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corresponding model checking
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1.1 Introduction

This chapter covers another prominent temporal logic, computation tree logic or CTL.
Material is taken from the books [1] or [2]. CTL is pretty established, so there is not much
difference in the essence independent from where one looks.

The logic shares quite some commonalities with LTL, for instance, we will encounter
temporal operators like like © and U and the other ones again.

But CTL is also quite different from LTL. LTL treats time as linear and at the core the
satifaction relation of LTL formula is defined for infinite liniear sequences (traditionally
called paths in LTL).

In contrast, CTL is a branching time logic. It’s not the only one, but a well-known and
simple one. Formulas of CTL (and other branching-time logics) are not interpreted on
paths, but on trees, hence the name (LTL is linear time logic or linear-time temporal
logics, CTL does not stand for computation time (temporal) logic, but computation tree
logic).

In the branching-time view of systems, the behavior of a system is not a linear, resp. a
set of linear runs or paths, it’s a tree (the computation tree). The tree has points where
it branches, these are points where decisions are made one way or the other, caused by
non-determinism or input from outside etc.

A transition system can be unfolded into the computation tree of its behavior. That is
shown in Figure 1.1b. The nodes in the tree carry more information, like propositions
that hold or do not hold at that point, analogous as was done for the paths in the context
of LTL.

If one were to check properties of a transition from Figure 1.1a with LTL or another
linear-time logic, the system would satisfy the property, if all runs or paths starting from
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Figure 1.1: Transition system and prefix of its infinite computation tree

the initial state would satisfy it. A tree as the one from Figure 1.1b as the unfolding
of the transition system of course also contains all those paths. Additionally it contains
information about branching, i.e., the points where decisions are made in the execution.

But what difference does that make, if any? Figure 1.2 shows two simple (edge-labelled)
transition systems of automata. Their respective behavior (as far as the labels on the
edges are concerned and ignoring prefixes) can be written as a(b+c) and ab+ac in regular
expression syntax.
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(b) ab+ ac

Figure 1.2: Branching

In a linear picture, both transition system show two (complete) executions, namely {ab, ac}.
Ignoring details like that LTL works about infinite paths (and that our transition systems
were primarily state labelled, it means that both systems are equivalent as far as LTL is
concerned. Similary, the regular expressions ab+ac and a(b+c) describe the same regular
languages. Regular expressions represent are word languages, not tree languages. . .

Apart from that fact that the two automata have the same traces, not many would spon-
tenously say that the machine from 1.2a is the “same” (equivalent, isomorphic. . . ) as the
one from Figure 1.2b.

In both system, there is a choice, which ultimately leads to ab or ac in one linear run, but
the difference is where resp. when the choice is made, in the initial state, or in the middle,
after having done a. This kind of information is present in the branching view but absent
in the linear one.



1 Computation tree logic
1.1 Introduction 3

That information about branching can be quite crucial. Ultimately, the transition systems
represent often reactive systems in our context, i.e., systems, parallel or otherwise, that
interact with each other and/or the environment. The labels, in that context, play the
role of characterizing the interaction. Often, the interactions are classified in input and
output. So instead of uninterpreted letters like a, b, c . . . as in the example, one has
notations representing input and output. One notation one often finds is writing a? for
input (like reading from channel a, obtaining input from port a, reading a value from a
variable a . . . ) and a! for corresponding output.

The issue is somtimes illustrate by the example of a vending machine for coffee and tea.
The interaction with the environment, i.e. the customer, is that the customer drops a
coin, then makes a choice by pressing a button for either coffe or tea, and then the vending
machine serves a hot beverage. From the perspective of the machine, receiving the coin
counts as input as well as pressing the coffee or tea button. Using names more suggestive
than a, b, and c, two possible realizations of a trivial vernding maching are shown in Figure
1.3. The serving of the hot drink could be seen as out output, but it’s not modelled in
the simple example. One obviously could add additional fitting output-transitions for the
serve steps at the end.

coin?

coffee? tea?

(a)

coin?

coffee?

coin?

tea?

(b)

Figure 1.3: Coffee and tea vending machine

The two versions of the vending machine feel drastically different. The first from Figure
1.3a is probably the version the customer would expect: throwing in the the coin first, and
then, with the second interaction, pressing either the button for coffee or for tea makes
the choice. In the second representation of Figure 1.3b, inputting the coin makes the
decision already, thought the customer has no word in it. That’s an example of internal
non-determinism: the decision between coffee and tea is done internally by the transition
system. After the decision is made the customer can interact by either only pressing the
coffee button or else the tea button. The alternative transition is not possible, it’s not
enabled. One could see it that the correspond button is blocked. So in the left-branch, the
user can only “choose” coffee, and is afterwards served coffee (not modelled by an output
transition).

