction are a folly for most progammers. Maybe, but that does not
discount efforts in areas where one thinks it’s worth it (or is forced by regulators to do
it).

Secondly, even if really no one in industry would use such methods, that would not discount
a research effort, including academic research. The standpoint that the task of academic
research is to write papers about what practices are currently profitably employed in
mainstream industry is a folly as well.

Maybe formal methods also suffer a bit from similar bad reputation as (sometimes) ar-
tificial intelligence has (or had). Techniques as investigated by the formal method com-
munity are opposed, ridiculed and discounted as impractical until they “disappear” and
then become “common practice”. So, as long as the standard practicioner does not use
something, it’s “useless formal methods”, once incorporated in daily use it’s part of the
software process and quality assurance. Artificial intelligence perhaps suffered from a
similar phenomenon. At the very beginning of the digital age, when people talked about
“electronic brains” (which had, compared to today, ridiculously small speed and capacity),

http://www.cs.rug.nl/~roe/courses/OriInf/Parnas-Formal-Methods.pdf

16 1 Formal methods
1.7 On formal methods

they trumpeted that the electronic brains can “think rationally” etcetc., and the promised
that soon they would beat humans in games that require strategic thinking like tic-tac-toe.
The computers very soon did just that, with “fancy artifical intelligence” techniques like
back-tracking, branch-and-bound or what not (branch-and-bound comes from operations
research). Of course the audience then said: Oh, that’s not intelligence, that’s just brute
force and depth-first search, and nowadays, depth-first seach is taught in first semester or
even school. And Tic-tac-toe is too simple, anyway, the audience said, but to play chess,
you will need “real” intelligence, so if you can come up with a computer that beats chess
champions, ok, then we could call it intelligent. So then the AI came up with much more
fancy stuff, heuristics, statistics, bigger memory, larger state spaces, used faster comput-
ers, but people would still state: well, actually a chess playing computer is not intelligent,
it’s “just” a complex search. So, the “intelligence” those guys aim at is always the stuff
that is not yet solved. Maybe the situation is similar for formal methods.

Perhaps another parallel which has led to negative opinions like the one of Parnas is that
the community sometimes is too big-mouthed. Like promising an “intelligent electronic
brain” and what comes out is a tic-tac-toe playing back-tracker. . . For the formal methods,
it’s perhaps the promise to “guarantee 100% correctness” (done based on “math”) or at
least perceived as to promise that. For instance, the famous dictum of Disjktra that
testing cannot guarantee correctness in all cases is of course in a way a triviality (and
should be uncontroversial), but it’s perhaps perceived to mean (or used by some to mean)
that “unlike testing, the (formal) method can guarantee that”. Remember the Viper chip
(a “verified” chip used in the military, in the UK). See [11] for a short historical account
of the rise and the fall of the Viper chip and the (legal) battles around it. Interestingly
an important part of the battle was about the question, discussed in course “what is a
mathematical proof”. Also the book [7] discusses that.

1.7.5 Another netfind: “bitcoin” and formal methods :-)

Cardano seems to be one of quite many bitcoin-style proposals based on block-chain,
marketed under the mysterious slogan “Making the world a work better for all”. . . As far

1 Formal methods
1.7 On formal methods 17

a cryptocurrencies goes, it’s not too esotheric. According to a current ranking of market
capitalization of different “coins”, it’s ranked number 5.

provably correct

1.7.6 Using formal methods

Used in different stages of the development process, giving a classification of formal meth-
ods

1. We describe the system giving a formal specification
2. We can then prove some properties about the specification
3. We can proceed by:

• Deriving a program from its specification (formal synthesis)
• Verifying the specification wrt. implementation

1.7.7 Formal specification

• A specification formalism must be unambiguous: it should have a precise syntax and
semantics
– Natural languages are not suitable

• A trade-off must be found between expressiveness and analysis feasibility
– More expressive the specification formalism more difficult its analysis

Do not confuse the specification of the system itself with the specification of some of its
properties

• Both kinds of specifications may use the same formalism but not necessarily. For
example:
– the system specification can be given as a program or as a state machine
– system properties can be formalized using some logic

1.7.8 Proving properties about the specification

To gain confidence about the correctness of a specification it is useful to:

• Prove some properties of the specification to check that it really means what it is
supposed to

• Prove the equivalence of different specifications

https://coinmarketcap.com/all/views/all/
https://coinmarketcap.com/all/views/all/

18 1 Formal methods
1.7 On formal methods

Example

a should be true for the first two points of time, and then oscillate.

