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2.1 Introduction

Logics

What’s logic?

As discussed in the introductory part, we are concerned with formal methods, verification
and analysis of systems etc., and that is done relative to a specification of a system. The
specification lays down (the) desired properties of a system and can be used to judge
whether a system is correct or not. The requirements or properties can be given in
many different forms, including informal ones. We are dealing with formal specifications.
Formal for us means, it has not just a precise meaning, that meaning is also fixed in a
mathematical form for instance, in the form of a “model”1 We will mostly not deal with
informal specifications nor with formal specifications that are unrelated to the behavior in
a broad sense of a system.

For example, a specification like

the system should cost 100 000$ or less, incl. VAT
1The notion of model will be variously discussed later resp. given a more precise meaning in the lecture.
Actually, it will be given a precise mathematical meaning in different technical ways, depending on
which framework, logics, etc. we are dealing with; the rough idea remains the “same”, though.
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could be seens as being formal and precise. In practice, such a statement is probably
not precise enough for a legally binding contract (what’s the exchange rate, if it’s for
Norwegian usage? Which date is taken to fix the exchange rate, the date of signing the
contract, the scheduled delivery date, or the actual delivery date? What’s the “system”
anyway, the installation? The binary? Training? etc.) All of that would be “formalized”
in a legal contract readable not even for mathematicians, but only for lawyers, but that’s
not the kind of formalization we are dealing with.

For us, properties are expressed in “logics”. That is a very broad term, as well, and we
will encounter various different logics and “classes” of logics.

This course is not about fundamentals of logics or philosophical questions, like “is logic as
discipline a subfield of math, or is it the other way around”, like “math is about drawing
conclusions about some abstract notions and proving things about those, and in order to
draw conclusions in a rigourous manner, one should use logical systems (as opposed to
hand-waving . . . )”. We are also mostly not much concerned with fundamental questions
of logical meta-theory. If one has agreed on a logic (including notation and meaning), one
can use that to fix some “theory” which is expressed inside the logic. For example, if one is
interested in formally deriving things about natural numbers, one could first choose first-
order logic as general framework, then select symbols proper for the task at hand (getting
some grip on the natural numbers), and then try to axiomatize them and formally derive
theorems inside the chosen logical system. As the name implies meta-theory is not about
things like that, it’s about what can be said about the chosen logic itself: Is my logic
decidable? How efficient can it be used for making arguments? How does its expressivity
compares to that of other logics? . . . Such questions will pop up from time to time, but
are not at the center of the course. For us, logic is more of a tool for validating programs,
and for different kind of properties or systemd, we will see what kind of logics fits.

Still, we will introduce basic vocabulary and terminology needed when talking about a
logic (on the meta-level, so to say). That will include notions like formulas, satisfaction,
validity, correctness, completeness, consistency, substitution . . . , or at least a subset of
those notions.

When talking about “math” and “logics” and what there relationship is: some may have
the impression that math as discipline is a formal enterprise and formal methods is kind
of like an invasion of math into computer science or programming. It’s probably fair to
say, however, that for the working mathematician, math is not a formal discipline in the
sense the formal methods people or computer scientists do their business. Sure, math is
about drawing conclusions and doing proofs. But most mathematicians would balk at the
question “what’s the logical axioms you use in your arguments?” or “what exact syntax
do you use?”. That only bothers mathematicans (to some extent) who prove things about
logical systems, i.e., who take logics as object of their study. But even those will probably
not write their arguments about a formally defined logic inside a(nother?) logical system.
That formal-method people are more obsessed with such nit-picking questions has perhaps
two reasons. For one is that they want not just clear, elegant and convincing arguments,
they want that the computer makes the argument or at least assist in making the argument.
To have a computer program do that, one needs to be 100% explicit what the syntax of
a formal system is and what it means, how to draw arguments or check satisfaction of a
formula etc.
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Another reason is that the objects of study for formal-method people are, mathematically
seen, “dirty stuff”. One tries to argue for the corrrectness of a program, an algorithm,
maybe even an implementation. That often means one does not deal with any elegant
mathematical structure but some specific artifact. It’s not about “in principle, the idea of
the algorithm is correct”; whether the code is correct or not not depends also on special
corner cases, uncovered conditions, or other circumstances. There is no such argument
like “the remaining cases work analogously. . . ”: A mathematician might get away with
that, but a formalistic argument covering really all cases would not.

Additionally, when making proofs about software, it’s often not about “the remaining five
analogous cases”. Especially, in concurrent program or algorithms, one has to cover a huge
amount of possible interleavings (combinations of orderings of executions), and a incor-
rectness, like a race condition, may occur only in some very seldom specific interleavings.
So it’s more like there are “5 fantastillion more cases”. . . Proving that a few exemplary
interleavings are correct (or test a few) will simply not do the job. That’s indeed one
problem with testing concurrent systems. Even if one tests a huge amount of interleav-
ings (and coaching an implementation to do check particular interleavings as opposed to
rely on chance is also non-trivial), this normally pales in comparison to the astronomical
number of possible interleavings. For sequential systems or a sequential, deterministic
procedures, the possible behaviors is also astronomical, because typically there are many
possible inputs, conceptually infinitely many often. However, being deterministic, at least
the same input should lead to the same reaction. That’s a big help, in particular when it
comes to reproducability. Furthermore, there are techniques that allow to tailor the input
in such a way that corner cases are taken, for instance, feeding input that for all branches
both the positive as well as the negative branch is executed by at least one test. That’s
known as a form of test coverage.

For concurrent systems, what happens in one particular run is non-deterministic. In
particular there is no part of the program code responsible that this or that decision is
take (as is the case for a conditional statement in the sequential case). The different
interleavings are done by the scheduler or the timings of the parallel processes.

General aspects of logics

• truth vs. provability
– when does a formula hold, is true, is satisfied
– valid
– satisfiable

• syntax vs. semantics/models
• model theory vs. proof theory

We will encounter different logics. They differ in their syntax and their semantics (i.e., the
way particular formulas are given meaning), but they share some commonalities. Actually,
the fact that one distinguishes between the syntax of a logics and a way to fix the meaning
of formulas is common to all the encountered approaches. The term “formula” refers in in
general to a syntactic logical expression (details depend on the particular logic, of course,
and sometimes there are alternative or more finegrained terminology, like proposition, or
predicate or sentence or statements, or even in related contexts names like assertion or
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constraint). For the time being, we just generically speak about “formulas” here and leave
terminological differentiations for later. Anyway, when it comes to the semantics, i.e.
the meaning, it’s the question of whether it’s true or not (at least in classical settings. . . ).
Alternative and equivalent formulations is whether it holds or not and whether its satisfied
or not.

That’s only a rough approximation, insofar that, given a formula, one seldomly can stip-
ulate unconditionally that it holds or not. That, generally, has to do with the fact that
formulas typically has fixed parts and “movable” parts, i.e., parts for which an “inter-
pretation” has to be chosen before one can judge the truth-ness of the formula. What
exactly is fixed and what is to be chosen depends on the logic, but also on the setting or
approach.

To make it more concrete in two logics one may be familiar with (but the lecture will cover
them to some extent). For the rather basic boolean logic (or propositional logic), one deals
with formulas of the form p1 ∧ p2, where ∧ is a logical connective and the p’s here are
atomic propositions (or propositional variables, propositional constants, or propositional
symbols, depending on your preferred terminology). No matter how it’s called, the ∧ part
is fixed (it’s always “and”), the two p’s is the “movable part” (it’s for good reasons why
they are sometimes called propositional variables. . . ). Anyway, it should be clear that
asking whether p1 ∧ p2 is true or holds cannot be asked per se, if one does not know about
p1 and p2, the truth or falsehood is relative to the choice of truth or falsehood of the
propositional variables: choosing both p1 and p2 as “true” makes p1 ∧ p2 true.

There are then different ways of notationally write that. Let’s abbreviate the mapping
[p1 7→ >, p2 7→ >] as σ, then all of the formulations (and notations) are equivalent

• σ |= ϕ (or |=σ ϕ):
– σ satisfies ϕ
– σ models ϕ (σ is a model of ϕ)

• [[ϕ]]σ = >:
– with σ as propositional variable assignment, ϕ is true or ϕ holds
– the semantics of ϕ under σ is > (“true”)

Of course, there are formulas whose truth-ness does not depend on particular choices,
being unconditionally true (or other unconditionally false). They deserve a particular
name like (propositional) “tautology” (or “contradiction” in the negative case).

Another name for a generally true formula or a formula which is true under all circum-
stances is to say it’s valid. For propositional logic, the two notions (valid formula and
tautology) coincide.

If we got to more complex logics like first-order logics, things get more subtle (and the
same for modal logics later). In those cases, there are more “ingredients” in the logic
that are potentially “non-fixed”, but “movable”. For example, in first-order logic, one
can distinguish two “movable parts”. First-order logic is defined relative to a so-called
signature (to distinguish them from other forms of signatures, it’s sometimes called first-
order signature). It’s the “alphabet” one agrees upon to work with. It contains functional
and relational symbols (with fixed arity or sorts). Those operators define the “domain(s)
of interest” one intends to talk about and their syntactic operators. For example, one
could fix a signature containing operators zero, succ, and plus on a single domain
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(a single-sorted setting) where the chosen names indicate that one plans to interpret the
single domain as natural numbers. We use in the discussion here typewriter font to
remind that the signature and their operators are intended as syntax, not as the semantical
interpretation (presumably representing the known mathematical entities 0, the successor
function, and +, i.e., addition). There are also syntactic operators which constitute the
logic itself (like the binary operator ∧, or maybe we should write and. . . ), which are
treated as really and absolutely fixed (once one has agreed on doing classical first-order
logic or similar).

The meaning of the symbols of a chosen signature, however, are generally not a priori
fixed, at least when doing “logic” and meta-arguments about logics. On the other hand,
when doing program verification, typically one is not bothered about that, one assumes a
fixed interpretation of a given signature. Anyway, the elements of the signature are not
typically thought of as variables, but choosing a semantics for them is one of the non-fixed,
variable parts when talking about the semantics of a first-order formula. That part, fixing
the functional and relational symbols of a given signature is called often an interpretation.
There is, however, a second level of “non-fixed” syntax in a first-order formula, on which
the truthness of a formula depends: those are (free) variables. For instance, assuming
that we have fixed the interpretation of succ, zero, leq (for less-or-equal) and so on,
by the standard meaning implied by their name, the truth of the formula leq(succ x,
y) depends on the choices for the free variables x and y.

To judge, whether a formula with free variables holds or not, one this needs to fix two
parts, the interpretation of the symbols of the alphabet (often called the interpretation), as
well as the choice of values for the free variables. Now that the situation is more involved,
with two levels of choices, the terminolgy becomes also a bit non-uniform (depending on
the text-book, one might encouter slightly contradicting use of words).

One common interpretation is to call the choice of symbols the interpretation or alsomodel.
To make a distinction one sometimes say, the model (let’s call it M) is the mathematic
structure to part . . . [Something’s missing]

2.2 Propositional logic

A very basic form of logic is known as propositional or also boolean logic (in honor of
George Boole).2 Other names are statement logic or sentential logic. It’s also underlying
binary hardware, binary meaning “two-valued”. The two-valuedness is the core of classical
logics in general, the assumption that there is some truth which is either the case or else
not (true or else false, nothing in between or “tertium-non-datur”). This is embodied the
classical propositional logic.

In the following, we introduce the three ingredients of a mathematical logics, its syntax,
its semantics (or notion of models, its semantics, its interpretation) and its proof theory.
We don’t go too deep into any of those, especially not proof theory.

2Like later for first-order logic and other logics, there are variations of that, not only syntactical, some
also essential. We are dealing with classical propositional logics without without being too dogmatic
which selection of operators we use. One can also study intuitionistic versions. One of such logic is
known as minimal intuitionistic logic, that has implication → as the only constructor.
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Model theory is concerned with the question of when formulas are “true”, what structure
satisfies a formula (its model). Proof theory, on the other hand, is about when formulas
are provable by a formal procedure or derivation system. Those questions are not inde-
pendent. A provable formula should ideally be semantically true and conversely a formula
(a question of soundness) and vice versa: all formulas which are actually “true” should
ideally be provably true as well (a question of completeness). Notationally, one often uses
the symbol ` when referring to proof-theoretical notions and |= for model-theoretical,
mathematical ones. ` ϕ thus would represent ϕ is derivable or provable, and |= ϕ for the
formula being “true” (or valid etc.) referring to its semantics.

Syntax: propositions as formulas of propositional logic

Logics express themselves syntactically by so-called formulas. Different logics used differ-
ent formulas. Propositional formulas, the formulas of propositional logics, are commonly
also called just propositions. One can stumble also over texts which call them sentences
(hence the word sentential logic as alternative name for propositional logic). Later we we
also look at formulas of first-order logics and of other logics. The syntax of propositions
we use is given as follows:

ϕ ::= propositions
p | > | ⊥ atomic propositions

| ϕ ∧ ϕ | ¬ϕ | ϕ→ ϕ | . . . compound propositions

(2.1)

One can distinguish between atomic propositions and compound ones. There are two
“constant” atomic propositions, called > and ⊥. Constant in the sense that their meaning
is fixed, resp. will be fixed in the obvious manner, indicate by the names of the symbols,
as soon as we come to the semantics of formulas. Not fixed is the interpretation of p,
representing propositional variables.3 For propositional variable, we use p1, p′, q . . . as
typical elements.

Compound propositions are constructed using logical operators or connectives. We assume
that they are a familiar. They included binary connectives like conjunction and disjunction
∧ and ∨, negation ¬ as unary one, implication → as another one.

One could include more, like “exclusive or” ⊕ or equivalence or bi-implication↔, etc, but
we are here not overly obsessed here by fixing the exact selection of logical operators. The
grammar from equation (2.1) contains ". . . ". One may also find presentations leaving out
syntax for operators that can be expressed by others, so that the syntax becomes minimal:
no operator can be removed without crippling the expressiveness of the logic (thus, being
no longer classical propositional logic). Out shown syntax is not minimal. For example ∧
can be expressed using ¬ and ∧, and actually also the atomic propositions > and ⊥ are
not strictly needed and could be expressed likewise by ¬ and ∧, for instance.

3One can stumble also over texts, where the p’s are called propositional constants, or also propositional
symbols. That’s just terminology and does not change a thing. Even if called propositional constants,
they are less constant than > and ⊥, insofar that the truth value of > and ⊥ is absolutely fixed,
whereas for the p’s, the truth-status needs to chosen. To call the p’s propositional constants can also
be justified, it’s not unreasonable, but as said, it’s just terminology and let’s not loose sleep over that.
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Especially in HW, for logical circuits, one may base the hardware one just one logical
operator, “NAND” (“NOR” works likewise). That has advantages for the manufacturing
process, and NAND can express all other operators, including the propositional constants
> and ⊥. For the purpose, we consider that as minor details resp. we rely on that
the reader knows such basic things and can handle it. As long as we have prositional
constants and operators like the ones from equation (2.1) and their standard interpretation
as semantics), it’s propositional logic.

As common, at least in computer science, the syntax is given by a grammar. More precisely
here, the context-free grammar from equation (2.1) uses BNF-notation. It’s a common
compact and precise format to describe (abstract) syntax, basically syntax trees. The
word “abstract” refers to the fact that we are not really interested in details of actual
concrete syntax for text files used in a computer. There, more details would have to be
fixed to lay down a presise computer-parseable format. Also things like associativity of the
operators and their relative precedences and other specifics would have to be clarified.

But that is “noise” for the purpose of a written text and human communication. A
context-free grammar is precise, if understood as describing trees, and following standard
convention we allow parentheses to disambiguate formulas if necessary or helpful. That
allows to write p1 ∧ (p2 ∨ p3), even if parentheses are not mentioned in the grammar.
Also we sometimes rely on a common understanding of precedences, for instance writing
p1 ∧ p2 ∨ p3 instead of (p1 ∧ p2)∨ p3, relying on the convention that ∧ binds stronger than
∨. We are not overly obsessed with syntactic details, we treat logic formal and precise but
not formalistic. Tools like theorem provers or model-checkers would rely on more explicit
conventions and concrete syntax.

Semantics: the meaning of propositions

So far we have fixed only the notation of formulas, their syntax. If one has been in contact
with some form of formal logics at all, one will probably have an grip on what propositions
are supposed to represent. Like that ∧ represents “and” and ∨ represents “or”. But it
may be less clear, especially when studying such things for the very first time, though
I assume that for participants of the course this is not the case. For example, in an
English sentence “do you want tea or coffee?”, the colloqual “or” is typically not meant
as the disjunctive operator of propositional logics, written ∨. That sentence is probably
meant as given a choice between tea or coffee but not both, and asking “do you want
either tea or else coffee?” sounds borderline impolite and “do you want tea xor coffee?”
incomprehensible. . .