In that sense the two transition systems behave pretty differently. The first one could be
seen as deterministic, at least choices are made externally. In the field of control-theory,
one could also see the first as more controllable, the second less so.

From the perspecitive of LTL or linear time logics, there is no difference between the
two versions: they satisfy the same formulas. So one can specify the user interaction or
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user interface of such a vending machine as detailed as one wants, still a version exhibing
behavior like the one from Figure 1.3b, making choices on its own satisfies a specification
perfectly. So even if the version of Figure 1.3a is the intended one, the other one is correct
as well, and perhaps can be verified to be correct. Though customers will neither like the
machine much nor the argument that’s it’s mathematically correct. . .

In CTL as branching logic, one will distinguish between the two behaviors. Let’s have first
another look at how satisfaction is defined in LTL. At the core, the satisfaction relation
is define between paths and LTL formulas. But one “lifts” that core definition to define
when a transition system resp. a state satisfies a formula, by saying, that a state satisfies
a formula if all paths starting in the state satisfies the formula. A formula ϕ talking about
states is thereby implicitly universally quantified. So one could write more explicitly.

s |= ∀ϕ iff π |= ϕ for all paths π starting in s (1.1)

Since all LTL formulas, when interpreted over a state, are universally quantified (and
quantified at the beginning) there is no need to mention the ∀ and it’s left implicit. In
summary, LTL formulas speaking about states can be seen as of a prefix-quantified form
∀ϕ, where ϕ does not contain further quantifiers and speak about a path.

CTL genealizes that, in that it also uses existential quantification and also allows quan-
tification inside the formula. As we will see in the syntax, there will be a distinction
also between path formulas and state formulas, the latter ones are those starting with a
quantifier, specifying that all paths starting in the state satisfies a path formula or that
there exists a path with the specified path property.

With being able to have a quantifier not just at the beginning of the formula, but allows
nested inside some formula, talking about a situation that occurs after steps, allows to
talk about when choices are made.

For instance, without giving the actually formula here, one could specify, that for all states
reachable after a coin-transition, there exists a coffee-choice transition and there exits a
tee-choice transition. That rules out that the coffee-choice or tea-choice is blocked after
inserting the coin in the vendor example

LTL vs CTL? With the exposition so far, it seems plausible, maybe even almost obvious,
that CTL is more expressive than LTL. CTL seem to have more formulas it seems so it
should be more expressive. That’s actually not the case. A The way the syntax of CTL
is defined restricts slighthy how path formulas can be combined. As a consequence, CTL
formulas are not actually a superset of LTL formlas.

As a further consequence, CTL is not more expressive than LTL, both logics are incompa-
rable concerning expressiveness. Examples showing that may require some thinking over,
it might not obvious even after we have clarified the syntactic restictions in CTL. Later, we
will also talk about CTL∗, which lifts those restrictions and that logic is more expressive
than both LTL and CTL.
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1.2 Syntax and semantics of CTL

Let’s start by fixing the syntax. As for LTL, we assume the non-temporal part of the logic
to be propositional, with p, q . . . from a set of propositional atoms P

Definition 1.2.1 (CTL syntax). The syntax of CTL is given by the grammar from Table
1.1, where p represents propositional atoms from p.

Φ ::= > | p | Φ1 ∧ Φ2 | ¬Φ | ∃ϕ | ∀ϕ state formulas
ϕ ::= ©Φ | Φ1 U Φ2 path formulas

Table 1.1: CTL syntax

Formulas Φ are called state formulas and ϕ are path formulas. Both forms are strictly
separate and defined mutually recursive.

The shown syntax is rather restricted, in particular it contains only© and U . As in LTL,
those two operators are enough to express all the other familiar ones, like ♦ and �. Path
formulas refer to paths, and the interpretation of “next” and “until”, i.e. of © and U
corresponds to their LTL counter-part. The exact definition will follow later.

In the grammar we also get a feeling for the aforementioned restriction of CTL (compared
to CTL∗). A path formula consists of a top-level temporal operator, and one or two
state formulas as immediate sub-formulas. In other words, the grammar does not allow to
have apply a temporal operator to a path-formula. Similarly, the quantifiers ∀ and ∃ for
state formulas are followed by a path-formula, which means, a temporal operator inside a
formula is immediately preceded by one of the quantifiers. This restriction of the syntax
leads to a subtle restriction in expressiveness, which renders CTL as not more expressive
than LTL, but incomparable in expressiveness.