• some attempt:

a(0) ∧ a(1) ∧ ∀t. a(t+ 1) = ¬a(t)

One could say the specification is INCORRECT! and/or incomplete. The error may
be found when trying to prove some properties. Implicitly (even if not stated), is the
assumption that t is a natural number. If that is assumed, then the last conjuct should
apply also for t = 0, but that contradicts the first two conjucts.

So perhaps a correct (?) specification might be

a(0) ∧ a(1) ∧ ∀t ≥ 0.a(t+ 2) = ¬a(t+ 1)

1.7.9 Formal synthesis

• it would be helpful to automatically obtain an implementation from the specification
of a system

• difficult since most specifications are declarative and not constructive
– They usually describe what the system should do; not how it can be achieved

Example: program extraction

• specify the operational semantics of a programming language in a constructive logic
(calculus of constructions)

• prove the correctness of a given property wrt. the operational semantics (e.g. in
Coq)

• extract (ocaml) code from the correctness proof (using Coq’s extraction mechanism)

1.7.10 Verifying specifications w.r.t. implementations

Mainly two approaches:

• Deductive approach ((automated) theorem proving)
– Describe the specification ϕspec in a formal model (logic)
– Describe the system’s model ϕimp in the same formal model
– Prove that ϕimp =⇒ ϕspec

• Algorithmic approach
– Describe the specification ϕspec as a formula of a logic
– Describe the system as an interpretation Mimp of the given logic (e.g. as a finite

automaton)
– Prove that Mimp is a “model” (in the logical sense) of ϕspec

1 Formal methods
1.7 On formal methods 19

1.7.11 A few success stories

• Esterel Technologies (synchronous languages – Airbus, Avionics, Semiconductor &
Telecom, . . .)
– Scade/Lustre
– Esterel

• Astrée (Abstract interpretation – used in Airbus)
• Java PathFinder (model checking – find deadlocks on multi-threaded Java programs)
• verification of circuits design (model checking)
• verification of different protocols (model checking and verification of infinite-state

systems)
• Z3 (and other) constraint solver

. . .

1.7.12 Classification of systems

Before discussing how to choose an appropriate formal method we need a classification of
systems

• Different kindd of systems and not all methodologies/techniques may be applied to
all kind of systems

• Systems may be classified depending on
– architecture
– type of interaction

The classification here follows Klaus Schneider’s book “Verification of reactive systems”
[12]. Obviously, one can classify “systems” in many other ways, as well.

1.7.13 Classification of systems: architecture

• Asynchronous vs. synchronous hardware
• Analog vs. digital hardware
• Mono- vs. multi-processor systems
• Imperative vs. functional vs. logical vs. object-oriented software
• Concurrent vs. sequential software
• Conventional vs. real-time operating systems
• Embedded vs. local vs. distributed systems

1.7.14 Classification of systems: type of interaction

• Transformational systems: Read inputs and produce outputs – These systems
should always terminate

• Interactive systems: Idem previous, but they are not assumed to terminate (unless
explicitly required) – Environment has to wait till the system is ready

20 1 Formal methods
1.7 On formal methods

• Reactive systems: Non-terminating systems. The environment decides when to
interact with the system – These systems must be fast enough to react to an envi-
ronment action (real-time systems)

1.7.15 Taxonomy of properties

Many specification formalisms can be classified depending on the kind of properties they
are able to express/verify. Properties may be organized in the following categories

Functional correctness The program for computing the square root really computes it

Temporal behavior The answer arrives in less than 40 seconds

Safety properties (“something bad never happens”): Traffic lights of crossing streets are
never green simultaneously

Liveness properties (“something good eventually happens”): process A will eventually be
executed

Persistence properties (stabilization): For all computations there is a point where process
A is always enabled

Fairness properties (some property will hold infinitely often): No process is ignored in-
finitely often by an OS/scheduler

1.7.16 When and which formal method to use?

Examples:

• Digital circuits . . . (BDDs, model checking)
• Communication protocol with unbounded number of processes. . . . (verification of

infinite-state systems)
• Overflow in programs (static analysis and abstract interpretation)
• . . .