At any rate, we are better off with fixing the meaning in some unambigous way. To ask
what a proposition means, is to ask “is it true or else false”? So ultimately, a proposition is
mapped to one of exactly two possible value, the two truth values or Boolean values. Let’s
use > for true and ⊥ for false, and call the two-valued Boolean domain by the notation
B = {>,⊥}. To rub it in: we use > and ⊥ as propositional constants in the syntax, and
the values > and ⊥ as ingredient of the semantics or meaning, and unsurpisingly, two
case of fixing the semantics of propositions is that > is interpreted as > and ⊥ as ⊥.
Actually it will be an inductive definition over the syntax of propositions, and the two
cases will be base cases in that inductive definition, dealing with two atomic propositions.
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The definition for compound proposition will be done by, obviously, the inductive cases of
the definition.

Besides > and ⊥, there is one base case which we have not covered, namely how to
treat propositional variables p. Since we assume that there is a reservoir of propositional
variables P, one should more correctly say, there’s one base case per variable.

Anyway, since propositions will generally contain propositional variables the truth status
of the whole proposition depends on which truth value are assumed or chosen for the
propositional variables.

Choosing those is a mapping or function from propositional variables to trues values. We
can call such a function a (propositional) variable assignment and let’s use the σ for those,
i.e. a variable assignment is of the following type:

σ : P → B . (2.2)

With that in place, we can finally define the semantics of a proposition, namely relative
to a propositional assignment. One typical notation for the semantic function are the
“semantic brackets” [[]]; the notation is also used for semantic functions in other context.
Anyway, given a variable assignment σ from P → B and a proposition ϕ from Φ, [[ϕ]]σ is a
boolean value from B. That makes here [[_]]_ a function of the following type (assuming,
for no particular reason, the variable assignment as the first argument):

[[_]]_ : (P → B)→ Φ→ B . (2.3)

When the semantic functions gives back the truth value >, i.e., if

[[ϕ]]σ = > , (2.4)

we say, proposition ϕ is true under the variable σ, or ϕ holds under said variable as-
signment. One hears also the formulation that the variable assignment σ satisfies ϕ.
Notationaly, the latter formulation would often rather written as

σ |= ϕ (2.5)

instead of the formulation from equation (2.4).

|= in the latter equation is the the (semantic) satisfaction relation, in this case the sati-
faction relation for propositional logic. Other logics have other semantic functions resp.
other satisfaction relation.

Both formulaic representations and wordings are, of course, completely equivalent, and
which to use is a matter of preference. We will use both, presumably.

Equation (2.5) as well as (2.4) cover the “positive” case: the formula or prosition is true,
it holds, the assignment satisfies the proposition etc. The negative case means [[ϕ]]σ = ⊥,
resp. σ 6|= ϕ.
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That there is such a clear-cut split in satisfaction or else non-satisfaction, in a proposition
being true or els not, in which case the proposition is false, that is characteristic for classical
propositional logic (or more generally also for first-order logic or classical higher-order
logics). We don’t cover non-classical propositional or first-order logics. The most famous
and important alternatives would be intuitionistic variants. One thing that changes for
instance for propositional logics is that is no longer the case that a proposition is false if and
only if it’s negation is true and vice versa. Classically, a proposition (given an choice for
the propositional variables) is true or else false, there is no other thing beside true or else
false. In Latin, that principle is called “tertium non datur”, there is no third thing besides
true or false. For intuitionistic logics, that’s dropped, resp. is not the case. Without going
into details that complicates the way the semantics of propositions is given.

Indeed, for our classical propositional, we have not actually given the semantics. We have
just discussed different symbols that are typically used for it ([[_]]_ and |=) and we have
given types, in equation (2.3). We leave the exact definition as an easy exercise to the
reader. We have mentioned that it ultimately it’s a induction (or “recursive”) definition
that needs to fix the base cases of the syntax from equation (2.1). The inductive cases
have to cover all the non-atomic logical connectors, defining the truth value of a compound
proposition in terms of the truth values of the sub-propositions. For example, ϕ1 ∧ ϕ2
is true of both ϕ1 and ϕ2 are true, and false otherwise. A definition like that would
correspond to a straightforward recursive procedure.

A compact way to show all the neccessary cases for all connective is to arrange them
in tabular form, a so-called truth table. We show the truth table for conjunction as one
example in Table 2.1.

∧
⊥ ⊥ ⊥
⊥ > ⊥
> ⊥ ⊥
> > >

.

Table 2.1: Truth table for conjuction

Conjuction is a binary connective, i.e., it has two “inputs”. The table contains this four
lines, covering the for combinatins of > and ⊥ for the pairs of input. The last columns
shows the output of the conjunction, thus fixing its semantics. As said, the remaining
constructors are left out here.

Proof theory

In the previous section we fixed the meaning of propositions by definining the semantic
function resp. defining σ |= ϕ. We called σ a variable assignment, associating truth values
to propositional variables. One could also call it a model and use for σ |= ϕ the words
“σ models ϕ” instead of “σ satisfies ϕ”. We will later encounter the notion of “model”
also for first-order logic (first-order model) and for other logics. There, not surprisingly,
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the notion of model becomes more complex and interesting. For propositional logic, it
may sound a a bit too extravagant to speak of a model of a proposition. But its correct
terminology.

We mention it, because its related to “model theory”. That’s dealing with questions
concerning the models for a logic. What are the models? If a formula has an infinite
model, is there also a finite one? And more questions like that. It’s likewise not a
coincidence that the word model is mentioned in model checking. Model checking is not
about general questions like the ones mentioned, it’s more concretely about “given a model
on the one hand and a formula on the other, does the model satisfies the formula?”. For
propositional logic, to check

σ |=? ϕ (2.6)

is trivial and can be done efficiently; as indicated, the semantic function [[_]] is a recursive
procedure, so one just have to plug in the arguments, calculate [[ϕ]]σ and look at the
outcome. So model checking is a non-problem for propositional logic and actually, the
more general question of what can be said about models in general (“model theory”) is
boring, as well. Model theory get’s more hairy for first-order logic or logics more expressive
than propositional logic, but we will not cover that. We will also don’t do model checking
for first-order logic, but later for modal logics.

In connection with propositional logic, another question is of relevance and is a challenge,
that’s the question if there exists a model or variable assignmnt that satisfies a proposition.
One could formulaically represent that as

? |= ϕ (2.7)

and that’s a question of satisfiability. For propositional logic, it’s the famous SAT prob-
lem and corresponding tools are sat-solvers or more generally constraint solvers. Pure
sat-solving means constraint solving for Boolean constraints (and Boolean constraint is
just another name for a proposition in propositional logic intended to be checked for
satisfiability).

Back to the real issue in the section, which is neither model theory nor model checking,
but proof theory. Proof theory is kind of like the opposite of model theory. Model theory is
about what can be said about the semantics (the models), proof theory is about what can
be proven in a logic in principle. That’s a theoretical question, a more more practical one
is how to prove things efficiently. So one may paraphrase that by saying that model theory
is concerned with when something is “true” and proof theory is about when something
“provable”. These questions of course hang together; the whole purpose of doing a proof is
to establish truth. Ideally, of course, all true things should be provably so, and likewise all
false things should be demomstrably false as well (refutable). In such a situations truth
and provability coincide. Howerer, that’s rarely the case. That has to do with liminations
of computability; performing a proof is ultimately a computation process and already for
first-order logic, one runs into undecidability.

Proof theory (same for model theory) is concerned withmeta theory, it’s about a given logic
and its proof procedures but it’s not formulated inside the logic at hand. For instance,
when doing a statement about what can be proven in propositional logic, that’s not a
propositional formula, it’s perhaps an English sentence, mentioning a particular proof
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procedure, which likewise is not given as propositional formula. Propositional logic would
anyway be too weak to capture any of that.

Let’s get more concrete: how to do proofs for propositional logic? The question is im-
presise, it depends on what one intends to prove. But ultimately all plausible things one
could be interested in are decidable.

As mentioned, the “model checking” question from equation (2.6) is efficiently decidable
(and uninteresting). Finding a satifying variable assignment (equation (2.7)) is likewise
decidable. We simply have to choose > and ⊥ for all propositional variabes inside the
given proposition and check the result. If we find a satisfying σ, ϕ is satisfiably, and, after
checking all combinations, we have found not, it’s not satisfiable. It’s like making a giant
truth table. Since there are only finitely many relevant σ to check, since the proposition
contains only finitle many variables, SAT is decidable. The problem with that brute force
method is the combinatorial explosion of checking different combinations of truth values.
Unfortunately, theoretically speaking, from the perspective of complexity theory, we have
to live with that. There is not much one can do, Boolean satisfiability or SAT is known
to be NP-complete (actually, it’s the prototypical NP-complete problem. When claiming
that not much can be done, that’s from a theoretical point of view. Practically, many
thing can and have been done to make SAT-solvers and other forms of constraint solvers
to tackle larger and larger problems.

Another thing one could be interested in is not satisfiability, but validity: is a proposition
true for all variable assignments. Such a valid propositional formula is also called a
propositional tautology. One can also solve that by checking out all possible variable
assignment σ for the involved propositional variables.

Just filling out a giant truth table in a brute force manner is a proof procedure, only not a
very elegant one. So, doing proofs for boolean satisfiabilty or validity can be done smarter,
looking for specific strategies, or finding “short-cuts”. What I mean by short-cut is pretty
common sense, like if on processes a conjunction ϕ1 ∧ ϕ2 and the evaluation strategy has
determined that ϕ1 is ⊥, then there is no purpose to find out all different evaluations for
ϕ2.

Working hard on evaluation strategies has led to different techniques and proof methods
(David-Putnam and variations, resolution and on and on) and while in general, SAT is
still NP-hard, such strategies (and smart data representations) have lead to quite powerful
SAT solvers or other boolean prover implementations.

To round off this section, let’s have a look at satisfiability and validity. Those two notions
in classical forms of logics, are two sides of a coin: a formula is valid iff its negation is
unsatisfiable. Formulated contra-positively, in terms of non-validity and satisfiability, it
means

6|= ϕ iff σ |= ¬ϕ for some σ

The model σ for the negation ¬ϕ, refuting validity of ϕ, is also called counter-example.
Model-checking is not doing satisfiability or validity, but we will encounter also there the
concept of counter-examples, which is analogous to the one discussed here. It’s a valuable
feature of a program verification method to be able to give back counter examples. The
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information that a program does not satisfy its specification and requirements is not very
helpful. Such a failure needs to be accompagnied with information what and where the
problem is, and that’s called the counter example. It’s a model or example that shows that
the negation of the property of interest is satified. Since model checking is not validity or
satisfiability checking, that idea needs some porting to work with, for instance, temporal
logic model checking, but the concept is similar.

2.3 Signatures, terms, and substitutions

As far as logics are concerned, we dealt so far, in Section 2.2 with a most simple form
of logic, classical propositional logic. It’s a bare form of logics, insofar it does not speak
about anything. It is a logic in most bare form, regulating truthness and falseness, without
referring to anything particular which is being true or false. So, in that sense, it is a very
sterile form of logic.

First-order logic, covered later in Section 2.4, allows to speak and reason about “things”. In
propositional logic, one could have a propositional variable even, but that’s just a name,
like p or q. Those propositional variables, which count among atomic propositions are
either true or false in classical propositional logic, but there is no “evenness” about the
variable or something that is being even or not. In first-order logic or other more expressive
logic, one could formulate things like even(x), where even now is called a predicate. First-
order logic is also called more explicitly first-order predicate logic. The predicate even is
still just a name and in that sense there is also no “evenness” about it as scuh, but now
it speaks about something (and one can try to axiomatize things about that name so that
it captures “evenness”). In even(x), x is meant as variable, plausible representing natural
numbers. And depending on which natural number x represents, the even-predicate is
intended to be true or false. When one intends to speak about numbers, one also need
syntax for that (not just variables). I.e., one would need syntax for natural number (like
0, 1, . . . ), and operations on them (like addition and multiplication two be able to write
expressions like 2× (x+ 1). In combination with the even-predicate, one would like that
even(1 + 1) evaluates to >, even(2 × 5 + 1) to ⊥, and the truth status of even(x + 1)
dependent on the choice of x.

Without further arrangements, as mentioned, there is no evenness about the even-predicate
even(x + 1), it’s a symbol, in the same way as the proposition called even would be in
propositional logics. The “arrangement” could be fixing the interpretation of even and of
+ etc. That would be a semantics, in a way a model-theoretic approach. Or one could
try to specify rules one wishes to hold for a predicate called even in combination with
other symbols for natural numbers, for instance stipulating as axiom ∀x.even(2 × x) or
∀x.even(x+ 1)→ odd(x) etc. That could provide an axiomatization. And then one could
ask; does the axiomatization, the proof-theoretic approach, capture exacly the standard
natural numbrs (the model-theoretic way). The answer would be no.

But this section is not about how to give meaning to the symbols (either by attaching a
model like the natural numbers, nor by trying to axiomatize it). That will be dealt with
in the subsequent Section 2.4 about first-order logic.
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In this section we are concerned with the symbols themselves, the syntactic aspects of
first-order logic, bare any meaning. The domain specific concept of syntactical material
for first-order logic is called (first-order) signature. It consist of a choice of functional
and relational symbols, each with a given arity (or more generally with given sorts). For
instance, when working with natural numbers, the symbol + represents a binary operation,
i.e., is of arity 2, and a relation or predicate like ≤ is likewise of arity 2.

2.3.1 Signatures

The signature is domain-specific, since first-order logic has also logical syntax, including
the operators from propositional logics like conjunction, negation, etc.

A signature is

Definition 2.3.1 (Signature (single-sorted)). A signature Σ = (Σf ,Σrel , ar) consists of
two finite, disjoint sets of functional and relational symbols together with a function ar :
Σf + Σrel → N, fixing the arity for each symbol.

A signature with functional symbols only is called algebraic signature.

Abstractly, one could write Σf = {f (2)
1 , f

(0)
2 , g(1), . . .} and Σrel = {R(1)

1 , R
(2)
2 , Q(2), . . .},

indicating the arity as superscript.

In this lecture, we often leave the signature implicit or in English, and don’t operate with
Definition 2.3.1 in its full glory. For instance, when using natural numbers, we might use
(and have used) symbols like + and ≤, both of assumed arity 2, without writing ≤(2) or
+(2) or explicating ar as function.

Functional symbols of arity 0 are also called constant symbols. For the natural numbers
0 is an example of a constant symbol.

Relational symbols of arity 0 are like the propositional symbols in propositional logic
(we called them mostly propositional variables). Indeed, a degenerated signature with
no functional symbols and only 0-arity relational symbols corresponds to propositional
logic.

The concept of a signature from Definition 2.3.1 is a bit limited, at least in practice. An
arity of a symbol is the number of arguments the symbol takes. That implies that all
arguments are of the same type. A type in our context is commonly not called type, but
sort. Definition 2.3.1 assumes that there is only one sort (left implicit), and that’s why
it’s called a single-sorted signature. When working with such signatures, for instance in
connection with first-order logics, that’s too restrictive to be useful in many cases.

One wants the possibility to work and reason about different data structures at the same
time. That then leads to many-sorted signatures. If multi-sortedness is what’s needed in
practice, why does one bother with single-sorted signatures (and single-sorted first-order
logics) at all and why do many texts focus on the single-sorted case? Well, it’s mostly a
theoretician’s thing. When studying, say, first-order logics, like studying its proof theory or
model theory, basically all interesting, fundamental results work the same in both settings.
The many-sorted case only leads to a slightly notational overhead (“given sorts s1, s2, . . . sn
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with n ≥ 1, blablabla”), which one is happy do do without when exploring properties of
the logics, working on the logic’s meta-theory, perhaps stating that the results carry over
straightforwardly to the many-sorted case.

In practice, of course, specifying and verifying properties of a system or a program, one
wants to be able to work with natural numbers and lists and whatever is relevant in the
concrete setting.

So sorts are symbols representing different domain, like nat or bool or whatever we need.
We don’t use (for here) the notation N or B, since for now we stress that sorts like nat
and bool are syntax, symbols form the signature, whereas B and N are the semantics,
i.e., the boolean values resp. the natural numbers. The intention is of course that nat
is interpreted by the domain N etc., but associating meaning to syntax is the task of the
semantics.

One could then work with integers and integer list and use a symbols like cons in the
functional part of the signature with the type int × Listint → Listint. We don’t give
a many-sorted version of the concept of signature from Definition 2.3.1. We hope it’s
clear enough how it works and invoke the excuse for not doing it, namely everything “just
carries over”.