As a not so important side remark: because of that restriction, both ∀ and ∃ is covered
by state formulas, referring to all paths starts in a given state, resp. to some path start-
ing there. Conventionally, universal and existental quantification are each other’s duals,
However, CTL does not allow to exploit that duality, because there is is no negation on
path formulas, it’s only supported for state formulas.

Let’s look a few examples, often they will have some counter-part in LTL.

We have seen in LTL, how to express that some property holds infinitely often for a path.
One can express the analogous property in CTL as a state formula that requires that a
property holds infinitely often on all paths. In the following example, for instance that a
traffic light is green infinitely often.

Example 1.2.2 (∞). The property, for instance of a traffic line that it is “infinitely often
green”, and that for all possible behaviors, is captured by the state formula ∀�∀♦green.
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Example 1.2.3 (Mutex). The safety property that a system never is in a state where two
processes are in a critical section at the same time can be captured by the state formula

∀�(¬crit1 ∨ ¬crit2) . (1.2)

The example assumes two processes and crit1 holds if process 1 is in the critical section,
analogously for crit2 for the other process.

For parallel or concurrenct systems, an important general is progress. In the treatment of
LTL, we did not explictly point to a LTL formula say “this is progress”. It depends always
a bit on what progress means. Generally it means that the system or one participant does
not get stuck. In that sense, it’s a liveness property stating that eventually something
good happens in that the system continues. Mutual exclusion protocols are often given
in an “repetetive” way: the processes don’t just try to enter a critical section once, but a
process, having entered its critical section and after (hopefully) leaving it again, it tries to
enter again, in a big loop, and so for all processes. In such a set-up, progress for a process
could mean that means it is in it’s critical section infinitely often. If also mutual exclusion
from Example 1.2.3 hold, it means the two processes enter and exits the critical section
infinitely often. With mutual exclusion, it may be that both processes enter the criticial
section at the same time, and then get stuck or deadlock, in which case one should not
call the behavior progressing. . . The required behavior is also connected to fairness.

Example 1.2.4 (Progress). The safety property that a system never is in a state where two
processes are in a critical section at the same time can be captured by the state formula

(∀�∀♦crit1) ∧ (∀�∀♦crit2). (1.3)

All the examples could easily have been expressed in LTL as well. In particular the
example with infinitely many occurrences from Example 1.2.2 and the variation thereof,
the progress Example 1.2.4. The CTL formula ∀�∀♦p is of course no LTL formula.
However, it can equivalently expressed by

∀�♦p .

And that’s how LTL formulas are interpreted on states. Not that this formula is not an
CTL formula, it violates the discussed syntactic restrictions (but, as said, ∀�∀♦p expresses
the same and is syntactically correct CTL).

What makes that possible is that the formula is prefixed by ∀-quantifiers, not just two,
but also the � is a quantification over all points in a path.

For a formula like

∃�∃♦p , (1.4)

such a rearrangement does not work. The quantifiers involved are “exists-forall-exists-
exists”. So there is a quantifier change and the formula cannot be rearranged to
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∃�♦p (1.5)

The latter one is not LTL, at least not the standard variant that is interpreted in states
over all paths, but it expresses the property that p holds infinitely often on some path.
The CTL formula from equation (1.4) expresses something different.

As it turns out, infinite occurrence on some path, captured by equation (1.5), is an example
of a property not expressible by CTL. The formula from equation (1.4) seem almost to
express that, but it’s not the same, in a subtle manner. One can show that the two
formulations from equations (1.4) and (1.5) are not equivalent. That’s done by a concrete
example which satisfies equation (1.4) but has no path with infinitely many occurrences of
p. We will show the example later, but you may try to figure out one example yourself.

The following is an example of a response property, like the one we had for LTL.

Example 1.2.5 (Response). For all behaviors, each request sooner or later will entail a
response:

∀�(request → ∀♦response). (1.6)

Example 1.2.6 (Restart). Let start characterize the start state or start states of a system.
The the following CTL formula expresses that the system never gets ultimately stuck in
some dead-end, in that it’s always possible to reach back the inital state(s):

∀�∃♦start. (1.7)

The last property is one which is intrinsically branching. It cannot be expressed in LTL.