Open distributed, concurrent systems ⇒ Very difficult!

Need the combination of different techniques It should be clear that the choice of method
depends on the nature of the system and what kind of properties one needs to establish.
The above lists basically states the (obvious) fact that the more complex (and unstruc-
tured) systems get, the more complex the application of formal method becomes (hand
in hand with the fact that the development becomes more complex). The most restricted
form perhaps is digital circuits and hardware. The initial successes for model checking
were on the area of hardware verification. Ultimately, one can even say: at a certain
level of abstraction, hardware is (or is supposed to be) a finite-state problem: the piece of
hardware represents a finite-state machine built up of gates etc, which work like boolean
functions. It should be noted, though, that this in itself is an abstraction: the physical
reality is not binary or digital and it’s a hard engineering problem to make physical entities
(like silicon, or earlier tubes or magnetic metals) to actually behave as if they were digital
(and to keep it stable like that, so that it still works reliably in a binary or finite-state

1 Formal methods
1.8 Formalisms for specification and verification 21

fashion after trillions of operations. . .) In a way, the binary (or finite-state) abstraction of
hardware is a model of the reality, one one can check whether this model has the intended
properties. Especially useful for hardware and “finite state” situations are BDDs (binary
decision diagrams) which were very successful for certain kinds of model checkers.

1.8 Formalisms for specification and verification

1.8.1 Some formalisms for specification

• Logic-based formalisms
– Modal and temporal logics (E.g. LTL, CTL)
– Real-time temporal logics (E.g. Duration calculus, TCTL)
– Rewriting logic

• Automata-based formalisms
– Finite-state automata
– Timed and hybrid automata

• Process algebra/process calculi
– CCS (LOTOS, CSP, ..)
– π-calculus . . .

• Visual formalisms
– MSC (Message Sequence Chart)
– Statecharts (e.g. in UML)
– Petri nets

It should go without saying that the list is rather incomplete list. The formalisms here,
whether they are “logical” or “automata-like” are used for specification of more reactive
or communicative behavior (as opposed to specifying purely functional or input-output
behavior of sequential algorithms). By such behavior, we mean describing a step-wise or
temporal behavior of a system (“first this, then that. . . .”). Automata with their notions
of states and labelled transitions embody that idea. Process algebras are similar. On
a very high-level, they can partly be understood as some notation describing automata;
that’s not all to it, as they are often tailor-made to capture specific forms of interaction
or composition, but their behavior is best understood as having states and transitions, as
automata. The mentioned logics are likewise concerned with logically describing reactive
systems. Beyond purely logical constructs (and, or), they have operators to speak about
steps being done (next, in the future . . .). Typical are temporal logics, where “temporal”
does not directly mean refering to clocks, real-time clocks or otherwise. It’s about specify-
ing steps that occur one after the other in a system. There are then real-time extensions of
such logics (in the same way that there are real-time extensions of programming language
as well as real-time extensions of those mentioned process calculi).

Whether one should place the mentioned “visual” formalisms in a separate category may be
debated. Being visual refers just to a way of representation (after all also automata can be
(and are) visualized, resp. “visual” formalisms have often also “textual” representations.