In a many-sorted setting we then have some form of type system. Actually, already in the
single-sorted case we have one. A term cons (0, 0) is equally ill-typed as is +0 in a single-
sorted setting, where + needs two arguments, not one. At any rate, even when working
with a large number of different sorts, the type discipline is fairly trivial. Therefore we
won’t bother to give a formal definition of well-sorted terms. We simply assume that we
only work with well-typed expressions. For a programming language, one does not waste
time to think what an ill-typed program means, one cannot run it anyway, and we won’t
waste time here to consider formulas of ill-sorted terms.

Many-sorted signatures have many sorts, like nat, or Listint. Why are those things
are not called types, but sorts? Well, here and there, one finds also the word type for
those. And for all intent and purposes, they are types. Still, more common is the sort-
terminology for algebraic and first-order signatures. Perhaps that has historical reasons.
It has also to do with the fact that, as far as type systems are concerned, the discipline is
very restricted. People dealing with type systems would laugh at it and feel ashamed (and
feel better when pointing out that it’s just a sort system, not a grown-up type system. . . ).
The restriction is that one has a number of sorts, which corresponds to atomic base types,
like the mentioned nat and Listint and the operators like cons: nat×Listint → Listint,
where nat×Listint → Listint can reasonably be called the type of cons. But for function
symbols of the signature, only types of the following form are allowed

s1 × . . . s2 → s

If we call that a type, theb si and s are not also types, but something else (namely sorts).
This restricting disallows for instance that cons is of type int→ (Listint → Listint). It
some sense, that type is equivalent to (int×Listint)→ Listint, but it’s simple not within
the framework of algebraic or first-order signature. Likewise on can not have a symbol
for a map-like function of type ((int → bool) × Listint) → Listbool). A map-function
is a higher-order function; it takes another function as argument. That’s not doable in
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algebraic signature, and there are good reasons for that. Algebraic signatures are not just
play a role for first-order logics, but the field of (general) algebras uses them. And the core
theory and central results of (general) algebra simply rests on that syntactic restriction.
Without it’s no longer (general) algebra.

For the lecture, we will look not too deep at first-order logic, but don’t explore “algebra”
(which can be seen as a quite restricted form of first-order logic with only a functional
signature and considering equations only. So it’s a form of equational logic and in that
sense, there is one and only one relational symbol, namely “=”, but since that’s fixed, one
does not bother to introduce a Σrel-signature just for that.

When pointing out that higher-order functions like map are not allowed in algebraic and
first-order signatures, we should avoid a misconception that could suggest itself at this
point. Namely that higher-order functions would be covered by higher-order logic, which
goes beyond first-order logic. That’s a misconception. Higher-or-not-order-ness of predi-
cate logic refers to about what can be quantified over. For instance, second-order predicate
logic is allowed to quantify over predicates, first-order logic cannot. Third order predicate
logic can quanify over predicates over predicates or sets of setc. etc. That’s not the same
as the question what the predicates ultimately speak over. In logics with algebraic signa-
tures of the form introduced here, predicates range over elements from the domains of the
given sort, and they don’t range over functions.

Of course there are logics that can deal with higher-order function and are higher-order
wrt. to the quantification over predicates. Often that are logics in connection with typed
λ-calculi and phrased often as (intuitinistic) dependent type theory. There are also quite a
number of theorem provers based on dependent type theories, like Isabelle/Hol, Coq, and
others. Anyway, higher-order aspects won’t be covered in our lecture, mostl probably.

2.3.2 Terms

Closely related to (algebraic) signatures is the notion of terms. That’s nothing else than
expressions formed with the syntactic material from a given signature, i.e., constructed
using the given function symbols. Additonally, one has variables available, i.e., a given
countably infinite setn X (and we assume typical elements like x, y′, . . . as variables). For
terms, the relational part of a first-order signature is not used, only the functional part
Σf (also called an algebraic signature).

Definition 2.3.2 (Terms (single-sorted)). Given an algebraic signature Σ and a (count-
ably infinite) set of variables X, then the set of terms over Σ and X, written TΣ(X) is
given by the following grammar.

t ::= x variable
| f(t1, . . . , tn) f of arity n

(2.8)

The set of ground terms over Σ is given as TΣ(∅) (also written as TΣ).

The terms from Definition 2.3.2 are single-sorted and based on the single-sorted version of
signatures from Definition 2.3.1. The definition requires that terms must be “well-typed”
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or “well-sorted” in that a function symbol that expects a certain number of arguments
(as fixed by the signature in the form of the symbol’s arity) must be a applied on exactly
that number of arguments. The number n can be 0, in which case the function symbol is
also called a constant symbol. In the straightforward many-sorted generalizations, terms,
by definition would likewise be required to respect the sorts. As mentioned earlier, the
multi-sorted setting is not really different, it does not pose fundamentally more complex
challenges (neither syntactically nor also what proof theory or models or other questions
are concerned).

As a simple example: with the standard interpretation in mind, a symbol zero would be
of arity 0, i.e., represents a constant, succ would be of arity 1 and plus of arity 2. For
clarity we used here (at least for a short while) typewriter font to refer to the symbols
of the signature, i.e., the syntax, to distinguish them from their semantic meaning. Often,
as in textbooks, one might relax that, and just + and 0 for the symbols as well.

In practical situations (i.e., tools), one could allow overloading, or other “type-related”
complications (sub-sorts, for example) for the sake of convenience. Also, in concrete syntax
supported by tools, there might be questions of associativity or precedence or whether one
uses infix or prefix notations. For us, we are more interested in other questions, and allow
ourselves notations like x plus y or x+ y instead and similar things, even if the grammar
seems to indicate that it should be plus x y. Basically, we understand the grammars as
abstract syntax (i.e., as describing trees) an assume that educated readers know what is
meant if we use more conventional concrete notations.

2.3.3 Substitutions, in particular term substitutions

A central notion in connection with terms is the concept of substitution. Actually, it’s
not just important for terms, but plays a role in many situations which involve syntactic
constructions containing variables. But let’s focus for now on terms.

To substitute means to replace something. Substitutions are meant to replace variables
occurring in a term by terms. At its core, a substitution is defined as mapping from
variables to terms, expressing said replacment.

Definition 2.3.3 (Term substitution (single-sorted)). Given terms TΣ(X) over a signature
Σ and using variables from X, a substitution θ is a mapping of type

X → TΣ(X) . (2.9)

In abuse of notation we use substitutions also on terms, i.e. as mapping of type TΣ(X)→
TΣ(X).

We write θt or just θ(t) for applying the substitution θ in term t. In the literature, the
post-application notation like tθ is also very common. Note that Definition 2.4.1 does
not spell out how to lift the substitution function on variables from Equation (2.9) to
work on terms. In abuse of notation (as is common), given a mapping θ on variables,
we use the same symbol also for terms. In programming-language terms we make use of
overloading.
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Substitution, especially in practice, are finite functions in that they replace only finitely
many variables. Terms contain finitely many variables, if any. So applying a subtitution
only affects the variable occuring in the terms under consideration, so from that point of
view, there is no real use for substitutions affecting inititely variables. For notation for
finite substitution, we use [t/x] for replaceing x by t, or [t1, t2/x1, x2] for replacing x1 and
x2, etc. As an example, [1 + z/x]((x+ (y ∗ x))) gives (1 + z) + (y ∗ (1 + z)).

That’s enough for the moment concerning substitutions, it should be sufficiently clear
and/or sufficiently known. We have defined substitutions on terms. We will later use
substitution also on first-order formulas (actually, the concept of substitution makes sense
everywhere if one has “syntactic expression” with “variables”): formulas will contain,
besides logical constructs and relational symbols also variables and terms. The substitution
will work the same as here, with one technical thing to watch out for (which is not
covered right now): Later, variables can occur bound by quantifiers. That will have two
consequences: the substitution will apply only to not-bound occurrences of variables (also
called free occurrences). Secondly, one has to be careful: a naive replacement could suffer
from so-called variable-capture, which is to be avoided (but it’s easy enough anyway).

2.3.4 First-order signature (with relations)

So far we have focused algebraic signatures, the part Σf of the signature from Definition
2.3.1 used for terms. In first-order logic, the signature, besides function symbols, contains
also relational symbols Σrel . Those are intended to be interpreted “logically”. For instance,
in a single -sorted case, if one plans to deal with natural numbers, one needs relational
symbols on natural numbers, like the binary relation leq (less-or-equal, representing ≤)
or the unary relation even. One can call those relations also predicates and they form
later then the atomic formulas of the first-order logic (also called (first-order) predicate
logic). When unspecific and talking generally, we use letters like P , Q′ etc. as typical
elements of Σrel . standard binary symbol: .= (equality)

2.3.5 Further side issues and elaborations

Multi-sorted case and a sort for booleans The above presentation is for the single-sorted
case again. The multi-sorted one, as mentioned, does not make fundamental trouble.

In the hope of not being confusing, I would like to point out the following in that context. If
we assumed a many-sorted case (maybe again for illustration dealing with natural numbers
and a sort nat), one can of course add a second sort intended to represent the booleans,
let’s call it bool. Easy enough. Also one could then think of relations as boolean valued
function. I.e., instead of thinking of leq as relation-symbol, one could attempt to think
of it as a function symbol namely of sort nat × nat → bool. Nothing wrong with that,
but one has to be careful not confuse oneself. In that case, leq is a function symbol, and
leq(5,7) (or 5 leq 8) is a term of type bool, presumably interpreted same as term
true, but it’s not a predicate as far as the logic is concerned. One has chosen to use the
surrounding logic (FOL) to speak about a domain intended to represent booleans. One
can also add operator like and and or on the so-defined booleans, but those are internal
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inside the formalization, they are not the logical operators ∧ and ∨ that part part of the
logic itself.

0-arity relation symbols In principle, in the same way that one can have 0-arity function
symbols (which are understood as constants), one can have 0-arity relation symbols or
predicates. When later, we attach meaning to the symbols, like attaching the meaning
≤ to leq, then there are basically only two possible interpretations for 0-arity relation
symbols: either “to be the case” i.e., true or else not, i.e., false. And actually there’s no
need for 0-arity relations, one has fixed syntax for those to cases, namely "true" and "false"
or similar which are reserved words for the two only such trivial “relations” and their
interpretation is fixed as well (so there is no need to add more alternative such symbols
in the signature).

Anyway, that discussion shows how one can think of propositional logic as a special case
of first-order logic. However, in boolean logic we assume many propositional symbols,
which then are treated as propositional variables (with values true an false). In first order
logics, the relational symbols are not thought of as variables, but fixed by choosing an
interpretation, and the variable part are the variables inside the term as members of the
underlying domain (or domains in the multi-sorted case).

Equality symbol The equality symbol (we use .=) plays a special role (in general in math,
in logics, and also here). One could say (and some do) that the equality symbol is one
particular binary symbol. Being intended as equality, it may be captured by certain laws
or axioms, for instance, along the following lines: similar like requiring x leq x and
with the intention that leq represents ≤, this relation is reflexive, one could do the same
thing for equality, stating among other things x eq x with eq intended to represent
equality. Fair enough, but equality is so central that, no matter what one tries to capture
by a theory, equality is at least also part of the theory: if one cannot even state that two
things are equal (or not equal), one cannot express anything at all. Since one likes to
have equality anyway (and since it’s not even so easy/possible to axiomatise it in that
it’s really the identity and not just some equivalence), one simply says, a special binary
symbol is “reserved” for equality and not only that: it’s agreed upon that it’s interpreted
semantically as equality. In the same way that one always interprets the logical ∧ on
predicates as conjuction, one always interprets the .= as equality.

As a side remark: the status of equality, identity, equivalence etc is challenging from the
standpoint of foundational logic or math. For us, those questions are not really important.
We typically are not even interested in alternative interpretations of other stuff like plus.
When “working with” logics using them for specifications, as opposed to investigate meta-
properties of a logic like its general expressivity, we just work in a framework where the
symbol plus is interpreted as +, end of story. Logicians may ponder the question, whether
first-order logic is expressive enough that one can write axioms in such a way that the
only possible interpretation of the symbols correspond to the “real” natural numbers and
plus thereby is really +. Can one get an axiomatization that characterizes the natural
numbers as the only model (the answer is: no) but we don’t care much about questions
like that.



2 Logics
2.4 First-order logic 19

2.4 First-order logic

In this section, we briefly cover first-order logics. It’s not a in-depth discussion, since
the lecture is mostly concerned with other forms of logics, like temporal logic. Still, like
propositional logics, predicate logic is kind of like general basic knowledge, so we at least
cover a possible syntax an discuss how that logic is interpreted, i.e., speak shortly about
semantics and a bit of proof theory as well.

As said, we are mostly interested temporal logics or other logic. But that’s actually a
bit orthogonal. Temporal logic will have temporal connectives, but also standard, non-
temporal logical operators, like conjunction or implication. Taking propositional logic as
core, adding temporal or modal operators, leads to propositional temporal logic. But one
can add them also to first-order logic, and then one gets first-order temporal logics etc. In
that sense, can’t hurt to have a short look at or get a short reminder of first-order logics.

2.4.1 Syntax

Definition 2.4.1 (Formulas of first-order logics). Given a signature Σ, the formulas of
first-order logic are given by the following grammar.

ϕ ::= P (t, . . . , t) | > | ⊥ atomic formulas
| ϕ ∧ ϕ | ¬ϕ | ϕ→ ϕ | . . . formulas
| ∀x.ϕ | ∃x.ϕ

(2.10)

We use ϕ for formulas of first-order logic, the same symbol we used for propositions from
equation (2.1); propositions are the formulas of propositional logics, and we also will use
the same symbol for formulas of later logics. The grammar shows the syntax for first-order
logic. As before for propitional logic, we silently assume proper priorities and associativ-
ities (for instance, ¬ binds by convention stronger than ∧, which in turn binds stronger
than ∨ etc.) In case of need or convenience, we use parentheses for disambiguation.

The grammar, choice of symbols, and presentation (even terminology) exists in variations,
depending on the textbook. It’s often convenient to work with a sorted or typed variant,
using for example syntax like ∀x:Nat.ϕ, which does not change much from a logical point
of view.

Minimal representation and syntactic variations The above presentation, as we did in
the propositional case, is a bit generous wrt. the offered syntax. One can be more economic
in that one restricts oneself to aminimal selection of constructs (there are different possible
choices for that). For instance, in the presence of (classical) negation, one does not need
both ∧ and ∨ (and also → can be defined as syntactic sugar). Likewise, one would need
only one of the two quantification operators, not both. Of course, in the presence of
negation, > can be defined using ⊥, and vice versa. In the case of the boolean constants
> and ⊥, one could even go a step further and define them as P ∨ ¬P and P ∧ ¬P (but
actually it seems less forced to have at least one as native construct). One could also
explain > and ⊥ as propositions or relations with arity 0 and a fixed interpretation. All of
that representation can be found here and there, but they are inessential for the nature of
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first-order logic and as a master-level course we are not loosing sleep over representational
questions like that. Of course, if one had to interact with a tool that supports, for instance
first-order logics or a fragment or extension thereof, (like a theorem prover or constraint
solver) or if one wanted to implement such a tool oneself, syntactial questions would of
course matter and one would have to adhere to stricter standards of that particular tool.

2.4.2 The meaning of first-order logic formulas (semantics, interpretation,
models . . . ).

After fixing the syntax of the logic, we have to address what formulas means. It’s analogous
to what we did for propositional logic (and later for other logics). Conceptually, the way
the semantics is defined is analogous than for propositional logics. The syntax is given by a
grammar, and the semantics is a mapping of syntax trees to a semantical “domain”. In the
propositional setting, the mapping was given by assigning truth values to the propositional
syntax, and that mapping was lifted to propositions.

For first-order logics, the situation gets a bit more involved. There are two syntactic levels.
There is the level of functional and relational symbols, with which one can express terms
over a given signature and relations between terms or predicates on terms. Besides that
level, there’s the logical level, which needs to be interpreted as well. Most of that part is
the same as for the propositional level (for instance, the symbol ∧ is conjuction, as before
etc.) The quantifiers are new of course, compared to propositional logics.

In the following we assume a given signature Σ, and we focus on the single-sorted case,
with the excuse that, as mentioned, it does not make a difference, in theory. A first-order
structure, in the single-sorted case, is simple some set of elements together with functions
and relations on it.

For instance, let’s take the familiar natural numbers. They set of natural numbers N.
The set in itself does not qualify as structure, for that, one needs additional constants,
functions, and predicates or relations on that set or domain of the structure. A typical
selection could be the following:

(N; 0, λx.x+ 1,+,×,≤,≥) (2.11)

Here, the domain N is equipped with 4 functions (one of which is 0, which is of zero arity
and this called usually a constant rather than function) and two binary relations ≤ and
≥. Never mind the λ-notation, it’s just meant as a function that takes one argument from
the domain and returns its successor.