1.2.1 Satisfaction relation

Now to the semantics, i.e., the satisfaction relation. Generally, the definition should
present not much surprises. Since the syntax distinguishes between path an state formu-
las, |= is defined for states as well as for paths, and both definitions are mutually recur-
sive.Given a transition system, let’s refer to all paths starting in a state s by paths(s).

Definition 1.2.7 (Satifaction relation).

s |= p iff p ∈ V (s)
s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2
s |= ∃ϕ iff π |= ϕ for some π ∈ paths(s)
s |= ∀ϕ iff π |= ϕ for all π ∈ paths(s)

(1.8)

π |= ©Φ iff π1 |= Φ
π |= Φ1 U Φ2 iff ∃j ≥ 0.(πj |= Φ2 and ∀0 ≤ k < j.πk |= Φ1)

(1.9)
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1.3 CTL model checking

This section covers algorithm(s) for model checking CTL. The presented technique is
rather different from the one for LTL, in particular it will not conceptually be based on
refutation.

CTL model checking is also often discussed in connection with symbolic, BDD-based
model checking. We will do that afterwards, in this section we discuss the conceptual
algorithm.

1.3.1 Existential normal forms

It is often advantagous to focus on some core set of operators. We did similarly for
LTL, using a restricted set of non-temporal operators and only© and U for the temporal
aspects. We do the same here. The advantage of such a focus is there are less algorithms to
explain and understand. The remaing ones are syntactic sugar and can be model-checked
indirectly thereby.

In practive, that may not be the best course. One sure has less model checking routines
to implement, but as far as efficiency is concerned, one may be better off to take the effort
and implement specific routings for operators left out from the core language.

One can choose the operators for the core calculus quite differently. One choice could
be use negation ¬ only on proposional atoms, but not on compound operators. That’s
called positive normal form. We will use a different selection, one that allows negation on
compound formulas. But we restrict ourselves on considering only ∃ as path quantifiers.

Definition 1.3.1 (Existential normal form). CTL state formilas in existential nor-
mal form are given by the following grammar:

Φ ::= > | p | Φ1 ∧ Φ2 | ¬Φ
| ∃ © Φ | ∃Φ1 U Φ2 | ∃�Φ |

(1.10)

Remember that in LTL, © and U where are complete set of operators, as far as the
temporal part is concerned. Here, we have to include an additional operator, �. You may
reflect on why it was not needed in LTL but necessary now.

We will not make use of the positive normal forms, so we don’t cover the concept. But
positive normal forms exists also for other logics, not just CTL, so we can reflect a bit on
which criteria one should base a selection of operators or a normal form. We mentioned
already that presentation-wise, it is advantagous to restrict to a reduced set, and that for
implementation, a too reduced selection is at least double-edged.

In many contexts, not having to deal with negation for compound formulas is advan-
tagous; that’s why positive normal form are not uncommon. In many constructions,
complementation is tricky. It may lead to a blow-up in the representation or is hard to
do, or both. Remember in that context, that for LTL model checking, the construction
was not building an automaton Aϕ and then complementing it. It would be possible, but
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unwise, since the construction is hard and at least the original construction by Büchi is
double-exponential (there are better ones know in the meantime). That’s why we avoided
automaton complementation by constructing A¬ϕ directly. Of course, we did not make use
of a positive normal form of LTL, but for the construction based on maximally consistent
sets of formulas etc. negation posed no problems.

When doing model checking for CTL, when using a normal form that allows negation, we
need to keep an eye on whether will not be costly in term of efficiency. As indicated, CTL
model checking is often done what is called “symbolically” and based on BDDs. That
is a particular “Boolean” representation of the transition system and information that
is tracked by the model-checking implementaint. BDD stands for specific binary trees,
and the particular form used (as ROBDDs), it is also a kind of normal form (for boolean
formulas). The model checking algo with have to deal with negated, compound formulas,
and when using BDDs, negation needs to be done efficiently for that representation (and
for other formulas as well). Luckily, negation will be particularly efficient . . .

1.3.2 Bottom-up treatment of compound formulas and sat-sets

Now we have agreed on the syntax (ENF), now how to do the model checking? The ENF
contains only state-formulas, not path formulas (resp. the path formulas are implicit in
the formulation of the grammar). The algorithm will have to check thus statisfaction wrt.
state formulas only.

To check that T |= Φ, the algorithm will proceed bottom-up through the formula Φ, i.e.,
it starts by treating the leaves of the formula, and then proceeds bottom-up until it has
to finished treating the whole formula.

