

Chapter 2 Logics

Course "Model checking" Martin Steffen Autumn 2021

Chapter 2

Learning Targets of Chapter "Logics".

The chapter gives some basic information about "standard" logics, namely propositional logics and (classical) first-order logics (and maybe more).

Chapter 2

Outline of Chapter "Logics".

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Modal logics

Dynamic logics

Section

Introduction

Chapter 2 "Logics" Course "Model checking" Martin Steffen Autumn 2021

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Syntax Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DDI

What's logic?

Logics

General aspects of logics

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics

Proof theory

Modal logics

- Introduction
- Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

- Dynamic logics
- C ... (DDI

- truth vs. provability
 - when does a formula hold, is true, is satisfied
 - valid
 - satisfiable
- syntax vs. semantics/models
- model theory vs. proof theory
- connection to computation, calculation, programs

Many different logics

- propositional and first-order logics (classical or otherwise)
- higher-order logics
- modal and temporal logics
- "program" logics
- special purpose logics, domain-specific constraints . . .
- fuzzy, probabilistic

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

- Dynamic logics
- C ... (DDI

Section

Propositional logic

Chapter 2 "Logics" Course "Model checking" Martin Steffen Autumn 2021

Syntax (formulas, aka propositions)

::=

 φ

IN5110 -Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

 $\begin{array}{c|cccc} p & | & \top & | & \bot & \\ \varphi \wedge \varphi & | & \neg \varphi & | & \varphi \rightarrow \varphi & | & \dots \end{array} & \begin{array}{c|cccc} \text{atomic propositions} & \\ \text{propositional } \\ \text{compound propositions} \\ \text{Algebraic and} \end{array}$

propositions

first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

Semantics: the meaning of propositions

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DDI

- truth values
- σ
- different "notations"
 - $\sigma \models \varphi$
 - evaluate φ , given σ : $\llbracket \varphi \rrbracket^{\sigma}$

"Proof theory"

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DDI

- decidable, so a "trivial problem" in that sense
- truth tables (brute force)
- one can try to do better, different derivation strategies (resolution, refutation, ...)
- SAT is NP-complete

Semantics: the meaning of propositions

Dynamic logics

- Multi-modal logic
- Dynamic logics
- C ... (DDI

 $\llbracket_ \rrbracket - : (P \to \mathbb{B}) \to \Phi \to \mathbb{B} .$

 $\sigma: P \to \mathbb{B}$.

 $\llbracket \varphi \rrbracket^{\sigma} = \top \; ,$

as

 $\sigma\models\varphi$

Truth table (for \land)

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

 $\begin{array}{c|c} & & & \\ & & & \\ \downarrow & \downarrow & \\ \downarrow & \top & \downarrow \\ & & \\ \hline & & \downarrow & \\ \hline & & \downarrow & \\ \hline & & & \\ \hline \end{array},$

Proof theory

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

model checkingsatisfiabilityvalidity $\sigma \models^? \varphi$? $\models \varphi$ $\models^? \varphi$

Section

Algebraic and first-order signatures

Chapter 2 "Logics" Course "Model checking" Martin Steffen Autumn 2021

Logics so far: rather sterile

- propositional logic: cannot speak about "things" just regulates "truth" in a logical vacuum, but not "truth of something"
- predicates

Example (even as predicate)

- *even*(4): true,
- even(5), even(4+1): false,
- even(x): depends on value of variable x

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics Introduction Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

Signature

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Syntax Semantics Proof theory

. roor theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DD)

- fixes the "syntactic playground"
- selection of
 - functional and
 - relational

symbols, together with "arity" or sort-information

Sorts

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Syntax Semantics Proof theory

Modal logics

Introduction

Semantics Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DDI

• Sort

- name of a domain (like Nat)
- restricted form of type
- single-sorted vs. multi-sorted case
- single-sorted
 - one sort only
 - "degenerated"
 - *arity* = number of arguments (also for relations)

- given: signature Σ
- set of variables X (with typical elements x, y', \ldots)

 $\begin{array}{rrrr}t & ::= & x & & \mathsf{variable} \\ & \mid & f(t_1,\ldots,t_n) & f \text{ of arity } n \end{array}$