Structures like that can be used to give meaning to first-order signatures. That’s done by
associating to each function symbol of a given arity a mathematical function of the same
arity, and analogously, for each relational symbol or predicate symbol of a given arity. a
matheamtical relation of fitting arity. The association is a mapping for which we use I,
the interpretation function or interpretation for short, and a model is the pair consisisting
of a domain A together with the interpretation function (and implicitly the signature,
assumed given).
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Definition 2.4.2 (First-order Σ-structure). Assume a first-order signature Σ. A first-
order structure M for Σ is a tuple

M = (A, I) (2.12)

where A is a set (the domain) and I (the interpretation), maps functional symbols function
f such that I(f) : An → A for each f ∈ Σ(n)

f and relational symbols P such that I(P ) ⊆ An

(for each P ∈ Σ(n)
rel ).

Instead of I(f) and I(P ), we mostly write [[f ]]I and [[P ]]I or f I and P I . Another name for
Σ-structure is Σ-model. As a side remark: The special case of first-order signatures con-
taining no relational symbols, but only function symbols is also called algebraic signature
(see Definition 2.3.1). In line with that, the corresponding structures (without relations
or predicates) are called Σ-algebras.

As before, we introduce the concept for a single-sorted signature and consequently, the
Σ-structure has one single domain. The many-sorted case is the obvious generalization.
In particular, the interpretation function is required in that case not respect the sorts of
the symbols (not just their arity).

Definition 2.4.2 makes as strict separation between syntax on the one hand, and the
mathematical structure or model on the other. So, for the illustrative example of natural
numbers from equation (2.11), which is the semantical level, one has also a syntactical
layer, the signature. So, to make the split more visible, would could write the coresponding
signature Σ with one sort say Nat and function symbols zero, succ, plus and times
and relational symbols leq and geq. So, the times is meant as symbol, and × as the
well-know mathematical function of multiplication. The interpretation function would fix
[[times]]I = ×, or [[leq]]I = ≤ for one of the relations.

One could also alternatively fix [[times]]I′ = +, or [[leq]]I′ = ≥. Sortwise or typewise that
would be ok, but of course would be an non-recommended interpretation of symbols like
times and leq.

For most people including mathematicians (excepts perhaps logicians doing model theory
or semanticists) all of that is a bit schizophrenic or over-the-top hair-splitting. Interpreting
the symbol times by ×, ok, but isn’t × also a symbol? Sure, in a way yes, still talking
about models, interpetations, semantics, etc. there is this split, one symbol (say times)
is is meant as syntax, and associated with that is a mathematical function (but one needs
to say which function it is, or define it, and in this case one could use the symbol + and
appeals to the knowledge of the reader to have an understanding what + does, or defining
it perhaps semantically, maybe using induction, if one feels the need).

As said, for most it’s a bit over the top, and would be content with just working with a
structure as in equation (2.11), not bothering to make the split in the two levels explicit.

That may sound nitpicking, but probably it’s due to the fact that when dealing with
“foundational” questions like model theory, etc. one should be clear what a model actu-
ally is (at least at the beginning). But also practically, one should not forget that the
illustration here, the natural numbers, may be deceivingly simple. If one deals with more
mundane stuff, like capturing real world things as for instance is done in ontologies, there
may be hundreds or thousands of symbols, predicates, functions etc. and one should be
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clear about what means what. Ontologies are related to “semantics techniques” that try
to capture and describe things and then query about it (which basically means, asking
questions and draw conclusions from the “data base” of collected knowledge) and the
underlying language is often (some fragment of) first-order logic.

2.4.3 Giving meaning to variables

After having introduced the notion of Σ-structure, giving an interpretation for the syn-
tactic material of a first-order signature, are we now ready to fix the semantics of first
order formulas? Formulas contain of course also logic connectives like ∧ or ¬, but that will
work analogously to the propositional case. One piece missing is that we have to deal with
variables. Formulas can contain occurrences of (free) variables, i.e., variables which are
not in the scope of a quantifier. The logical status of such an open formula obviously may
depend on which values are chosen for the free variables For example, assume an atomic
formula like (x minus one) geq zero and assume the obvious interpretation of the involved
symbols on the domain of natural numbers, i.e., the formula represents (x − 1) ≥ 0. For
values of x larger or equal 1, that represents a truth about natural numbers, but for a
value of 0 for x, it’s false. That should be clear enough, so let’s nail it down.

Let’s call a mapping that assigns values to variables plausibly a variable assignment.

Definition 2.4.3 (Variable assignment). A variable assignment for variables from X and
a domain A is a mapping σ of the following type:

σ : X → A (2.13)

In Section 2.2, we introduced already variable assignments, there for propositional logics,
see equation (2.2). We also used the same symbol for it and conceptually, it’s similar,
anyway: giving values to variables, on propositional logics, propositional variables or
symbols, here variables representing values from a semantic domain of values. Note that
what what we called propositional variables p . . . in propositional logic correspond in
first-order logics to relational symbol or predicate symbols of arity 0. If one has such
0-arity symbols in the signature, they are not considered variables and they are given
their meaning by the interpretation, either as > or ⊥. That actually means there is no
much need for such “constant” predicate symbols or proposition symbols, two are enugh,
one interpreted as > and one as ⊥ (and even those could be defined, for example the one
representing false-hood as negation of the one representing truth-ness and truthness as
ϕ ∨ ¬ϕ, choosing some arbitrary formula ϕ. Our syntax from Definition 2.4.1 provided
two keywords > and ⊥ (which are like 0-arity predicates) whose interpretation will be
fixed to the obvious truth values > and ⊥ accordingly.

A variable assignment is sometimes also called valuation or also state. The latter namely
is not so much used when dealing with (first-order) logics as such, but when using such
a logic for program verification. There, some variables play the dual role. The program
being verified containts typical program variables. Th logic speaks about the program,
using perhaps first-order logic or a fragment thereof. For instance, first-order formulas
could express at a point in a program expectations about the values of some program
variables, like asserting that, at that point, a particular variable is non-negative. This
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would be an example of a assertion. Many languages, for instance Java, offer assertions of
that form (but not quantifications, that would be too expressive for the intended purposes
of run-time assertions). Properties of program variables are captured by free variables
in formulas. In a logical setting, values of variables are fixed by variable assignments
or valuation, when speaking about variables in a program, we think of that assignment
as the current state of the program. In imperative programs, a stretch of code can of
course change the values of variables by assignments, i.e., there will be state changes, so
the assertion before a stretch of code will be different from the assertion afterwards. The
assertion before is typically called pre-condition and the assertion afterwards the post-
condition of that code piece (but of course the post-condition of a particular piece of code
is the pre-condition for what follows, if anything).

Be it as it may, the discussion just explains that mappings of the form from equation (2.13)
are also known as state in particular in the context of verification of imperative programs
which deal with states and state changes. Logics like first-order logics in isolation are
typically seen as declarative, not dealing with variable changes; thus the terminology talks
about valuations rather than states (though it’s the same thing). Later we will talk about
modal and temporal logics, those are logics which (rather generally speaking) reason about
changes, for instance changes over “time” during an execution of a system.

Now we have fixed the interpretation of function symbols and know how to assign values
to variable. So everything is in place to give meaning to terms containing variables. Given
an interpretation for, it’s done by straightforwardly lifting σ to terms for which we write

[[t]]Iσ

Even if straighforward, for completeness sake, here is the definition by induction on the
structure of terms:

Definition 2.4.4 (Interpretation of terms). Given a signature Σ and a corresponding
model M = (A, I), the value of term t from TΣ(X), with variable assignment σ : X → A
written [[t]]Iσ) is given inductively as follow:

[[x]]Iσ = σ(x)
[[f(t1, . . . , tn)]]Iσ = [[f ]]I([[t1]]Iσ, . . . , [[tn]]Iσ),

(2.14)

Variables are given their meaning by σ, function symbols are given their meaning by I (in
the equation we write [[f ]]I) and the rest is straightforward induction.

Before we tackle also the semantics of formulas, we have get one aspect concerning variables
out of the way. It has to do with the quantifiers in the formulas. The quantifiers ∀ and
∃ range over variables and bind them. For instance, (free) occurrences of x in ϕ or bound
by the quantification in ∀x.ϕ, so no longer free. The quantification introduces a scope for
the bound variable, the variable can be seen as “local” to that scope.

Note that it’s possible that a variable is at the same time free in some part of a formula
and bound in another part, like variable x in (∃x.x = y + 15) ∧ y = 2 × z. Thus one
speaks not just about free or bound variables, but more precisely of variable occurrences:
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x occurs bound in the left part of the conjunction and occurs free in the right-hand part.
The other variables y and z occur free, only.

In the presence of variable binders, the notion of substitution needs some adaptation
resp. some words of caution. Definition 2.4.1 defined substitution for terms over an alge-
braic signature. That implied there had been no quantifiers around, and everything was
straightforward. Now, we want to make use of substitutions also for formulas. Substi-
tutions are, as before, (see equation (2.9)). . . [careful with substitution, other binding,
scoping mechanisms]

. . .

ϕ = ∃x.x+ 1 .= y θ = [x/y] (2.15)

The satisaction relation

Without further ado, we can now fix the meaning of first-order formulas. As mentioned in
connection with propositional logics, one can do that in the form of a semantic function
[[_]] (like we did for terms as part, which are part of formulas)) or with a satisfaction
relation |= (see equation (2.16). One finds both notations, it’s a matter of taste, and we
will use both.

The semantics combines the interpretation of functional symbols, variables and relational
symbol with that of the logical connectives, the latter defined analogously to what’s been
done for propositional case (except for the quantifiers, which are new, of course).

Given a signature Σ as fixed, one says that variable assignment σ makes a formula ϕ true
in a model M , or ϕ holds in a model M and under an assignment σ, or M and σ satisfy
ϕ, or similar. Notationally written as

M,σ |= ϕ or σ |=M ϕ . (2.16)

Alternatively, as said, on can base the definition on a functional formulation, for instance
writing [[ϕ]]Iσ for the truth value of ϕ in a given model M and under a variable assignment
σ.

Definition 2.4.5 (Satisfaction relation).

M,σ |= >
M,σ 6|= ⊥
M,σ |= P (t1, . . . , tn) iff P I([[t1]]Iσ, . . . , [[tn]]Iσ)
M,σ |= ¬ϕ iff M,σ 6|= ϕ
M,σ |= ϕ1 ∧ ϕ2 iff M,σ |= ϕ1 and M,σ |= ϕ2
M,σ |= ϕ1 ∨ ϕ2 iff M,σ |= ϕ1 or M,σ |= ϕ2
M,σ |= ϕ1 → ϕ2 iff M,σ 6|= ϕ1 and M,σ |= ϕ2
M,σ |= ∀x.ϕ iff M,σ′ |= ϕ for all x-variants σ′ of σ
M, σ |= ∃x.ϕ iff M,σ′ |= ϕ for some x-variants σ′ of σ

(2.17)
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2.4.4 Proof theory

We have fixed the semantics or model and interpretation of first-order logic formulas, we
have defined validity and satisfiability. What is missing is how to prove that a formula
or sentence is valid or satisfiable. Notions like truth and satifaction etc. are defined
in reference to an external mathematical “reality”, e.g., in reference to a Σ-structure.
That’s all very standard, though the sceptics may ask about what kind of reality are we
talking about, like how real are, for instance, the natural numbers or other structures, are
they somehow more fundamental than first-order or other logics that justifies that we use
mathematical structures to give meaning to logical formulas? Shouldn’t logics rather be
the foundation of mathematics?

We don’t loose sleep over such philosophical questions. But it’s a concern, of course,
having clarified validity and satisfaction etc., how to establish it as a fact or disprove it.
So it’s a question of mechanical procedure or algorithmic approach to prove or disprove
valid formulas or derive logical consequences from a given set of sentences. That’s what
proof theory is concerned with.

Using the semantic definition of validity directly, one would have to check for all models
that each of them make the formula true. There are infinitely many models and one cannot
check them all. If one is after satifiabilty, not validity, one could try one model after the
other to find one that satisfies the formula. That likewise would be hopelessly unpractical.
There are not only infinitely many models, the models themselves may be infinite, so even
after having decided on a model, checking if a formula holds in the model or not may not
be possible.

All that attempts would not qualify as proof theory anyway. We are interested how to
establish the “truth-ness” of a formula or refute it. Model-theory asks, is this formula
“true” or valid, proof-theory asks is a formula provable. More generaly, it’s about how to
devise proof systems for that task, and asking about limits of what can be proven in a
given logic. Implementations of such calculi are called theorem provers. That’s because a
formula derivable or inferrable in a proof systems are also called a theorem of the calculus.
There are also proof systems trying to establish if a formula is satisfiability, corresponding
implementation are rather called satisfiability checkers or constraint solvers.

Above we mentioned limits of what can be proven. It’s a well-known fact, that validity
of first-order logic is undecidable. Which means there cannot be an algorithm or a proof
system that can be used to decide that. For first-order logic, the best we can hope for is a
system that is able to derive as theorems all valid formulas, and non-valid formulas cannot
be derived as theorem. Isn’t that deciding validity? No, of course not, because when a
formula is not valid, non-derivability can mean that inference process does not terminate,
so one never knows. Soundness and completeness is as good as it gets for first-order logics,
but the logic is undecidable. Actually, it does not take much to obtain logics where also
completeness is out of the window, for instance second-order logics or doing first-order
logics and fixing the model to be the natural numbers with the usual operations.

Since we are not too deeply interested in first-order logic in this lecture and also not so
much in validity and theoremhood, but rather in model checking, we don’t dig deeper
here. We just say a few gegeral words about the shape of proof systems.
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Proof systems

There are many, many flavors of proof systems for first-order logic. We don’t explore
them or their differences. We just mention some aspects largely common to such systems,
also for different logics.

Let’s focus on validity. There are also refutation systems, basically focusing on the dual
question of (non-)satisfiabilty. They are also of practical relevance, but as said, let’s focus
just one flavor, validity.

The purpose of such a proof system is to allow to derive all valid formulas. Those are
infinitely many, so one cannot just list them all, of course. So, it’s a (specification of)
a way to derive or infer them. Often, the proof system is given in a non-deterimistic
way, leaving out which derivation steps are supposed to be explored first. Of course in an
implementation, derivation strategies need to be fixed, and heuristisc of how concretely
make use of the proof system in terms of strategy or scheduling is very important. For
the specification of a proof system, it is often simpler to leave out, at least to some extent,
such questions that have to do with efficience, and focus of whether the system is sound
and complete (if possible).

The way that such inference systems are arranged, very generally, is that there is a pool
of a priori given formulas together with a way to generate or derive new formulas from
those and those already derivered previousy. The given formulas are often called axioms
and the generation process is specified by derivation rules.

To use a standard notation, a rule looks as follows

ϕ1 . . . ϕn

ψ
(2.18)

The formulas ϕ1, . . . , ϕn on top of the rule are called the premises and the one ψ below
the conclusion of the rule. The rule is intended to express that if all of the premises
have been established, either by virtue of being an axiom or having been derived earler
in the process, the the conclusion ψ can be added as (another) theorem to the derived
formulas.

If the axioms are semantically valid, and if the rules like the one shown allow only to
generate valid formulas when using prior valid formulas in a derivation step, then obviously
all derivable formulas are valid. In other words, one has a sound derivation system for
the given logic. Typically, that’s easy to achieve and easy to see. Completeness is quite
a different story, that no valid formula is missed in the genration process.

The derivation of new formulas from old ones can be seen as a sequence, adding new
formulas to older ones. Alternatively, in many presentations, it’s rather a tree. Be that
as it may, the derivation is also called a proof of the “last” formula at the end. Since
the rule system does typically not specify which rules to apply when, proving a formula
corresponds to proof search, and the choice of search strategy has a huge impact in the
efficiency of a implementation of a proof system.
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The way the story here is presented, deriving valid formulas is a process that generates
valid formulas from axioms using rules. Also that is not the way that proving works. In
practical verification tasks, one has most probably a property in mind one is instereted in
to establish or check if it holds. In other words, simply generating valid formulas one after
other so see if the one interesting one shows up in the process is not a useful strategy. So
the derivation rules in a search are better seen backwards. A conclusion of the rule is the
goal one tries to establish and the hypotheses of a rule are the subgoals.

Given a proof system one writes ` ϕ, of the formula ϕ can be derived in the system. One
also says synonymously, ϕ is a theorem of the given derivation system. One writes 6` ϕ if
that’s not the case. Those are proof theoretic statements about the formula and the proof
system. There model theoretic counterparts are |= ϕ and 6|= ϕ: the formula is valid resp.
is not valid. A theory is a set of formulas, and one can also there distinguish between a
proof theoretic theory: all the formulas such that ` ϕ in a given derivation system. Or
the semantic or model theoretic theory, all valid formulas |= ϕ.