It does so by working with the interpretation of the (sub)-formulas as the set of states
that satisfies is. So when we said, the alorithms “treats” a sub-formula Φ′ of Φ, means it
calculates the set {s ∈ S | s |= Φ′}. A crucial part symbolic model checking is that this
list is not treated as an enumeration of indiviual states, i.e., the approach does not solve
s |=? Φ′ for each individual state. That would be explicit state model checking. They
key for a symbolic treatment for sets sat(Φ′) is capture them “formulaically”. which
will here be propositionally. It’s likewise important that this symbolic representation is
compact and can be manipulated efficiently when running the algorithm. Ultimately, the
propositional representation will be based on a form graph or tree like representation
of boolean functions called binary decision trees (BDDs); more about that later. Let’s
summarize the approach first

The basic strategy of T |= Φ
1. calculate sat(Φ) recursively over the structure of Φ
2. T |= Φ iff I ⊆ sat(Φ).

As mention earlier, the recursive strategy treats the formulas bottom-up. So when the
algorithm treats a compound (sub-)formula, say an until formula Φ1 U Φ2, the sets sat(Φ1)
and sat(Φ1) have already calculated. They can be treated by the algorithm as propositions.
The recursive algorithm will contain a case-swich for each syntactive form (in ENF), but
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in the bottom-up strategy, in each case, the ask will be to treat the corresping constructor
applied on propositions. For instance, the U -case requires a treatment for A1 U A2,
with A1 and A2 propositions representing the results of determining the sat-sets of the
immediate subformulas Φ1 and Φ2.

Example 1.3.2. Consider the transition system of Figure 1.4 and the CTL property from
equation (1.11). The “names” of the states are considered also as propositions, for instance,
the initial state is called born which is interpreted that in this state, the proposition born
holds, but in the other states not.

Figure 1.4: Transition system

∀♦dead. (1.11)

Example 1.3.3. Consider again transition system of Figure 1.5. This time, let’s look at
the CTL property from equation (1.11):

∃© hungry ∧ ∃(eat U ¬dead). (1.12)

Figure 1.5 shows the syntax tree of the formula. Additionally, the sat-sets are indicated
for most nodes.

Figure 1.5: Bottom-up calculation of sat-sets

Since all initial states —there is only one— of the transition system are contained in the
sat-set of the formula, the transition system satisfies Φ.

As mentioned, the model checking algorithm calculates the sat-sets bottom-up in such
syntax trees. The figure does not illustrates that calculation, only its results.
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To get a feeling of how it works, consider, for instance, the node for ©hungry and its
child node hungy. That sat-set for the proposition hungy is the singleton set {hungy} of
states from the transition system from Figure 1.4. The set for the parent node ©hungry
is calculated from the sat-set {hungy} for the child-node by following the edges in the
transition system backwards; in this particular example, there is only transition to follow
backwards, the edge from born to hungy. So the algorithm will treat the ©A-case for a
proposition A, given sat(A), by calculating pre(sat(A))

The treatment for U is similar insofar that it involves following the transitions backwards.
Instead of a single-step calulation of predecessors, it will involve an iterated calculation
of predecessor set, in a iterated backward-exploration of the transition system. Such a
calculuation can be understood as the calculation of a fixpoint.

1 input : f i n i t e t r a n s i t i o n system T and Φ
2 output : T |= Φ
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 for a l l i ≤| Φ | do
5 for a l l Ψ ∈ sub(Φ) with | Ψ |= i do
6 compute sat(Ψ) from sat(Ψ′) (∗ max . genuine Ψ′ ⊆ sat(Ψ) ∗)
7 od
8 od
9 return I ⊆ sat(Φ)

Listing 1.1: Basic algorithm

1 input : f i n i t e t r a n s i t i o n system T and Φ
2 output : T |= Φ
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 switch Φ
5 > => return S
6 p => return {s ∈ S | p ∈ V (s)}
7 ¬Φ => S \ sat(Φ)
8 Φ1 ∧ Φ2 => return sat(Φ1) ∩ sat(Φ2)
9 ∃© Φ => return pre(sat(Φ))

10 ∃(Φ1 U Φ2) => ``lfp for ∃ U ' '
11 ∃�Φ => ``gfp for ∃� ' '

Listing 1.2: Recursive algorithm

1.3.3 Characterization of sat & fixpoint calculations

Next we have to fill in the blanks in the algorithmic skeleton of Listing 1.2. We will do so
by characterizing the different cases for the sat-calculation, i.e. the different cases of the
switch-construct. Some of the cases don’t require much further explanation, as they are
basically covered in the code of Listing 1.2.