- $T_{\Sigma}(X)$
- terms without variables (from $T_{\Sigma}(\emptyset)$ or short T_{Σ}): ground terms

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

(5)

Propositional logic

Algebraic and first-order signatures

First-order logic

Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DD)

Substutition

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

• Substitution = replacement, namely of variables by terms

- notation t[s/x]
- symbol θ

First-order signature (with relations)

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DD)

• add relational symbols to Σ

- typical elements P, Q
- relation symbols with fixed arity n-ary predicates or relations)
- standard binary symbol: ≐ (equality)

Section

First-order logic

Chapter 2 "Logics" Course "Model checking" Martin Steffen Autumn 2021

Syntax: formulas of first-order logics

• given: first-order signature Σ

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

First-order structures and models

- given Σ
- assume single-sorted case

first-order structure (or model) M = (A, I)

- A some domain/set
- interpretation I, respecting arity

•
$$\llbracket f \rrbracket^I : A^n \to A$$

•
$$\llbracket P \rrbracket^I : A^n$$

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DDI

Giving meaning to variables

Variable assignment

given $\boldsymbol{\Sigma}$ and model

 $\sigma:X\to A$

alternative names

- valuation
- state

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

(E)valuation of terms

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DDI

- σ "straightforwardly extended/lifted to terms"
- how would one define that (or write it down, or implement)?

Free and bound occurrences of variables

- quantifiers bind variables
- scope
- other binding, scoping mechanisms
- variables can *occur* free or not (= *bound*) in a formula
- careful with substitution
- how could one define it?

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

Substitution

basically:

- generalize substitution from terms to formulas
- careful about binders especially don't let substitution lead to variables being "captured" by binders

Example

$$\varphi = \exists x.x + 1 \doteq y \qquad \theta = [x/y]$$

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DD)

Satisfaction

Definition (\models)

 $M,\sigma\models\varphi$

- Σ fixed
- in model M and with variable assignment σ formula φ is true (holds)
- M and σ satisfy φ
- minority terminology: M,σ model of arphi

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DDI

Exercises

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

- substitutions and variable assignments: similar/different?
- there are infinitely many primes
- there is a person with at least 2 neighbors (or exactly)
- every even number can be written as the sum of 2 primes

Proof theory

- how to *infer*, derive, deduce formulas (from others), i.e., how to do a proof?
- mechanical process
- proof = deduction (sequence or tree of steps)
- theorem
 - syntactic: derivable formula
 - semantical a formula which holds (in a given model)
- (fo)-theory: set of formulas which are
 - derivable
 - true (in a given model)
- soundness and completeness

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction Semantics Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic Dynamic logics

e a cert

Deductions and proof systems

A proof system for a given logic consists of

- axioms (or axiom schemata), which are formulae assumed to be true, and
- inference rules, of approx. the form

$$\varphi_1 \quad \cdots \quad \varphi_n$$
 ψ

• $\varphi_1, \ldots, \varphi_n$ are premises and ψ conclusion.

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics

Proof theory

Modal logics

Introduction Semantics Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DD)

A simple form of derivation

Derivation of φ

Sequence of formulae, where each formula is

- an axiom or
- can be obtained by applying an inference rule to formulae earlier in the sequence.

• $\vdash \varphi$

• more general: set of formulas Γ

- proof = derivation
- theorem: derivable formula (= last formula in a proof)

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction Semantics Proof theory and axiomatic systems Exercises

Dynamic logics

- Multi-modal logic
- Dynamic logics
- C ... (DD)

Proof systems and proofs: remarks

- "definitions" from the previous slides: not very formal
- many different "representations" of how to draw conclusions exist, the one sketched on the previous slide
 - works with "sequences"
 - corresponds to the historically oldest "style" of proof systems ("Hilbert-style"), some would say outdated ...
 - otherwise, in that naive form: impractical (but sound & complete).
 - nowadays, better ways and more suitable for computer support of representation exists (especially using trees).
 For instance natural deduction style system

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction Semantics Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic Dynamic logics