Ideally, one has a sound and complete proof systems for the models one wants to cover.
In this case, semantical concepts like validity or truth coincide with the proof theoretic
ones like derivability or theoremhood. In notation

|= ϕ iff ` ϕ

Often, one is also interested not just in validity, but in “consequences”. Like Γ |= ϕ
meaning that ϕ is a semantical consequence of the set of formulas Γ. It’s a consequence
in that every model of (all the formulas of) Γ is also a model of ϕ. Proof-theoretically one
would write Γ ` ϕ. That’s meant to represent: In the given proof system, ϕ can be derived
using the given axiom plus the formulas from Γ (as so to say additional axioms). Again,
in a favorable situation with soundness and completeness, one has Γ |= ϕ iff Γ ` ϕ.

In some way, implication→ represents a form of conseqence (as do inference rules): some-
thing follows from or is implied by something else. Thus Γ |= ϕ may seem the same
|=

∧
Γ→ ϕ: the conjunction of all formulas in Γ implies ϕ. For some logics, that’s indeed

the case, but one has to be careful, depending on the logic, and the exact interpretation
of what |= actually is supposed to mean. For instance, in first order logics when having
formulas containting free variable. At any rate, that’s fineprint for our interest and we
don’t dig deeper.

A proof system for propositional logic

As said, we don’t venture into introducing, comparing, and investigating different proof
systems. But let’s have at least one or two simple examples for concreteness sake. We
don’t show a proof system for first-order logic, to keep it really simple, show one for
propositional logic. A first-order logic system could contain the propositional rules as
shown, but would need more to deal with quantification.

The system has three axioms and one inference rule. The name DN of the third axiom
stands for double negation. The reason for that is, that negation can be defined or explained
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Ax1
ϕ→ (ψ → ϕ)

Ax2
(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

DN
((ϕ→ ⊥)→ ⊥)→ ϕ

ϕ ϕ→ ψ
MP

ψ

Table 2.2: Axioms and rules for a fragment of propositional logic

in terms of ⊥ and implication by having ¬ϕ defined as

ϕ→ ⊥ .

Actually, we were a bit sloppy when saying there are three axioms. We should more
correctly say, that there are 3 axiom schemas. What that means is that each axiom
scheme represents infinitely many concrete axioms as instantiation. The “formulas” ϕ, ψ,
and χ mentioned in the rule system are meta-variables representing formulas, but are not
formulas themselves, strictly speaking.

The rule system from Table 2.2 is in a form called Hilbert style. Hilbert systems are an
early and influential form of proof systems. It’s however mostly of historical interest, as
there are better ways to automate reasoning. What exactly is a good design depends also
on what one wants to achieve (and for what kind of domain), for instance whether it’s for
interactive theorem proving or fully automated deduction. Hilbert-style systems are not
good for much practical things. . .

To get at least a taste of the proof system (and a taste why it’s clumsy), let’s look at a
very small example, deriving a rather trivial property.

Example 2.4.6. The following derivation establises ` ϕ→ ϕ.

(ϕ→ ((ϕ→ ϕ)→ ϕ))→
((ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ)) Ax2 (2.19)

ϕ→ ((ϕ→ ϕ)→ ϕ) Ax1 (2.20)
(ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ) MP on (2.19) and (2.20) (2.21)
ϕ→ (ϕ→ ϕ) Ax1 (2.22)
ϕ→ ϕ MP on (2.21) and (2.22) (2.23)

The example also illustrates the concept of axiom schemas. The axioms from the derivation
rules are not used “as-is” but they are instantiated. For instance, in the first two lines,
it’s a rather complicated specific case of the second axiom. It’s problematic, since if
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we we proceed line by line, generating new theorems from previous until we get what
we want, how to come up with the specific instances of the axioms that ultimately lead
to success. And that’s just one aspect why Hilbert systems are no practically useful
representation. Another one is that it seems weird that in order to prove something
pretty obvious like ϕ → ϕ one is forced to use some ridicously convoluted formula like
(ϕ → ((ϕ → ϕ) → ϕ)) → ((ϕ → (ϕ → ϕ)) → (ϕ → ϕ)) as part of the argument. That’s
not how it should be.

Natural deduction style proof systems

Better alternatives are known as sequent calculi or systems of natural deduction. All those
systems are about deriving valid formulas. There are also so-called refutation systems,
on the other hand, which do something else, namely they h try to refute a formula by
checking if it’s negation is satisfiable, among them various resolution methods and tableaux
method.

We don’t look here into those refutation alternatives, but we at least mention in which
way sequent calculi and natural deduction systems differ from the Hilbert formulation.
At at very high level, also sequent calculi and natural deduction systems are of the form
described, there is a pool of axioms (resp. axioms schemas) and there are derivation rules.
The systems typically work with derivation trees as proofs, not with sequences of formulas,
but that’s more a presentational issue. One can easily use a tree like presentation for proofs
in the Hilbert rules of Table 2.2: the axioms are at the leaves and the inner nodes are
instances of the modus ponens rule MP. Maybe also for historical reasons, Hilbert-style
proofs are mostly presented as sequences, not as trees, but that’s not the real difference.

Hilbert-style formulations were “criticized” as unnatural, in that it was perceived that
using those axioms and rules does not really reflect in a natural way, that logical arguments
are done. The above derivation in Example 2.4.6 should have given a feeling of that

The proof was pretty convoluted, in particular given the fact that this is really the most
trivial valid thing that can be said about →, and implication somehow lies the heart
of logics. Logics is not just about describing things with formulas, it’s about drawing
conclusions, figuring out consequences from facts (as for instance in automated reasoning).
Now that a formula ϕ is implied by itself seems the single most obvious thing about
implication and it does not feel right that it requires so many steps to derive.

One could say, why not add that as axiom to the other ones if it’s so central? One could of
course do so. Of course then one has more axioms than one needs since, as the derivation
shows, the “self-implication” formula can be derived.

Trying to get an axiomatization with it as axiom would also miss the point. The problem
is not that it’s hard to derive ϕ as being implied by ϕ as the most immediate consequence.
One need a better way to draw conclusions.

Gentzen in particular suggested that a more natural way to arrange logical arguments is
reasoning from hypotheses. Like.

Assuming ϕ as hypothesis, it follows that ϕ holds.
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One could write ϕ B ϕ for that and use that as axiom. An as a rule one could use

ϕ1 B ϕ2
→I

B ϕ1 → ϕ2
(2.24)

Also that expresses a simple fact about →. If one assumes ϕ1 as hypothesis and that
allows to prove ϕ2, as stipulated in the premise of the rule, then surely one can derive the
implication ϕ1 → ϕ2 in the conclusion, and that implication is derived without assuming
ϕ1 as hypothesis on the left of B (the hypothesis has been discharged in the derivation
step).

Such kind of argumentation working with hypotheses is characteristic for natural deduction
system and sequent calculi. Another general distinguishing feature of such systems, in
comparison to Hilbert’s formulation is that they have more rules and less axioms.

In the discussion here, we focus on one connective, namely →. Of course, there may
be more built into the logics (as opposed to be explained as macros of others), like ∧,
¬ etc. All of them need to be covered by a proof system. Hilbert’s standpoint would
be: there is exactly one derivation rule, namely modus ponens and that’s it. At least
in propositional logic, in first-order logic one would add also some rule(s) dealing with
quantification. Anyway, all the propositional connectives are covered by an approriate
selection of axioms, and propositional deriviation relies solely on applying modus ponens
as the one and only rule.

Natural deduction, in contrast, would cover each logical connective with a few rules,
characteristic for the connective. One particular connective, say ∧ is characterised by
so-called introduction and elimination rules. The terminology is easily explained. An
intruduction rule, for instance for ∧ is a rule, where the premises don’t mention ∧, but
the conclusion does, so applying the rule introduces that construct. An elimination rule
does the converse. At least one premise mentions ∧, but the conclusion does not.

Let’s have a look then at the rules for conjunction for illustration. Before doing that, and
looking back at equation (2.24) for implication, we realize the the format of the rules of
the derivation system gets more complex compared to the ones we started out with in
equation (2.18). The the premises and the conclusions don’t just consist of formulas. In
the example from equation (2.24), the only premise is of the form ϕ1 B ϕ2. That’s slightly
simplified, insofar that left of the symbol B, in general there is a set of formulas, not just
one as in the discussion from above. So-called sequent calculi often also work with sets
of formulas on the right of B. Let’s stick however, to a formulation with one formula on
the right. Thus, the rules operate with pairs of the form Γ B ϕ, with Γ a set of formulas,
the hypotheses. Such a judgement or sequent is intended to capture that, assuming all
formulas from Γ, ϕ holds.

Concerning concretely the rules for ∧, see Table 2.3. For ∧, there is one introduction
rule and two elimnation rules. It’s characteristic for so called natural deduction system,
that each connective of the syntax is covered by appropriate introduction and elimination
rules. The so-called sequent calculi work similar, however focusing on elimination rules.
As mentioned, the pair Γ B ϕ is often called a sequent. Still, the rules from Table 2.3 are
natural deduction rules, namely that of a natural deduction system in sequent formulation,
as it’s called.
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Γ B ϕ1 Γ B ϕ2
∧-I

Γ B ϕ1 ∧ ϕ2

Γ B ϕ1 ∧ ϕ2
∧-E1

Γ B ϕ1

Γ B ϕ1 ∧ ϕ2
∧-E2

Γ B ϕ2

Table 2.3: Introduction and elimination rules for conjunction

A Hilbert style system would capture ∧ not by rules, but by axioms like the ones from
Table 2.3.

ϕ1 → ϕ2 → (ϕ1 ∧ ϕ2) ∧-I ϕ1 ∧ ϕ2 → ϕ1 ∧-E1 ϕ1 ∧ ϕ2 → ϕ2 ∧-E2

Table 2.4: Axioms for conjunction

We have said, natural deduction systems work with introduction and elimination rules.
That also applies to implication →. The rule modus ponens MP 2.2 is nothing else than
the elimination rule for →. For completeness sake, Table 2.5 shows the corresponding
rules.

Γ, ϕ1 B ϕ2
→-I

Γ B ϕ1 → ϕ2

Γ B ϕ1 → ϕ2 Γ B ϕ1
→-E

Γ B ϕ2

Table 2.5: Introduction and elimination rules for implication

The introduction rule →-I is the rule that shows how natural deduction systems (and
likewise sequent calculi) work explicitly with a set of hypotheses and the set of hypotheses
in the rule changes from Γ, ϕ in the premise to Γ in the conclusion, discharging ϕ. We
had discussed that already in connection with the special situation for ϕ→ ϕ in equation
(2.24).

2.5 Modal logics

This section gives a taste of so-called modal logics. It covers some general aspects from
the perspective of logics. In the verification part, we will deal with modal logics, but more
from the perspective of how to do model checking and we cover a few specific modal and in
particular temporal logics of interest in computer science and program verification. Still,
some warm-up about modal logics in general can’t hurt. After some general remarks in
Section 2.5.1, we follow the same path as we did for propositional logics and first-order
logics. We fix some syntax in Section 2.5.2, we address semantics, models, etc., and say a
few words about proof systems in Sections 2.5.3 and 2.5.4.
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Actually, there is no such thing as “the” modal logics. To some extent that is true also
for propositional logics and first-order logics. Sure, one can select a few fundamental
connectives or add more syntactic sugar to the syntax, there are classical versions or
inuitionistic ones. And then there are many different ways how to design a proof system
for the logics. But mostly, when saying “propositional logics”, everyone means more or
less the same thing, the rest is details. Similar for first-order logics.

Modal logics are differentiated also by the fact “modality” can mean quite different things
(like time, belief, knowledge and other things). All that can be captured by modalities,
leading to different modal logics.

At the face of it, logics covering beliefs, time, knowledge have not much in common, at least
there seems no reason why one would expect so. It turns out, they have a lot in common,
namely what conceptually constitutes a model for such logics. The central section for us
is thus Section 2.5.3, which introduces the idea of such models. They will be calledKripke
models and in computer science, they basically can be seen as transition systems (a
form of graphs). The section about the syntax of modal logic will be less interesting for
us, since later we will work with specific syntax for specific logics, in particular temporal
logics not with a generic syntax with modal operators. The section about proof system is
less relevant, as we are concerned often with model checking, not deriving valid formulas.
But the idea of Kripke structure will be important, as this is the notion of “model” when
doing model(!) checking (for temporal logics).

2.5.1 Introduction

The roots of logics date back very long, and those of modal logic not less so. Aristotle not
only wrote about syllogisms etc., like modus ponens, he also had his fingers in the origins
of modal logic and discussed some kind of “paradoxes” in that context that gave food for
thought for future generations, puzzling about modalities.

Very generally, a logic of that kind is concerned not with absolute statements (which are
true or else false) but qualified statements, i.e., statements that “depend on” something.
An example for a modal statement would be “tomorrow it rains”. It’s difficult to say
in which way that sentence is true or false, only time will tell. . . It’s an example of a
statement depending on “time”, and tomorrow is an example of a temporal modality. But
there are other modalities, as well (referring to knowledge or belief like “I know it rains”,
or “I believe it rains”) or similar qualifications of absolute truth.

Statements like “tomorrow it rains” or others were long debated, often with philosphical
and/or even religous connotions like: is the future deterministic (and pre-determined by
God’s providence), do persons have a free will, etc. Those questions will not enter the
lecture. Nonetheless: determinism vs. non-determinism is meaningful distinction when
dealing with program behavior, and we will also encounter temporal logics that view time
as linear which kind of means, there is only one possible future, or branching, which means
there are many. It’s however, not meant as a fundamental statement about the “nature
of nature”, it’s just a distinction of how we want to treat the system. If we want to
check individual runs, which are sequences of actions, then we are committing ourselves
to a linear picture (even when dealing with non-deterministic programs). But there are
branching alternatives to that view as well, which lead to branching temporal logics.
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Different flavors of modal logic lead to different axioms. Let’s write � for the basic modal
operator (whatever its interpretation), and consider

�ϕ→ ��ϕ , (2.25)

with ϕ being some ordinary statement (in propositional logic perhaps, or first-order logic).
If we are dealing with a logic of belief, should the following ne a valid formula: If I believe
that something is true, do I believe that I believe that the thing is true? What about “I
believe that you believe that something is true”? Do I believe it myself? Not necessarily
so.

As a side-remark: the latter can be seen as a formulation in multi-modal logic: it’s not
about one single modality (being believed), but “person p believes”, i.e., there’s one belief-
modality per person; thus, it’s a multi-modal logic. We start in the presentation with a
“non-multi” modal logic, where there is only one basic modality (say �). Technically, the
syntax may feature two modalities � and ♦, but to be clear: that does not yet earn the
logic the qualification of “multi”: the ♦-modality is in all considered cases expressible by
�, and vice versa. It’s analogous to the fact that (in most logics), ∀ and negation allows
to express ∃ and vice versa.

Now, coming back to various interpretations of equation (2.25): if we take a “temporal”
standpoint and interpret � as “tomorrow”, then certainly the implication should not be
valid. If we interpret � differently, but still temporally, as “in the future” then again the
interpretation seems valid.

If we take an “epistemologic” interpretation of � as “knowledge”, the left-hand of the
implication would express (if we take a multi-modal view): “I know that you know that
ϕ”. Now we may ponder whether that means that then I also know that ϕ? A question
like that may lead to philosophical reflections about what it means to “know” (maybe in
contrast with “believe” or “believe to know”, etc.).

The lecture will not dwell much on philospophical questions. The question whether equa-
tion (2.25) will be treated as mathematical question, more precisely a question of the
assumed underlying models or semantics.

It’s historically perhaps interesting: modal logic has attracted long interest, but the ques-
tion of “what’s the mathematics of those kind of logics” was long unclear. Long in the
sense that classical logics, in the first half of the 20th century had already been super-
thoroughly investigated and formalized from all angles with elaborate results concerning
model theory and proposed as “foundations” for math etc. But no one had yet come
up with a convincing, universally accepted answer for the question: “what the heck is a
model for modal logics?”. Until a teenager and undergrad came along and provided the
now accepted answer, his name is Saul Kripke. And models of modal logics are now called
Kripke-structures (it’s basically transition systems).

2.5.2 Syntax

Modal logics comes equipped with connectives to express the modalities the logics is inter-
ested in. One typicallly finds two modal operators, called “necessity” and “possibility”.



34 2 Logics
2.5 Modal logics

Formulas �ϕ and ♦ϕ are read as “necessarily ϕ” and “possibibly ϕ” or simply “box ϕ” or
“diamond ϕ”.