22 1 Formal methods
1.9 Summary

1.8.2 Some techniques and methodologies for verification

• algorithmic verification
– Finite-state systems (model checking)
– Infinite-state systems
– Hybrid systems
– Real-time systems

• deductive verification (theorem proving)
• abstract interpretation
• formal testing (black box, white box, structural, . . .)
• static analysis
• constraint solving

1.9 Summary

1.9.1 Summary

• Formal methods are useful and needed
• which FM to use depends on the problem, the underlying system and the property

we want to prove
• for real complex systems, only part of the system may be formally proved and no

single FM can do the task
• our course will concentrate on

– temporal logics as a specification formalism
– safety, liveness and (maybe) fairness properties
– Spin (LTL model checking)
– few other techniques from student presentation (e.g., abstract interpretation,

CTL model checking, timed automata)

1.9.2 Ten Commandments of formal methods

From “Ten commandments revisited” [3]

1. Choose an appropriate notation
2. Formalize but not over-formalize
3. Estimate costs
4. Have a formal method guru on call
5. Do not abandon your traditional methods
6. Document sufficiently
7. Do not compromise your quality standards
8. Do not be dogmatic
9. Test, test, and test again
10. Do reuse

1 Formal methods
1.9 Summary 23

1.9.3 Further reading

Especially this part is based on many different sources. The following references have been
consulted:

• Klaus Schneider: Verification of reactive systems, 2003. Springer. Chap. 1 [12]
• G. Andrews: Foundations of Multithreaded, Parallel, and Distributed Programming,

2000. Addison Wesley. Chap. 2 [1]
• Z. Manna and A. Pnueli: Temporal Verification of Reactive Systems: Safety, Chap.

0 This chapter is also the base of lectures 3 and 4. [8]

24 Bibliography
Bibliography

Bibliography

[1] Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed Pro-
gramming. Addison-Wesley.

[2] Bowen, J. P. and Hinchey, M. G. (1995). Seven more myths of formal methods. IEEE
Software, 12(3):34–41.

[3] Bowen, J. P. and Hinchey, M. G. (2005). Ten commandments revisited: a ten-year
perspective on the industrial application of formal methods. In FMICS ’05: Proceedings
of the 10th international workshop on Formal methods for industrial critical systems,
pages 8–16, New York, NY, USA. ACM Press.

[4] Dijkstra, E. W. (1969). Notes on structured programming. Technical Report EWD-
249, Technological University, Eindhoven.

[5] Garfinkel, S. (2005). History’s worst software bugs. Available at http://archive.
wired.com/software/coolapps/news/2005/11/69355?currentPage=all.

[6] Hall, J. A. (1990). Seven myths of formal methods. IEEE Software, 7(5):11–19.

[7] MacKenzie, D. A. (2001). Mechnanizing Proof. MIT Press.

[8] Manna, Z. and Pnueli, A. (1992). The temporal logic of reactive and concurrent
systems—Specification. Springer Verlag, New York.

[9] McConnell, S. (2004). Code Complete, Second Edition. Microsoft Press, Redmond,
WA, USA.

[10] Peled, D. (2001). Software Reliability Methods. Springer Verlag.

[11] Pygott, C. (2019). The VIPER microprocessor. In 2019 6th IEEE History of Elec-
trotechnology Conference (HISTELCON), pages 14–19.

[12] Schneider, K. (2004). Verification of Reactive Systems. Springer Verlag.

http://archive.wired.com/software/coolapps/news/2005/11/69355?currentPage=all
http://archive.wired.com/software/coolapps/news/2005/11/69355?currentPage=all

Index
Index 25

Index

algorithmic verification, 22

card verifier, 13
code inspection, 13
code review, 13
correctness, 7

deadlock, 7
decidability, 8
decidable, 8
Dijkstra’s dictum, 8
dining philosopher, 7

floating point number, 2

halting problem, 8, 9

interactive system, 20

Mariner I, 13

reactive system, 8, 20
real-time system, 20
Rice’s theorem, 8
Risk forum, 13

semi-decidable, 8
signal processing, 2
simulation, 9
specification, 9

temporal logic, 8
testing, 8, 9
theorem proving, 22
transformational system, 20

undecidable, 8

validation, 9
verification, 9

	Contents
	Formal methods
	Introduction
	Exam
	Plan
	Motivating example
	How to guarantee correctness?
	Software bugs
	On formal methods
	Formalisms for specification and verification
	Summary