A proof system for prop. logic

$$\frac{}{\varphi \to (\psi \to \varphi)} \operatorname{Ax}_1$$

$$\psi$$

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics

Proof theory

Modal logics

Introduction Semantics Proof theory and axiomatic systems

Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DD)

A small derivation

Example

 $p \rightarrow p$

 $p \rightarrow p$ is a theorem of the proof system:

 $\begin{array}{l} (p \rightarrow ((p \rightarrow p) \rightarrow p)) \rightarrow \\ ((p \rightarrow (p \rightarrow p)) \rightarrow (p \rightarrow p)) \\ p \rightarrow ((p \rightarrow p) \rightarrow p) \\ (p \rightarrow (p \rightarrow p)) \rightarrow (p \rightarrow p) \\ p \rightarrow (p \rightarrow p) \end{array}$

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction Semantics Proof theory and axiomatic systems

Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C .. C DDI

Section

Modal logics

Chapter 2 "Logics" Course "Model checking" Martin Steffen Autumn 2021

Introduction

- Modal logic: logic of "necessity" and "possibility", in that originally the intended meaning of the modal operators □ and ◊ was
 - $\Box \varphi$: φ is necessarily true.
 - $\Diamond \varphi$: φ is possibly true.
- Depending on what we intend to capture: we can interpret □φ differently.

temporal φ will always hold.

- **doxastic** I believe φ .
- epistemic | know φ .

intuitionistic φ is provable.

deontic It ought to be the case that φ .

We will restrict here the modal operators to \Box and \Diamond (and mostly work with a temporal "mind-set".

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

Kripke structures

Definition (Kripke frame and Kripke model)

- A Kripke frame is a structure (W, R) where
 - W is a non-empty set of worlds, and
 - R ⊆ W × W is called the *accessibility relation* between worlds.
- A Kripke model M is a structure (W, R, V) where
 - (W, R) is a frame, and
 - V a function of type $V: W \to (P \to \mathbb{B})$, called *valuation*.

isomorphically: $V: W \to 2^P$

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantic

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DD)

Illustration

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics

Proof theory

Modal logics

Introduction

Semantic

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

• $W = \{w_1, w_2, w_3, w_4, w_5\}$ • $R = \{(w_1, w_5), (w_1, w_4), (w_4, w_1), \dots\}$ • $V = [w_1 \mapsto \emptyset, w_2 \mapsto \{p\}, w_3 \mapsto \{q\}, \dots]$

"Box" and "Diamond"

- modal operators \Box and \Diamond
- often pronounced "nessessarily" and "possibly"
- mental picture: depends on the kind of logic (temporal, epistemic, deontic ...) and, related to that, the form of the accessibility relation R
- formal definition: see next slide

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantic

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DDI

Satisfaction

Definition (Satisfaction)

A modal formula φ is *true* (or it *holds*) in the world w of a model V, written $V, w \models \varphi$, if:

$$V, w \models p$$
 iff $V(w)(p) = \overline{V(w)(p)}$

$$V, w \models \neg \varphi \qquad \text{iff} \quad V, w \not\models \varphi$$
$$V, w \models \varphi_1 \lor \varphi_2 \qquad \text{iff} \quad V, w \models \varphi_1 \text{ or } V, w \models \varphi_2$$

$$\begin{array}{lll} V,w \models \Box \varphi & \quad \text{iff} \quad V,w' \models \varphi, \text{ for all } w' \text{ such that } w \; R \; w' \\ V,w \models \Diamond \varphi & \quad \text{iff} \quad V,w' \models \varphi, \text{ for some } w' \text{ such that } w \; R \; w \end{array}$$

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Semantics

Proof theory and axiomatic systems Exercises

Different kinds of relations

- R a binary relation on W, i.e., $R\subseteq W\times W$
 - reflexive
 - transitive
 - (right) Euclidian
 - total
 - order relation
 - . . .