Different flavors of modal logics interpret the modal operators differently. In a temporal
setting �ϕ can be interpreted as “always ϕ. And there are many other modal logics.

logics �ϕ
temporal always ϕ
doxastic I believe ϕ.
epistemic I know ϕ.
intuitionistic ϕ is provable.
deontic It ought to be the case that ϕ.

One finds logics with more operators, but those two are the classical ones. One can also
work with combinations, like trying to capture the temporal evolution of knowlege, which
would be a temporal-epistemic logic. We will restrict here the modal operators to � and
♦, and in the later part of the lecture mostly work with a temporal mind-set.

Definition 2.5.1 shows a syntax for some vanilla modal logics. It is formulated as extension
of propositional logics, so it’s propositional modal logics. One can also use first-order logic
as underlying logic, that does not change the modal part of the story.

Definition 2.5.1 (Formulas of modal logic). The formulas of (propositional) modal logic
are given by the following grammar.

ϕ ::= > | ⊥ atomic propositional formulass
| ϕ ∧ ϕ | ¬ϕ | ϕ→ ϕ | . . . propositional formulas
| �ϕ | ♦ϕ

(2.26)

2.5.3 Semantics

Now to the core of the modal logic section, clarifying the semantics and the notion of
models for such logics.

Kripke structures

The definition below makes use of the “classical” terminology for modal logics. It’s actually
quite simple, based on a relation, here written R, on some set. The relation is also called
accessibility relation and the “points” connected by that relation are called worlds. So:
a modal model is thus just a relation, or we also could call it a graph, but traditionally
it’s called a frame (a Kripke frame). That kind of semantics is also called possible world
semantics (but not graph semantics or transition system semantics, even if that would be
an ok name as well).

The Kripke frame in itself is not a model yet, in that it does not contain information to
determine if a modal formula holds or not. The general picture is as follows: the elements
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of the underlying set W are called “worlds”: on some world some formulas holds, and in
a different world, different ones. “Embedded” in the modal logic is an “underlying”logic.
As said we mostly assume propositional modal logic, but one might as well consider an
extension of first-logic with modal operators. For instance, in connection with runtime
verification will make use of a first-order variant of LTL, called QTL, quantified temporal
logic, but that will be later. In the propositional setting, what then is needed for giving
meaning to model formulas is an interpretation of the propositional variables, and that
has to be done per world.

In the section of propopositional logic, we introduced “propositional variable assignments”
σ : P → B, giving a boolean value to each propositional variable from σ. What we now
call a valuation does the same for each world which we can model as a function of type

W → P → B .

Alternatively one often finds also the “representation” to have valuations of typeW → 2P :
for each world, the valuation gives the set of atomic propositions which “hold” in that word.
Both views are, of course equivalent in being isomorphic.

Labelling The valuation function V associates a propositional value to each propositional
value in eeach world. As mentioned, a Kripke frame may also be called a graph or also
transition system. In the latter case, the worlds may be called less pompously just states
and the accessibility relation is called transition relation. The individual edges in the
graph are seen as transitions from one state to another. That terminolgy is perhaps more
familiar in computer science. The valuation function can also be seen to label the states
with propositional information. A transition system with attached information is also
called labelled transition system.

But one has to be careful a bit with terminology. When it comes to labelled transition
systems, additional information can be attached to transitions or states (or both). Often
labelled transition systems, especially for some areas of model checking and modelling, are
silently understood as transition-labelled. For such models, an edge between two states
does not just expresse that one can go from one state to the other. It states that one can
go from one state to the other by doing such-and-such as expressed by the label of the
transition. In an abstract setting, the transitions may be labelled just with letters from
some alphabet.

As we will see later, going from a transition system with unlabelled transitions to one with
transition labels correspond to a generalization from “simple” modal logic to multi-modal
logic. But independent on whether one considers transitions as labelled or not, there is a
“state-labelling” at least, namely the valuation that is needed to interpret the propsitions
per world or state.

As a side remark: classical automata can be seen as labelled transition systems, as well,
with the transitions being labelled. There are also variations of such automata which deal
with input and output (thereby called I/O automata). Two classical versions of that idea
are used in describing hardware (which is a form of propositional logic as well. . . ), both
label the transitions for the input. However, one version labels the states with the output
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(Moore-machines) whereas another one labels the transitions with the output (Mealy-
machines), i.e., in the latter representation, transitions contain input as well as output
information. Both correspond to different kinds of hardware circuitry (Moore roughly
correspond to synchronous hardware, and Mealy to asynchronous one).

We will encounter automata later, as well, but in a form that fits to our particuar modal
resp. temporal logic needs. In particular, we will look at Büchi-automata, which are like
standard finite-state automata except that they can deal with infinite words (and not just
finite ones). Those automata have connections, for instance, with LTL, a central temporal
logic which we will cover.

Definition 2.5.2 (Kripke frame and Kripke model).

• A Kripke frame is a structure (W,R) where
– W is a non-empty set of worlds, and
– R ⊆W ×W is called the accessibility relation between worlds.

• A Kripke model M is a structure (W,R, V ) where
– (W,R) is a frame, and
– V a function of type V : W → (P → B), called valuation.

The valuation function is isomorphic to a function V : W → 2P ; we will make use of both
representations.

Kripke models are also called Kripke structures. The standard textbook about model
checking Baier and Katoen [1] does not even mention the word “Kripke structure” or
“Kripke model”, it basically uses transition systems instead of Kripke models with worlds
called states (and the concept of Kripke frame is called state graph there). I say, it’s
“basically” the same insofar that there, they (sometimes) also care to consider labelled
transitions, and furthermore, their transition systems are equipped with a set of initial
states. Whether one has initial states as part of the graph does not make much of a
difference.

Also the terminology concerning the set P varies a bit (we mentioned it also in the con-
text of propositional logics). What we call here propositional variables, is also known as
propositional constants, propositional atoms, symbols, atomic propositions, whatever.

Example 2.5.3 (Kripke model). Assume P = {p, q} as propositional variables. Figure
2.1 shows (the graphical representation of) a simple Kripke model. Formulaically M =
(W,R, V ) is given by W = {w1, w2, w3, w4, w5}, R = {(w1, w5), (w1, w4), (w4, w1), . . . },
and V = [w1 7→ ∅, w2 7→ {p}, w3 7→ {q}, . . . ].

The example is slightly informal (and also later we allow ourselves these kind of “infor-
malities”, appealing to the intuitive understanding of the reader). There are five worlds,
numbered for identification. In the Kripke model, they are referred to via w1, w2, . . . (not
as 1, 2, . . . as in the figure). Later, we often call corresponding entities states, not worlds,
and then we tend to use s1, s2, . . . for typical states. For the valuation, we use a notation
of the form [... 7→ ...] to denote a finite mapping.

In particular, we are dealing with finite mappings of type W → 2P , i.e., to subsets of the
list of atomic propositions P = {p, q}. The sets are not explicitly noted in the graphical
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Figure 2.1: Example of a Kripke model

illustration, i.e., the set-braces {. . .} are omitted. For instance, in world w1, no proposi-
tional letter is mentioned, i.e., the valuation maps w1 to the empty set ∅.

An isomporphic (i.e., equivalent) view on the valuation is, that it is a function of typeW →
(P → B) which perhaps captures the intended interpretation better. Each propositional
letter mentioned in a world or state is intended to evaluate to “true” in that world or
state. Propositional letter not mentioned are intented to be evaluated to “false” in that
world.

As a side remark: we used finite mappings inf the example and illustration, and in and
many applications. The definition of Kripke structure, however, does not require that
there is only a finite set of worlds, W in general is a set, finite or not.

Satisfaction relation

Now we come to the semantics of modal logic, i.e., how to interpret formulas of (proposi-
tional) modal formulas. That is done by defining the corresponding satisfaction relation,
written as |=, as before. After the introduction and discussion of Kripke models or transi-
tion systems, the satisfaction relation should be fairly obvious to some extent, especially
the part of the underlying logic (here propositional logic): the valuation V is made ex-
actly so that it covers the base cases of atomic propositions, namely give meaning to the
elements of P depending on the current world of the Kripke frame. The treatment of
the propositional connectives ∧, ¬, . . . is identical to their treatment before. Remains the
treatment of the real innovation of the logic, the modal operators � and ♦.

Definition 2.5.4 (Satisfaction). A modal formula ϕ is true (or it holds) in the world w
of a model V , written V,w |= ϕ, if:
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V,w |= p iff V (w)(p) = >

V,w |= ¬ϕ iff V,w 6|= ϕ

V,w |= ϕ1 ∨ ϕ2 iff V,w |= ϕ1 or V,w |= ϕ2

V,w |= �ϕ iff V,w′ |= ϕ, for all w′ such that w R w′

V,w |= ♦ϕ iff V,w′ |= ϕ, for some w′ such that w R w′

As mentioned, we consider V to be of type W → (P → B). If we equivalently assumed a
type W → 2P , the base case of the definition would read p ∈ V (w), instead.

For now, we prefer the former presentation for 2 reasons (but actually, it does not matter
of course). One is, it seems to fit better with the presentation of propositional logic,
generalizing directly the concept a boolean valuation. Secondly, the picture of “assigning
boolean values to variables” fit better with seeing Kriple models more like transition
systems, for instance capturing the behavior of computer programs. There, we are not so
philosphically interested in speaking of “worlds” that are “accessible” via some accessibility
relation R, it’s more like states in a progam, and doing some action or step does a transition
to another state, potentially changing the memory, i.e., the content of variable, which in
the easiest case may be boolean variables. So the picture that one has a control-flow graph
of a program and a couple of variables (propositional or Boolean variables here) whose
values change while the control moves inside the graph seems rather straightforward and
natural.

Sometimes, other notations or terminology is used, for instance w |=M ϕ. Sometimes, the
modelM is fixed (for the time being), indicated by the words like. “Let in the followingM
be defined as . . . ”, in which case one finds also just w |= ϕ standing for “state w satisfies
ϕ”, or “ϕ holds in state w” etc. but of course the interpretation of a modal formula
requires that there is alway a transition system relative to which it is interpreted.

Often one finds also notations using the “semantic brackets” [[_]]. Here, the meaning
(i.e., truth-ness of false-ness of a formula, depends on the Kripke model as well as the
state, which means one could define a notation like [[ϕ]]Mw as > or ⊥ depending on wether
M,w |= ϕ or not. Remember that we had similar notation in first-order logic [[ϕ]]Iσ We
discussed (perhaps uneccessarily so) two isomorphic view of the valuation function V .

Even if not relevant for the lecture, it could be noted that a third “viewpoint” and termi-
nology exists in the literature in that context. Instead of associating with each world or
state the set of propositions intended to hold in that state, one can define a model also
“the other way around”: then one associates with each propositional variable the set of
states in which the proposition is suppoed to hold, one would have a “valuation”

Ṽ : P → 2W .

That’s of course also an equivalent and legitimate way of proceeding. It seems that this
representation is not “popular” when doing Kripke models for the purpose of capturing
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systems and their transitions (as for model checking in the sense of our lecture), but for
Kripke models of intuionistic logics. Kripke also propose “Kripke-models” for that kind
of logics (for clarity, I am talking about intuitionistic propositional logics or intuitionistic
first-order logice et.c, not (necessarily) intuitionistic modal logics). In that kind of setting,
the accessibility relation has also special properties (being a partial order), and there are
other side conditions to be aware of. As for terminology, in that context, one sometimes
does not speak of “w satisfies ϕ (in a model), for which we write “w |= p”, but says “world
w forces a formula ϕ”, for which sometimes the notation w  ϕ is favored. But those are
mainly different traditions for the same thing.

For us, we sometimes use notations like [[ϕ]]M to represent the set of all states in M that
satisfy ϕ, i.e.,

[[ϕ]]M = {w | M, s |= ϕ} .

In general (and also other logics), |=- and [[_]]-style notations are interchangable and
interdefinable. And we will freely make use of both

“Box” and “diamond”

The pronounciation of �ϕ as “necessarily ϕ” and ♦ϕ as “possibly ϕ” are generic. When
dealing with specific interpretations, they get more specific meanings and then be called
likewise: “in all futures ϕ” or “I know that ϕ” etc. Related to the intended mindset,
one imposes different restrictions in the accessibility relation R. In a temporal setting, if
we interpret �ϕ as “tomorrow ϕ”, then it is clear that ��ϕ (“ϕ holds in the day after
tomorrow”) is not equivalent to �ϕ. If, in a different temporal mind-set, we intend to
mean �ϕ to represent “now and in the future ϕ”, then ��ϕ and �ϕ are equivalent. That
reflects common sense and reflects what one might think about the concept of “time” and
“days” and “future”. Technically, and more precisely, it’s a property of the assumed class
of frames (i.e., of the relation R). If we assume that all models are built upon frames
where R is transitive, then �ϕ→ ��ϕ is generally true.

Validity and frame validity

We should be more explicit about what it means that a formula is “generally true”. We
have encountered the general terminology of a formula being “true” vs. being “valid”
already. In the context of modal logic, the truth-ness requires a model and a state to
judge the truth-ness: M,w |= ϕ. A model M is of the form (W,R, V ), it’s a frame (=
“graph”) together with a valuation V . A propositional formula is valid if it’s true for all
boolean valuations (and the notion coincided with being a propositional tautology).

Now the situation get’s more finegrained (as was the case in first-order logics). A modal
formula is valid if M,w |= ϕ for all M and all w. For that one can write

|= ϕ (2.27)
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So far so good. But then there is also a middle-ground, where one fixes the frame (or a
class of frames), but the formula must be true for all valuations and all states. For that
we can write

(W,R) |= ϕ (2.28)

Let’s abbreviate with F a frame, i.e., a tuple (W,R). We could call that notion frame
validity and say for F |= ϕ that “ϕ is valid in frame F”. So, in other words, a formula is
valid in a frame F if it holds in all models with F as underlying frame and for all states
of the frame.

One uses that definition not just for a single frame; often the notion of frame-validity is
applied to sets of frames, in that one says F |= ϕ for all frames F such that . . . ”. For
instance, all frames where the relatiton R is transitive or reflexive or whatever. Those
restrictions of the allowed class of frames reflect then the intentions of the modal logic
(temporal, epistemic . . . ), and one could speak of a formula to be “transitivity-valid” for
instance, i.e., for all frames with a transitive accessibility relation.

The latter would be an ok terminology, but it’s not standard. There are (for historic
reasons) more esoteric names for some standard classes, for instance, a formula could be
S4-valid. That refers to one particular restriction on R which corresponds to a particular
set of axioms traditionally known as S4. See below for some examples.

Further notational discussion and preview to LTL Coming back to the informal “tem-
poral” interpretation of �ϕ as either “tomorrow ϕ” vs. “now and in the future ϕ”, where
the accessibility relation refers to “tomorrow” or to “the future time, from now on”. In
the latter case, the accessibility relation would be reflexive and transitive. When thinking
about such a temporal interpretation, there may also be another assumption on the frame,
depending on how one sees the nature of time and future.

One way would be to see the time as linear. Points in time form a line, fittingly called a
timeline, connecting the past and the future, with “now” in the middle, perhaps measured
in years or seconds, or steps in an run of a program etc. With such a linear picture in
mind, it’s also clear that there is no difference between the modal operators � and ♦.4
In the informal interpretation of � as “tomorrow”, one should have been more explicit
that “tomorrow” was meant “for all possible tomorrows” to distinguish it from ♦ that
represent “there exist a possible tomorrow”. In the linear timeline picture, there is only
one tomorrow, we conventionally say “the next day” not “for all possible next days” or
some such complications. Consequently, if one has such a linear picture in mind (resp.
works only with such linear frames), one does not actually need two modal operators � and
♦, one can collapse them into one. Conventionally, for that collapsed one, one writes ©.
A formula©ϕ is interpreted as “in the next state or world, ϕ holds” and pronouced “next
ϕ” for short. The© operator will be part of LTL (linear-time temporal logic), which is an
important logic used for model checking and which will be covered later. When we (later)
deal with LTL, the operator © corresponds to the modal operators ♦ and � collapsed
into one, as explained. Besides that, LTL will have additional operators written (perhaps
confusingly) � and ♦, with a different interpretation capturing “always” and “eventually”

4Characterize as an exercise what exactly (not just roughly) the condition the accessibility relation must
have to make � and ♦ identical.



2 Logics
2.5 Modal logics 41

Those are also temporal modalities, but their interpretation in LTL is different from the
ones that we haved fixed for now, when discussing modal logics in general.

Restrictions on the frames, resp. the accessibility relation

As mentioned, different classes of model logics arise by imposing restrictions on which
frames one considers. Restrictions on the binary relation R ⊆W include that it is reflexive,
transitive, (right) Euclidian, total, that it’s an order relation, and more. It’s not the goal
of the lecture to study those and compare different logics (and many variations have been
studied indeed). Still, we at least mention some common restrictions.

Definition 2.5.5. A binary relation R⊆W ×W is

• reflexive if every element in W is R-related to itself.

∀a. a R a

• transitive if
∀a b c. a R b ∧ b R c→ a R c

• (right) Euclidean if
∀a b c. a R b ∧ a R c→ b R c

• total if
∀a. ∃b. a R b

The following remark may be obvious, but anyway: The quantifiers like ∀ and the other
operators ∧ and ∨ are not meant here to be vocabulary of some (first-order) logic, they are
meant more as mathematical statements, which, when formulated in for instance English,
would use sentences containing words like “for all” and “and” and “implies”. One could
see if one can formalize or characterize the defined concepts making use formally of a
first-order logic, but that’s not what is meant here. We use the logical connectives just as
convenient shorthand for English words.

Example 2.5.6 shows some how some accessibiity relations are captured by different for-
mulas, in that they are valid under the corresponding restriction.

Example 2.5.6.

• (W,R) |= �ϕ→ ϕ iff R is reflexive.
• (W,R) |= �ϕ→ ♦ϕ iff R is total.
• (W,R) |= �ϕ→ ��ϕ iff R is transitive.
• (W,R) |= ¬�ϕ→ �¬�ϕ iff R is Euclidean.

Some exercises

Prove the double implications from the slide before!
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Hints By “double implications”, the iff’s (if-and-only-if) are meant. In each case there
are two directions to show.

• The forward implications are based on the fact that we quantify over all valuations
and all states. More precisely; assume an arbitrary frame (W,R) which does not have
the property (e.g., reflexive). Find a valuation and a state where the axiom does not
hold. You have now the contradiction . . .

• For the backward implication take an arbitrary frame (W,R) which has the property
(e.g., Euclidian). Take an arbitrary valuation and an arbitrary state on this frame.
Show that the axiom holds in this state under this valuation. Sometimes one may
need to use an inductive argument or to work with properties derived from the main
property on R (e.g., if R is euclidian then w1Rw2 implies w2Rw2).

2.5.4 Proof theory and axiomatic systems

We only sketch proof theory of modal logic, as we are more interested in model checking
as opposed to verify that a formula is valid. There are connections between these two
questions, though. As explained earlier, proof theory is about formalizing the notion of
proof. That’s done by defining a formal system, a proof system, that allows to derive or
infer formulas from others. Formulas a priori given are also called axioms, and rules allow
new formulas to be derived from previously derived ones (or from axiom). One may also
see axioms as special form of rule, namely one without premises.

The style of presenting the proof system here is the plain old Hilbert-style presentation.
As mentioned, there are other styles of presentations, some better suited for interactive,
manual proofs and some for automatic reasoning, and in general more elegant anyway.
As also mentioned, one difference between Hilbert-style and the natural deduction style
presentations is that Hilbert’s presentation put’s more weight on the axioms, whereas
the alternative downplay the role of axioms and have more deduction rules (generally
speaking). That suits us fine: As discussed, different classes of frames (transitive, reflexive
. . . ) correspond to axioms or selection of axioms, and we have seen examples for that in
Example 2.5.6.

Since we intend (classical propositional) modal logics to encompass classical propositional
logic not just syntactically but also conceptually/semantically, we have all propositional
tautologies as derivable. Furthermore, we have the standard rule of derivation, already
present in the propositional setting, namely modus ponens.

That so far took care of the propositional aspects (but note that MP can be applied to
all formulas, of course, not just propositional ones). But we have not really taken care of
the modal operators � and ♦. Now, having lot of operators is nice for the user, but puts
more burden when formulating a proof system (or implementing one) as we have to cover
more case. So, we treat ♦ as syntactic sugar, as it can be expressed by � and ¬. Note:
“syntactic sugar” is a well-established technical term for such situations, mostly used in
the context of programming languages and compilers. Anyway, we now need to cover
only one modal operator, and conventionally, it’s �, necessitation. The corresponding
rule consequently is often called the rule of (modal) necessitation. The rule is below called
Nec, sometimes also just N or also called G (maybe historically so).
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ϕ is a propositional tautology
PL

ϕ

K
�(ϕ1 → ϕ2)→ (�ϕ1 → �ϕ2)

ϕ→ ψ ϕ
MP

ψ

ϕ
Nec

�ϕ

Table 2.6: Axioms for the base line propositional modal logics (“K”)

Is that all? Remember that we touched upon the issue that one can consider special classes
of frames, for instance those with transitive relation R or other special cases, that lead
them to special axioms being added to the derivation system. Currently, we do not impose
such restrictions, we want general frame validity. So does that mean, we are done?
At the current state of discussion, we have the propositional part covered including the
possibility do to propositional-style inference (with modus ponens), we have the plausible
rule of necessitation, introducing the �-modality. Apart from that, the two aspects of the
logic (the propositional part and modal part seem conceptually separated. Note: a formula
�p → �p “counts” as (an instance of a) propositional tautology, even if � is mentioned.
A question therefore is: are the two parts of the logic somehow further connected, even if
we don’t assume anything about the set of underlying frames?

The answer is, yes, and that connection is captured by the axiom stating that � distributes
over →. The axiom is known as distribution axiom or traditionally also as axiom K. In a
way, the given rules are the standard base line for all classical modal logics. Modal logics
with the propositional part covered plus necessitation and axiom K are also called normal
modal logics.

As a side remark: there are also certain modal logics where K is dropped or replaced,
which consequently are no longer normal logics. Note that it means they no longer have
a Kripke-model interpretation either. Since our interest in Kripke-models is that we use
transition systems as representing steps of programs, Kripke-style thinking is natural in
the context of our course. Non-normal logics are more esoteric and “unconventional” and
we don’t go there.

The distribution axiom K is written as “rule” without premises. The system focuses on
the “new” aspects, i.e., the modal part. It’s not explicit about how the rules look like that
allow to derive propositional tautologies (which would be easy enough to do, and includes
MP anyway). We have seen those earlier anyway.

The sketched logic is is also known under the name K itself, so K is not just the name of
the axiom. The presentation here is Hilbert-style, but could also present the same logics
differently.
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We show in Table 2.8 a few more axioms (with their traditional names, some of which
are just numbers, like “axiom 4” or “axiom 5”). In the literature, then one considers and
studies “combinations” of those axioms (like K + 5), and they are traditionally also known
under special, not very transparent names like “S4” or “S5”. See Table 2.8 for some better
known ones.

�(ϕ→ ψ)→ (�ϕ→ �ψ) (K)
�ϕ→ ♦ϕ (D)
�ϕ→ ϕ (T)
�ϕ→ ��ϕ (4)
¬�ϕ→ �¬�ϕ (5)
�(�ϕ→ ψ)→ �(�ψ → ϕ) (3)
�(�(ϕ→ �ϕ)→ ϕ)→ (♦�ϕ→ ϕ)) (Dum)

Table 2.7: Various properties of R and their axioms

The first ones are pretty common and are connected to more or less straightforward frame
conditions (except K which is, as said, generally the case for a frame-based Kripke-style
interpretation). Observe that T implies D.

The are many more different axiom studied in the literature, how they are related and
what not. The axiom called Dum is more esoteric ([3] calls it “[among the] most bizzare
formulae that occur in the literature” ) and actually, there are even different versions of
that (Dum1, Dum2 . . . ).

Logic Axioms Interpretation Properties of R
D K D deontic total
T K T reflexive
K45 K 4 5 doxastic transitive/euclidean
S4 K T 4 reflexive/transitive
S5 K T 5 epistemic reflexive/euclidean

reflexive/symmetric/transitive
(i.e. equivalence relation)

Table 2.8: Different flavors of modal logic

Concerning the terminology doxastic logic is about beliefs, deontic logic tries to capture
obligations and similar concepts. Epistemic logic is about knowledge.

2.5.5 Exercises

Exercise 2.5.7 (Formulas holding in worlds of a model). Consider the frame (W,R) with
W = {0, 1, 2, 3, 4} and (i, i+ 1) ∈ R.
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q p, q p, q q q

0 1 2 3 4

Let the “valuation” Ṽ (p) = {1, 2} and Ṽ (q) = {0, 1, 2, 3, 4} and let the model M be
M = (W,R, V ). Which of the following statements are correct in M and why?

M, 0 |= ♦�p
M, 0 |= ♦�p→ p
M, 2 |= ♦(q ∧ ¬p) ∧�(q ∧ ¬p)
M, 0 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q)))
M |= �q

Solution 2.5.8 (of Exercise 2.5.7). The answers to the above questions are: yes, no, yes,
yes, yes.

Perhaps a remark concerning the status ♦�p in the first situation. The frame is

Exercise 2.5.9 (Bidirectional frame). A frame (W,R) is bidirectional iff R = RF + RP
s.t. ∀w,w′. w RF w′ ↔ w′ RP w.

q p, q p, q q q

0 1 2 3 4

Consider M = (W,R, V ) from before. Which of the following statements are correct in M
and why?

M, 0 |= ♦�p
M, 0 |= ♦�p→ p
M, 2 |= ♦(q ∧ ¬p) ∧�(q ∧ ¬p)
M, 0 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q)))
M |= �q
M |= �q → ♦♦p

Solution 2.5.10. The solutions are: no, yes, no, yes, yes, no.

The frame used in Exercise 2.5.9 is bi-directional. Effectively, the relation R in the example
is symmetric, so actually the example would not need to mention the concept of being
bi-directional. Later, when we present temporal logics, there are variants that can speak
not just about the future, but also about the past. In such a temporal setting, one could
interpret the formulas on bi-directional frames, the future operators being based on RF
and the operators taking about the past on RP .
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Exercise 2.5.11 (Validities). Which of the following formulas are valid in modal logic.
For those that are not, argue why and find a class of frames on which they become valid.

�⊥
♦p→ �p
p→ �♦p
♦�p→ �♦p

Solution 2.5.12. 1. �⊥: Valid on frames where R = ∅.
2. ♦p→ �p: Valid on frames where R is a partial function.
3. p→ �♦p: Valid on bidirectional frames.
4. ♦�p→ �♦p: Valid on Euclidian frames.

As for further reading, [4] and [2] may be good reads.

2.6 Dynamic logics

2.6.1 Introduction

Dynamic logics is a so-called program logics and used in connection with a pogramming
language. I.e., the formalism contains two levels of syntax, one the programming notation,
and then the logics, both interwoven. A specified program consists of the program code
plus logical annotations, sprinkled throughout the code. Hoare-logic is a typical example
for that, where the code is annotated with assertions (in first-order logic or similar).
Indeed, dynamic logics can be seen as a generalization of Hoare logics. Such a specification
style, formulas being written as part of the code syntax, is a bit different from the way,
for instance, LTL will be used. There, the logic is used externally, specifying the behavior
of a program or process from the outside. It’s a bit like the difference between a black box
and white box view

We said, Hoare-logics can be seen as a special case of dynamic logics. Our exposition does
not present it under that perspective, but a different one, namely as a form of multi-modal
logic.

modal logic: gives us the power to talk about changing of state. Modal logics is natural
when one is interested in systems that are essentially modeled as states and transitions
between states. The slide calls first-order logic as very expressive, but all is relative.
There are much more expressive logics and FOL has some serious restrictions, as far as
expressivity is concerned.

We want to talk about programs, states of programs, and change of the state of the com-
puter via executing programming instructions, like assignments, that change the system
state. The (operational) semantics of a program is typically some form of transition sys-
tem (or Kripke structure), and we know already, that logics that talk about transition
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systems are modal logics. There are various connections between FOL and modal logics,
for instance, modal logic may be seen as FOL with one free variable, but seeing it like that
we loose the “beauty” of modal logics (being tailor-made as logic speaking about transition
systems). Such connections between other logics and modal logics are not important for
the course.

2.6.2 Multi-modal logic

Dynamic logics later may be seen as a form of multi-modal logics. Thus we start with ex-
plaining what that is. Actually, it’s pretty simple. Instead of one relation in the transition
system, we handle many, instead of having possibility and necessity as modal operator
over one relation, we have modal operators for each of them. That’s basically it. We
start by illustrating it with a Kripke frame with 2 relations Ra and Rb, both subsets of
W ×W . An alternative and equivalent way of seeing it that one deals with a “labelled
transition relation”, i.e. one R ⊆W×A×W , where A is the set of labels, in the illustrative
“example” A = {a, b}.

Multi-modal logic

“Kripke frame” (W,Ra, Rb), where Ra and Rb are two relations over W .

Syntax (2 relations) Multi-modal logic has one modality for each relation:

ϕ ::= p | ⊥ | ϕ→ ϕ | ♦aϕ | ♦bϕ (2.29)

where p is from a set of propositional constants (i.e., functional symbols of arity 0) and
the other operators are derived as usual:

ϕ ::= ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | �aϕ | �bϕ (2.30)

Semantics: “natural” generalization of the “mono”-case

M,w |= ♦aϕ iff ∃w′ : wRaw′ and M,w′ |= ϕ (2.31)

• analogously for modality ♦b and relation Rb

As multi-modal logic: obvious generalization of modal logic from before

1. The relations can overlap; i.e., their intersection need not be empty
2. of course: more than 2 relations possible, for each relation one modality.
3. There may be infinitely many relations and infinitely many modalities.
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Infinitely many modalities are possible. One has to be slightly careful then, though.
Infinitely many modalities may pose theoretical challenges (not just for the question how
to deal with them computationally). We ignore issues concerning that in this lecture. As
a further remark: later there will be PDL and maybe TLA (temporal logic of actions).
In those kind of logics, the different relations Ra arise from “programs” or “actions”. So,
if one sees the a as taken from a set A, then the set is not taken as unstructured and
containing uninterpreted letters from an alphabet. Instead, the “actions” may have a
syntax in itself, representing programs or single steps in a program. Since there are many
actions or programs, which lead to many corresponding “modalities”.

2.6.3 Dynamic logics

Dynamic logics

• different variants
• can be seen as special case of multi-modal logics
• variant of Hoare-logics
• here: PDL on regular programs
• “P” stands for “propositional”

Regular programs

DL Dynamic logic is a multi-modal logic to talk about programs.

here: dynamic logic talks about regular programs

Regular programs are formed syntactically from:

• atomic programs Π0 = {a, b, ...}, which are indivisible, single-step, basic program-
ming constructs

• sequential composition α ·β, which means that program α is executed/done first and
then β.

• nondeterministic choice α + β, which nondeterministically chooses one of α and β
and executes it.

• iteration α∗, which executes α some nondeterministically chosen finite number of
times.

• the special skip and fail programs (denoted 1 resp. 0)

Dynamic logics speaks about “programs”, where a program is written in some “notation”.
in other words, programs written in some form of programming language. Obviously, there
are a huge variety of notations and languages. Dynamic logic may have been used for real
programming languages. For instance, the KeY verifier tool is a theorem prover for Java
programs, based on dynamic logics. Thus, the underlying program “notation” is Java.

Here, we discuss dynamic logics using a rather more restricting programming notation,
namely regular programs. As mentioned earlier, DL is a multi-modal logic where one adds
“structure” to the set of labels A (if we see the multi-transitions relations as one labelled
transition relation). Here, we add as structure on A basically regular expressions, which

https://www.key-project.org/
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are seen as the underlying “programming languages”. Of course, that’s a very abstract way
of representing programs, basically abstracting away from concrete data. One focuses on
sequential composition, non-deterministic choices, and iteration. It’s a level of abstraction
that correponds to control-flow graphs (with the data-part abstracted away).

Regular programs and tests

Definition 2.6.1 (Regular programs). The syntax of regular programs α, β ∈ Π is given
according to the grammar:

α ::= a ∈ Π0 | 1 | 0 | α · α | α+ α | α∗ | ϕ? . (2.32)

The clause ϕ? is called test.

Tests can be seen as special atomic programs which may have logical structure, but their
execution properly terminates in the same state iff the test succeeds (is true), otherwise
fails if the test is deemed false in the current state.

As for termination: test have two outcomes, a positive and a negative. If the test “suc-
ceeds”, the test properly terminates. The qualification “properly” for this form of termi-
nation is a hint that there are also other forms of termination: When the test fails, it
“terminates” in that it fails. That is sometimes called improper termination. In program-
ming languages, a cause of improper termination can be raising an (uncaught) exception.
Actually, the behavior of tests is connected to assertions as known from many high-level
programming language. For example, in Java, one can use assert(b) as construct,
where b is a Boolean expression. Basic programming hygiene mandates, that b has no
side effects, so it’s a side-effect free boolean expression over the variables used in the
programs (like making sure that x >= y or similar). Indeed, assert-statements of that
form corresponds to a simple form of tests as supported in DL. It’s a simple form, in that
only propositional formulas (= boolean expressions) over program variables are allowed,
whereas in dynamic logic, more complex formulas are allowed. In particular, formulas in
the multi-modal logic (here with regular programs as syntax) which is known as dynamic
logic.