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Semantics

Proof theory

Modal logics

Introduction

Semantic

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DDI

Valid in a frame/for a set of frame

If $(W\!,R,V),s\models\varphi$ for all s and V, we write

 $(W,R)\models\varphi$

Example (Samples)

- $(W, R) \models \Box \varphi \rightarrow \varphi$ iff R is reflexive.
- $(W, R) \models \Box \varphi \rightarrow \Diamond \varphi$ iff R is total.
- $(W, R) \models \Box \varphi \rightarrow \Box \Box \varphi$ iff R is transitive.
- $(W, R) \models \neg \Box \varphi \rightarrow \Box \neg \Box \varphi$ iff R is Euclidean.

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantic

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C .. (DDI

Some exercises

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic

Semantics

Proof theory

Modal logics

Introduction

Semantic

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DDI

Prove the double implications from the previous slide!

Base line axiomatic system ("K")

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

Sample axioms for different accessibility relations

$$\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$
$$\Box \varphi \to \Diamond \varphi$$
$$\Box \varphi \to \varphi$$
$$\Box \varphi \to \Box \Box \varphi$$
$$\neg \Box \varphi \to \Box \neg \Box \varphi$$
$$\Box(\Box \varphi \to \psi) \to \Box(\Box \psi \to \varphi)$$
$$\Box(\Box (\varphi \to \Box \varphi) \to \varphi) \to (\Diamond \Box \varphi \to \varphi))$$

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

(K)

(D)

(T)

(4)

(5)

(3)

(Dum)

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DDI

Different "flavors" of modal logic

IN5110 – Verification and specification of parallel systems

Logic	Axioms	Interpretation	Properties of R	
D	ΚD	deontic	total	T
Т	ΚT		reflexive	Targets & Outline
K45	K 4 5	doxastic	transitive/euclidean	Propositional logic
S4	K T 4		reflexive/transitive	Algebraic and
S5	K T 5	epistemic	reflexive/euclidean	first-order signatures
			reflexive/symmetric/transitiv	/ First-order logic
			equivalence relation	Syntax
			·	Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DDI

Some exercises

Consider the frame (W,R) with $W=\{1,2,3,4,5\}$ and $(i,i+1)\in R$

- $M, 0 \models \Diamond \Box p$
- $M, 0 \models \Diamond \Box p \rightarrow p$
- $M, 2 \models \Diamond (q \land \neg p) \land \Box (q \land \neg p)$
- $M, 0 \models q \land \Diamond (q \land \Diamond (q \land \Diamond (q \land \Diamond q)))$
- $M \models \Box q$

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Dynamic logics

Multi-modal logic Dynamic logics

Exercises (2): bidirectional frames

Bidirectional frame

A frame (W, R) is bidirectional iff $R = R_F + R_P$ s.t. $\forall w, w'(wR_Fw' \leftrightarrow w'R_Pw).$

Which of the following statements are correct in ${\cal M}$ and why?

1. $M, 0 \models \Diamond \Box p$ 2. $M, 0 \models \Diamond \Box p \rightarrow p$ 3. $M, 2 \models \Diamond (q \land \neg p) \land \Box (q \land \neg p)$ 4. $M, 0 \models q \land \Diamond (q \land \Diamond (q \land \Diamond (q \land \Diamond q)))$ 5. $M \models \Box q$ 6. $M \models \Box q \rightarrow \Diamond \Diamond p$

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Exercises (3): validities

Which of the following are *valid* in modal logic. For those that are not, argue why and find a class of frames on which they become valid.

- 1. □⊥
- **2.** $\Diamond p \rightarrow \Box p$
- **3.** $p \rightarrow \Box \Diamond p$
- **4.** $\Diamond \Box p \rightarrow \Box \Diamond p$

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DD)

Section

Dynamic logics

Chapter 2 "Logics" Course "Model checking" Martin Steffen Autumn 2021

Dynamic logics

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction Semantics Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic Dynamic logics

- different variants
- can be seen as special case of multi-modal logics
- also: generalization of Hoare-logics
- here: PDL on regular programs
- "P" stands for "propositional"

Multi-modal logic

Syntax

4

The formulas of a multi-modal logic are given by the following grammar.

$$\varphi ::= p \mid \perp \mid \varphi \to \varphi \mid \Diamond_0 \varphi \mid \Diamond_1 \varphi \mid \dots \quad (6)$$

where p is from a set of propositional atoms.