Note: it’s about proper or improper termination of the test, not the program. In general a
test is used in a program, for instance a test followed by the rest of the program. In regular
programs that is written as ϕ?·α (in other contexts and real programming languages, often
semicolon ; is used for sequential composition instead).

The difference between proper termination and failure is: in the first case, the test termi-
nates without consequences (especially no side effects) and the program behaves as α. On
the other hand, when the test fails, the whole program fails, i.e., terminates improperly as
well. That corresponds to the situation, that an assertion assert(b) raises an exception
which is uncaught and causes the whole program to terminate in a non-proper way.

Tests

• simple Boolean tests: ϕ ::= > | ⊥ | ϕ→ ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ
• complex tests: ϕ? where ϕ is a logical formula in dynamic logic



50 2 Logics
2.6 Dynamic logics

Propositional Dynamic Logic: Syntax

Definition 2.6.2 (PDL syntax). The formulas ϕ of propositional dynamic logic (PDL)
over regular programs α are given as follows.

α ::= a ∈ Π0 | 1 | 0 | α · α | α+ α | α∗ | ϕ?
ϕ ::= p, q ∈ Φ0 | > | ⊥ | ϕ→ ϕ | [α]ϕ

(2.33)

where Φ0 is a set of atomic propositions.

1. programs, which we denote α... ∈ Π
2. formulas, which we denote ϕ... ∈ Φ

Propositional Dynamic Logic (PDL): based on propositional logic, only

PDL: remarks

• Programs α interpreted as a relation Rα
⇒ multi-modal logic.
• [α]ϕ defines many modalities, one modality for each program, each interpreted over

the relation defined by the program α.
• The relations of the basic programs are just given.
• Operations on/composition of programs are interpreted as operations on relations.
• ∞ many complex programs ⇒ ∞ many relations/modalities
• [..]ϕ is the universal one, with 〈..〉ϕ defined as usual.

Intiutive meaning/semantics of [α]ϕ “If program α is started in the current state, then,
if it terminates, then in its final state, ϕ holds.”

Actually, we basically “know” the interpretation of the two modalities already, as they are
known from the modal logic part. The [α] corresponds to a universal quantification of all
α-successors, the dual 〈α〉 stipulates the existance of an α-successor.

There is, however, a subtlety now which was not much visible in the modal logical setting
(including the multi-modal one), where the actions were uninterpreted symbols from an
alphabet. Now, they are interpreted, namely interpreted as regular programs, and that
includes the possibility of non-termination. So having a pair s1 and s2 in a relation Rα,
i.e., s1Rαs2 (for which we also write s1

α−→ s2), it’s interpreted as that a program starts in
state s1 and when executing α, it reaches s2 when α properly terminates. So, a transition
s1

α−→ s2 implies that α terminates properly. The absence of such a transition implies
that α does not properly terminate. In our regular languages, that would be caused by a
failed test. In real programming languages, they may be other reason for not terminating
properly. For instance, divergence (like infinite looping).

For the modalities, [α]ϕ, being interpreted as universal quantification over all α-successors
stipulates for a state s1, that, if the execution of α terminates starting from s2, then the
progam will be in a state, say s2, for which ϕ holds. If the program, starting at state s1
does not terminate, then [α] vacuously holds in s1. Programs may be non-deterministic
(including regular programs). So it may be the case, that some executions of α terminate
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and others don’t. The formula [α]ϕ imposes a restriction (namely ϕ) on the post-states
for all terminating executions of α. But does not require anything for the others. This is
connected with the notion of partial correctness (as opposed to total correctness).

In contrast, the dual operator 〈α〉ϕ insists on that there exists an execution, where α
terminates after which ϕ holds.

The terminology if partial and total correctness may become more plausible if one would
consider the restricted setting where programs are deterministic. In the current setting
with regular programs, that would not be the case, but dynamic logics, as stated, make
sense also with other program notation, for instance, talking about sequential and de-
terministic programs. For example, the core of the Key-tool focuses on sequential Java
programs (though also adaptations to multi-threaded Java exist).

Anway, if the programming language is happens to be deterministic, then for each s1,
there exists at most one s2 such that s1

α−→ s2: if α terminates, s2 is the sucessor state,
if not, there is no successor state. In that setting as before, [α]ϕ specifies that, if the
program terminates, the successor state must satisfy ϕ, but if it does not terminate, it’s
fine too (= partial correctness). The dual operator 〈α〉ϕ, on the other hand, insists that
α terminates plus that ϕ holds afterwards (= total correctness).

The notions of partial and total correctness are often used in connection with Hoare logic.
Indeed, Hoare logic can be seen as a special, restricted case of dynamic logic. There, one
operates syntactically not with “modal operators”, but one write specifications as so-called
triples. Triples can be interpreted in a total or in a partial correctness way. Sometimes, one
distiguished that notationally by writing [ϕ1] α [ϕ2] and { ϕ1 } α { ϕ2 }, correspondingly.
Note that, unlike here, the logical formulas ϕ1 and ϕ2 do not contain “program syntax”:
in dynamic logic, the two layers (programs and logic) are more intimately inverwoven
(via the modalities and the tests), in Hoare-logics, the layers are more clearly separated
(programs sprinkled with formulas in between). In that sense, Hoare-logic is a restricted
form of dynamic logic.

Exercises: “programs”

Define the following programming constructs in PDL:

skip , >?
fail , ⊥?

if ϕ then α else β , (ϕ? · α) + (¬ϕ? · β)
if ϕ then α , (ϕ? · α) + (¬ϕ? · skip)

case ϕ1 then α1; . . . , (ϕ1? · α1) + . . .+ (ϕn? · αn)
case ϕn then αn

while ϕ do α , (ϕ? · α)∗ · ¬ϕ?
repeat α until ϕ , α · (¬ϕ? · α)∗ · ϕ?

(General while loop)
while ϕ1 then α1 | · · · | ϕn then αn od , (ϕ1? · α1 + . . .+ ϕn? · αn)∗·

·(¬ϕ1 ∧ . . .¬ ∧ ϕn)?
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2.6.4 Semantics of PDL

Making Kripke structures “multi-modal-prepared”

Definition 2.6.3 (Labeled Kripke structures). Assume a set of labels Σ. A labeled Kripke
structure is a tuple (W,R,Σ) where

R =
⋃
l∈Σ

Rl

is the disjoint union of the relations indexed by the labels of Σ.

for us (at leat now): The labels of Σ can be thought as programs

• Σ: aka alphabet,
• alternative: R ⊆W × Σ×W
• labels l, l1 . . . but also a, b, . . . or others
• often: a−→, like w1

a−→ w2 or s1
a−→ s2

Regular Kripke structures

• “labels” now have “structure”
• remember: regular program syntax
• interpretation of certain programs/labels fixed,

– 0: failing program
– α1 · α2: sequential composition
– . . .

• thus, relations like 0, Rα1·α2 , . . .must obey side-conditions

leaving open the interpretation of the “atoms” a, we fix the interpretation/semantics of
the constructs of regular programs

Regular Kripke structures

Definition 2.6.4 (Regular Kripke structures). A regular Kripke structure is a Kripke
structure labeled as follows. For all basic programs a ∈ Π0, choose some relation Ra. For
the remaining syntactic constructs (except tests), the corresponding relations are defined
inductively as follows.

R1 = Id
R0 = ∅
Rα1·α2 = Rα1 ◦Rα2

Rα1+α2 = Rα1 ∪Rα2

Rα∗ =
⋃
n≥0R

n
α

In the definition, Id represents the identity relation, ◦ relational composition, and Rn and
the n-fold composition of R.
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Kripke models and interpreting PDL formulas

Now: add valutions ⇒ Kripke model

Definition 2.6.5 (Semantics). A PDL formula ϕ is true in the world w of a regular Kripke
model M , i.e., we have attached a valuation V also, written M,w |= ϕ, if:

M,w |= pi iff pi ∈ V (w) for all propositional constants
M,w 6|= ⊥ and M,w |= >
M,w |= ϕ1 → ϕ2 iff whenever M,w |= ϕ1 then also M,w |= ϕ2

M,w |= [α]ϕ iff M,w′ |= ϕ for all w′ such that wRαw′

M,w |= 〈α〉ϕ iff M,w′ |= ϕ for some w′ such that wRαw′

This part of the semantics should contain no surprises: it’s the standard Kripke interpre-
tation in a multi-modal setting. One ingredient is missing, though, that’s the semantics
for tests (coming next).

Semantics (cont’d)

• programs and formulas: mutually dependent
• omitted so far: what relationship corresponds to

ϕ?

• remember the intuitive meaning (semantics) of tests

Test programs

Tests interpreted as subsets of the identity relation.

Rϕ? = {(w,w) | w |= ϕ} ⊆ Id (2.34)

Some special cases:

• R>? = Id
• R⊥? = ∅
• R(ϕ1∧ϕ2)? = {(w,w) | w |= ϕ1 and w |= ϕ2}

• [α]ϕ is like looking into the future of the program and then deciding on the action
to take. . .
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The slides show some special cases of the definition from equation (2.34). One may also
compare that with the “exercises” slide from earlier. As discussed earlier, the intuition of
“executing” a test in a particular state is that it either succeeds (it terminates properly,
by doing nothing) or it “fails” which blocks the program from continuing. In the informal
discussion back then concerning proper and non-proper termination, we drew a parallel
to raising exceptions in programming languages. That parallel is adequate in particular
for deterministic programs; for non-determistic ones it only goes so far. So, in connection
with the non-deterministic choice operator, a few more words may be in order. See below,
after finishing the discussion of equation (2.34).

Testing > always, i.e., in each state succeeds. That means that R>? is the identity relation
itself. It can also be interpreted that executing >? corresponds to executing skip (later,
in a different context like LTL and programs there, “do-nothing” steps are also called
stuttering. . . ). Testing for ⊥ “fail” in each state when executed, which means R⊥? is
the empty relation. The corresponding program, the dual to skip, is also called fail.
The standard Boolean operators are interpreted as usual. For instance the ∧ as logical
conjuction (or as intersection of Rϕ1 and Rϕ2 , which is the same).

Finally, as the most complex case, the interpretation for [α]ϕ?: what kind of relation does
that corresponds to, resp. what does it mean to execute such a test? Well, we know what
[α]ϕ means. It specifies the “post-condition” for all executions of α. If that evaluates
to true, the test succeeds and the program can proceeds, alternatively, it fails. So, this
allows to “look into the future” of an execution, for instance, if one would write [α]ϕ? · α
as regular program. So, the rest of the program is only executed, if it assured that all
possible outcomes of α satisfy ϕ. Note that α in turn may contain further tests. Of course,
one can speak about “other” programs than the rest [β]ϕ? · α where β 6= α, but still the
rest α is only executed if the execution of β would satify the given property ϕ. Referring
to future outcomes of programs, be it α or β is a very powerful mechanism.

Earlier, we compared tests to assertions like assert(b) in standard programming lan-
guages. Those assertions are very much weaker, in particular one cannot use modal oper-
ators to speak about complex properties that may involve specifyng the future of program
and make the execution of the program depend on that. The propositional assertions
are more intended for being checked at run-time, without involving complex properties
referring to future continuations (or other complications).

Non-deterministic choice, tests, and exceptions As mentioned, the parallel between
fail, i.e., ⊥? and exceptions works convincingly for deterministic programs, for non-
determistic ones less so. That can be best illustrated, of course, when combining tests
with non-deterministic choices. As in regular expressions, the non-deterministic choice
operator may be read as “or” (and written + for regular programs, for regular expression
| is more common). So, α1 +α2 may be read as “do α1 or α2”. All fine and good, but let’s
combine that with tests, and consider

ϕ? · α1 + ¬ϕ? · α2 (2.35)

For the discussion here, the form of the assertion ϕ does not matter, is it may be a simple
predicate (like x = 0 resp x 6= 0 for the negate case). The semantics starts, make a choice
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between the left-hand or the right-hand side. The left-hand side will be execute if the test
ϕ? succeeds. Alternatively choose the right hand side, which “then” will be executed if
¬ϕ? succeeds, otherwise not.

What is slightly dubious seem the explanation

“first execute the choice and then check the test; if successful, continue, if non-
successful, don’t do anything”.

It’s in particular dubious, if we intuitively think that a failed test amounts to raising an
exception. The program from equation (2.35) is to interpreted as “if-then-else”: depend-
ing on which of the two tests evaluates to true, either the left-hand side or the right-hand
side of the conditional is executed. But if we think that first a choice is made, and af-
terwards, the corresponding test is executed to see if one can continue, that is a different
way of thinking about the program. In particular, when the test is interpreted as po-
tential exception, that’s a unplausible illustration. In a conventional program involving
choices, the semantics makes a choice, and if that leads to an exception, then that’s what
happens. Here, the failing alternative is ignored: having a transition corresponding to a
non-propertly terminating program is interpreted the same way as not having a transition
at all (remember R⊥? = ∅). It’s unplausible to say, a program that throughs an exception
(or will through one in all possible futures is the same as having no program at all).

Here, the interpretation is more, that a choice is made selecting among those alternatives
that terminate properly, where branches that lead to failures (= non-proper termination)
are ignored as if there were not even there. This form of choosing among “successful”
alternatives while ignoring the ones that fail is called angelic choice and the form of
non-determinism angelic nondetermism. It miracously picks an alternative that will turn
out “positively” in that it terminates properly, if such an alternative exists. Note that
the choice choses not just decision “right now” as in equation (2.35), which is used for
illustration. Also in a station α1 + α2, where the two branches are not immediately
“guarded” by a test, which can be used to make a decision now, the choice pics one of
the “successful”, i.e., properly terminating outcomes of α1 or α2. To have such an angelic
interpretation of non-determinism is not part of a standard behavior of a programming
language (neither is the dual, choising the worst outcome, which is known as demonic
choice). These notions appear in connection with how to interpret the occurence of non-
determistic choices in a program when it comes to verify properties about it. And, as it
is, regular programs have an angelic intepretation of the choice operator.

Axiomatic System of PDL

Take all tautologies of propositional logic (i.e., the axiom system of PL from some earlier
lecture) and add
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Axioms:

[α](ϕ1 → ϕ2)→ ([α]ϕ1 → [α]ϕ2) (1)
[α](ϕ1 ∧ ϕ2)↔ [α]ϕ1 ∧ [α]ϕ2 (2)
[α+ β]ϕ↔ [α]ϕ ∧ [β]ϕ (3)
[α · β]ϕ↔ [α][β]ϕ (4)
[ϕ?]ψ ↔ ϕ→ ψ (5)
ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ (6)
ϕ ∧ [α∗](ϕ→ [α]ϕ)→ [α∗]ϕ (IND)

Rules: take the (MP) modus ponens and (G) generalization of modal logic.

Further reading

On dynamic logic, a book nicely written, with examples and easy presentation: David
Harel, Dexter Kozen, and Jerzy Tiuryn: [4]. Chap. 3 for beginners, a general introduction
to logic concepts. This lecture is based on Chap. 5 (which has some connections with
Chap. 4 and is strongly based on mathematical notions which can be reviewed in Chap.
1)

2.6.5 Exercises

The exercises have been placed on a separate sheet.

Exercises: Play with binary relations

• Composition of relations distributes over union of relations.
R ◦ (

⋃
iQi) =

⋃
i(R ◦Qi) (

⋃
iQi) ◦R =

⋃
i(Qi ◦R)

• R∗ , I ∪R ∪R ◦R ∪ . . . ∪Rn ∪ . . . ,
⋃
n≥0R

n

Show the following:

1. Rn ◦Rm = Rn+m for n,m ≥ 0
2. R ◦R∗ = R∗ ◦R
3. R ◦ (Q ◦R)∗ = (R ◦Q)∗ ◦R
4. (R ∪Q)∗ = (R∗ ◦Q)∗ ◦Q∗
5. R∗ = I ∪R ◦R∗
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Exercises: Play with programs in DL

• In DL we say that two programs α and β are equivalent iff they represent the same
binary relation Rα = R = Rβ.

Show:

1. Two programs α and β are equivalent iff for some arbitrary propositional constant p
the formula 〈α〉p↔ 〈β〉p.

2. The two programs below are equivalent:

while ϕ1 do
α;
while ϕ2 do β

if ϕ1 then
α;
while ϕ1 ∨ ϕ2 do

if ϕ2 then β else α
Hint: encode them in PDL and use (1) or work only with relations

Exercises: Play with programs in DL

Use a semantic argument to show that the following formula is valid:

p ∧ [a∗]((p→ [a]¬p) ∧ (¬p→ [a]p))↔ [(a · a)∗]p ∧ [a · (a · a)∗]¬p

What does the formula say (considering a as some atomic programming instruction)?
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