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

Multi-modal logic

Syntax

4

The formulas of a multi-modal logic are given by the following grammar.

$$\varphi ::= p \mid \perp \mid \varphi \to \varphi \mid \Diamond_0 \varphi \mid \Diamond_1 \varphi \mid \dots \quad (6)$$

where p is from a set of propositional atoms.

"Kripke frame" (W, R_0, R_1, \ldots) , where R_i are relations over W.

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

Multi-modal logic

Syntax

The formulas of a multi-modal logic are given by the following grammar.

$$\varphi ::= p \mid \perp \mid \varphi \to \varphi \mid \Diamond_0 \varphi \mid \Diamond_1 \varphi \mid \dots \quad (6)$$

where p is from a set of propositional atoms.

"Kripke frame" (W, R_0, R_1, \ldots) , where R_i are relations over W.

Semantics

4

"natural" generalization of the "mono"-case

$$M, w \models \Diamond_a \varphi \text{ iff } \exists w' : w R_a w' \text{ and } M, w' \models \varphi$$
 (7)

analogously for modality \Diamond_b and relation R_b

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics Introduction Semantics Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

- Dynamic logics

Remarks

- multi-modal: obvious generalization of modal logic
- relations can overlap; i.e., their intersection need not be empty
- *infinitely* many relations and infinitely many modalities possible
- often: labels a, b, \ldots or similar from a label set or alphabet Σ

$$[a] \varphi$$
 and R_a
Notation: instead of R_a
 $w_1 \xrightarrow{a} w_2$

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics Introduction Semantics Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DDI

Regular programs

DL

Dynamic logic is a multi-modal logic to talk about programs.

here: regular programs as abstract notation

Regular programs

- atomic programs, indivisible, single-step, basic programming constructs
- sequential composition
- nondeterministic choice
- iteration
- skip and fail programs (denoted 1 resp. 0)

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

C ... (DD)

Regular programs and tests

Definition (Regular programs)

The syntax of regular programs $\alpha,\beta\in\Pi$ is given according to the grammar:

$$\alpha ::= a, \ldots \in \Pi_0 \mid \mathbf{1} \mid \mathbf{0} \mid \alpha \cdot \alpha \mid \alpha + \alpha \mid \alpha^* \mid \varphi? . (8)$$

Tests φ ?

Tests can be seen as special atomic programs which may have *logical* structure, but their execution properly terminates in the same state iff the test succeeds (is true), otherwise fails if the test is deemed false in the current state.

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics Introduction Semantics Proof theory and axiomatic systems

Dynamic logics

Multi-modal logic

Dynamic logics

Exercises

C ... (DD)

Tests

IN5110 – Verification and specification of parallel systems

• simple Boolean tests:

 $\varphi ::= \top \hspace{0.2cm} | \hspace{0.2cm} \bot \hspace{0.2cm} | \hspace{0.2cm} \varphi \rightarrow \varphi \hspace{0.2cm} | \hspace{0.2cm} \varphi \vee \varphi \hspace{0.2cm} | \hspace{0.2cm} \varphi \wedge \varphi$

 complex tests: φ? where φ is a logical formula in dynamic logic Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Multi-modal logic

Dynamic logics

Propositional Dynamic Logic: Syntax

Definition (PDL syntax)

Given a set Π_0 of *atoms* (or atomic regular programs or atomic actions), with typical elements a, b, \ldots The formulas φ of *propositional dynamic logic* (PDL) over *regular programs* α are given as follows.

$$\begin{array}{rrrrr} \alpha & ::= & a, \ldots \in \Pi_0 \ | \ \mathbf{1} \ | \ \mathbf{0} \ | \ \alpha \cdot \alpha \ | \ \alpha + \alpha \ | \ \alpha^* \ | \ \varphi? \\ \varphi & ::= & p, q, \ldots \in P \ | \ \top \ | \ \bot \ | \ \varphi \to \varphi \ | \ [\alpha]\varphi \end{array}$$

where P is a set of atomic propositions.

- 1. programs, which we denote $\alpha ... \in \Pi$
- 2. formulas, which we denote $\varphi ... \in \Phi$

Propositional Dynamic Logic (PDL)

based on propositional logic, only

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

(9)

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics

Dynamic logics

PDL: remarks

- programs α interpreted as a relation R_{α} (or $\xrightarrow{\alpha}$)
- \Rightarrow multi-modal logic.
 - $[\alpha]\varphi$ defines many modalities, one modality for each program, each interpreted over the relation defined by the program α .
 - ∞ many complex programs $\Rightarrow \infty$ many relations/modalities
 - relations of the basic programs: assumed given.
 - operations on/composition of programs are interpreted as operations on relations.
 - $[..]\varphi$ is the universal one, with $\langle .. \rangle \varphi$ defined as usual.

Intiutive meaning/semantics of $[\alpha]\varphi$

"If program α is started in the current state, then, *if* it terminates, then in its final state, φ holds."

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Dynamic logics Multi-modal logic

Dynamic logics

C ... (DD)

Exercises: "program constructs

Define the following programming constructs in PDL:

while φ_1 then $\alpha_1 \mid \cdots \mid \varphi_n$ then α_n od \triangleq

Exercises: "program constructs

Define the following programming constructs in PDL:

$$\begin{aligned} \mathbf{skip} &\triangleq & \top ?\\ \mathbf{fail} &\triangleq & \bot ?\\ \mathbf{if} \ \varphi \ \mathbf{then} \ \alpha \ \mathbf{else} \ \beta &\triangleq & (\varphi? \cdot \alpha) + (\neg \varphi? \cdot \beta)\\ \mathbf{if} \ \varphi \ \mathbf{then} \ \alpha &\triangleq & (\varphi? \cdot \alpha) + (\neg \varphi? \cdot \mathbf{skip})\\ \mathbf{case} \ \varphi_1 \ \mathbf{then} \ \alpha_1; \ \dots &\triangleq & (\varphi_1? \cdot \alpha_1) + \dots + (\varphi_n? \cdot \alpha_n)\\ \mathbf{case} \ \varphi_n \ \mathbf{then} \ \alpha_n \\ \mathbf{while} \ \varphi \ \mathbf{do} \ \alpha &\triangleq & (\varphi? \cdot \alpha)^* \cdot \neg \varphi?\\ \mathbf{repeat} \ \alpha \ \mathbf{until} \ \varphi &\triangleq & \alpha \cdot (\neg \varphi? \cdot \alpha)^* \cdot \varphi?\\ (General \ \mathbf{while} \ loop)\\ \mathbf{while} \ \varphi_1 \ \mathbf{then} \ \alpha_1 \ | \ \dots \ | \ \varphi_n \ \mathbf{then} \ \alpha_n \ \mathbf{de} &= & (\varphi_1? \cdot \alpha_1 + \dots + \varphi_n? \cdot \alpha_n)^* \cdot \\ \cdot (\neg \varphi_1 \wedge \dots \wedge \varphi_n)? \end{aligned}$$

Making Kripke structures "multi-modal-prepared"

Definition (Labelled Kripke structures)

Assume a set of labels $\Sigma.$ A labelled Kripke structure is a tuple (W,R,Σ) where

$$R = \bigcup_{l \in \Sigma} R_l$$

is the union of the relations indexed by the labels of Σ .

for us (at leat now): The labels of Σ can be thought as programs

- Σ: aka alphabet,
- alternative: $R \subseteq W \times \Sigma \times W$
- labels l, l₁... but also a, b, ... or others

• often:
$$\xrightarrow{a}$$
, like $w_1 \xrightarrow{a} w_2$ or $s_1 \xrightarrow{a} s_2$

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

(10)

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Regular Kripke structures

- "labels" now have "structure"
- remember: regular program syntax
- interpretation of certain programs/labels fixed,
 - 0: failing program
 - *α*₁ · *α*₂: sequential composition
 - . . .
- thus, relations like 0, $R_{\alpha_1 \cdot \alpha_2}$, ... must obey side-conditions

Basically

leaving open the interpretation of the "atoms" a, we fix the interpretation/semantics of the constructs of regular programs

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics Introduction Semantics Proof theory and axiomatic systems Exercises

Regular Kripke structures

Definition (Regular Kripke structures (no tests))

A regular Kripke structure is a Kripke structure labelled as follows. For all atomic programs $a \in \Pi_0$, choose some relation R_a . For the remaining syntactic constructs (except tests), the corresponding relations are defined inductively as follows.

$$R_{1} = Id$$

$$R_{0} = \emptyset$$

$$R_{\alpha_{1}\cdot\alpha_{2}} = R_{\alpha_{1}} \circ R_{\alpha_{2}}$$

$$R_{\alpha_{1}+\alpha_{2}} = R_{\alpha_{1}} \cup R_{\alpha_{2}}$$

$$R_{\alpha^{*}} = \bigcup_{n \ge 0} R_{\alpha}^{n}$$

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Interpreting PDL

Definition (Satisfaction relation)

A PDL formula φ is *true* in the world w of a regular Kripke model $M = (W, \rightarrow, V)$, written $M, w \models \varphi$, if:

 $\begin{array}{lll} M,w\models p & \text{iff} & p\in V(w) \text{ for all propositional atoms} \\ M,w\models \bot & & \\ M,w\models \top & & \\ M,w\models \varphi_1\rightarrow \varphi_2 & \text{iff} & \text{whenever } M,w\models \varphi_1 \text{ then also } M,w\models \varphi_2 \\ M,w\models [\alpha]\varphi & \text{iff} & M,w'\models \varphi \text{ for all } w' \text{ such that } w \xrightarrow{\alpha} w' \\ M,w\models \langle \alpha\rangle\varphi & \text{iff} & M,w'\models \varphi \text{ for some } w' \text{ such that } w \xrightarrow{\alpha} w' \\ & & (11) \end{array}$

Semantics (cont'd)

- programs and formulas: mutually dependent via modalities and tests
- omitted so far in the regular Kripke structures: tests

 $\varphi?$

remember the intuitive meaning of tests

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction Semantics Proof theory and axiomatic systems

Exercises

Dynamic logics Multi-modal logic Dynamic logics

C C DDI

Test programs

Tests

interpreted as subsets of the identity relation.

$$R_{\varphi?} = \{(w, w) \mid w \models \varphi\} \subseteq Id$$

Some special cases:

• $R_{\top?} = Id$

•
$$R_{\perp?} = \emptyset$$

•
$$R_{(\varphi_1 \land \varphi_2)?} = \{(w, w) \mid w \models \varphi_1 \text{ and } w \models \varphi_2\}$$

Modalities

testing modal formulas $[\alpha]\varphi$ and $\langle\alpha\rangle\varphi$ is like looking into the future of the program and then deciding whether to take the action.

IN5110 – Verification and specification of parallel systems

Targets & Outline

Introduction

(12)

Propositional logic

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics Introduction Semantics Proof theory and axiomatic systems Exercises

Axiomatic system of PDL

Take all tautologies of propositional logic (i.e., the axiom system of PL from some earlier lecture) and add Axioms:

$$[\alpha](\varphi_1 \to \varphi_2) \to ([\alpha]\varphi_1 \to [\alpha]\varphi_2) \tag{1}$$

$$[\alpha](\varphi_1 \land \varphi_2) \leftrightarrow [\alpha]\varphi_1 \land [\alpha]\varphi_2 \tag{2}$$

$$[\alpha + \beta]\varphi \leftrightarrow [\alpha]\varphi \wedge [\beta]\varphi \tag{3}$$

$$[\alpha \cdot \beta]\varphi \leftrightarrow [\alpha][\beta]\varphi \tag{4}$$

$$[\varphi?]\psi\leftrightarrow\varphi\rightarrow\psi\tag{5}$$

$$\varphi \wedge [\alpha][\alpha^*]\varphi \leftrightarrow [\alpha^*]\varphi \tag{6}$$

$$\varphi \wedge [\alpha^*](\varphi \to [\alpha]\varphi) \to [\alpha^*]\varphi$$
 (IND)

Rules: take the (MP) modus ponens and (G) generalization of modal logic.

IN5110 – Verification and specification of parallel systems