Not surprisingly, the trickiest cases are those for U and �. The one for ∃© is quite
straightforward. One simply needs to explore “backwards”, calculating pre. Later though,
we will express that slightly differently. But for now, we will focus on the last two cases.

In Listing 1.2, it’s mentioned that those cases are treated by calculating a fixpoints, th
greatest fixpoint resp. the least fixpoint, gfp and lfp.
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Fixpoint calculation for ∃♦

That requires some elaboration, I assume. The following illustrates the fixpoint idea not
for ∃(A1 U A2), but for ∃♦A, which is a special case of that, with A1 = >. That’s slightly
easier to present, as the formulas has only one subformula not two. It’s probably also
easier to understand than the ∃�A case, which is why we do the exposition about fixpoint
calculation using ∃♦.

Before we get into the fix-point business, we can think how to solve the model-checking
problem for

∃♦A

with A given. It’s very easy, actually. sat(∃♦A) correspond to all states from which a state
in A can be reached. That can be calculated in a natural way by a backward exploration
starting at A. Forward or backward, no matter, a graph can be explored in different
ways. Depth-first for instance, or breadth first, or something more fancy. One can also
leave the strategy open, resp. follow the most unspecified stategy possible, following edges
randomly, here pre-edges. See Listing 1.3.

1 T := sat(B) ;
2 while pre(T ) \ T 6= ∅ do
3 let s ∈ pre(T ) \ T ;
4 T := T ∪ {s} ;
5 od ;
6 return T ;

Listing 1.3: Backward exploration for ∃♦A

The algo starts with A, resp. the corresponding sat-set. In each round, following some
edge backwards it picks a state that has not been explore yet, and adds that state to the
set T of explored ones. If no such state exists, it stops. At that point T contains the
desired sat-set.

Let’s remark two or three things, maybe obvious ones. The first is, that T is properly
enlarged in each round. Because if no new state can be fround be the exploration, the
algorithm stops. This, secondly, implies that the algorithm terminates, because we assume
finite-state systems. That’s also a triviality: one can for sure do graph searches or graph
explorations on finite graphs. Thirdly, the sketched exploration adds one state in each
round, i.e., the iteration treats states individually. That’s not in our interest of doing
symbolic model checking.

The last point we will address a bit later, let’s continue with a discussion of what that
pretty simple algorithm has to do with fixpoints.

For the sake of this discussion, let’s massage the code from Listing 1.3 a bit. As said, in
each round the set T is increased by one state. Let’s capture that effect in one operator,
say F .

To do so, call pick a function that when applied to a non-empty set, gives back a random
element from that set; it’s undefined on the empty set. pick∅ the function that, when
applied to a non-empty set, gives back a singleton-set with one element randomly chosen,
but when applied to the empty set, gives back the empty set. With this function, we can
equivalently write for the loop-body of Listing 1.3 as T := T ∪ {pick(pre(T ))}. There
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is always a state s that can be picked and pick is well-defined, as that’s checked in the
loop-condition. We can thus write for the loop body

T := T ∪ pick∅T .

The loop condition T \ pre(S) 6= ∅ can be equivalently expressed as

T ⊃ T ∪ {pick(pre(T ))} or T 6= T ∪ {pick(pre(T ))} .

1 T := sat(A) ;
2 while T 6= T ∪ {pick(pre(T ))}
3 T := T ∪ pick(pre(T )) ;
4 od ;
5 return T ;

Listing 1.4: Backward exploration for ∃♦A

At the exit of the loop, we have therefore

T = T ∪ {pick(pre(T ))} . (1.13)

i.e., each iteration step i increases the current set Ti properly to Ti+1 = {pick(pre(T ))},
adding one randomly picked state not yet explored. That’s done until no new such states
are found, and that is captured by the equality from equation (1.13).

IF we write F for the function F (X) = pick∅pre(X)∪X, the different incarnations T0, T1
etc. are given as T0 = sat(A), T1 = F (T0), T2 = F (T1) = F 2(T0), etc. i.e.,

T0 = A
Tj+1 = F (Tj) where F (X) = pick∅(pre(X)) ∪X

(1.14)

The Ti’s from Unlike the algorithm code, the definition from equations (1.14) correspond
to the value of T in the different iteration rounds, though the formulation in equation
(1.14), unlike the algorithm, does not specify when to stop, by for instance saying that j
has a value from 0 . . . k.

If the loop stops after, say, k iterations, it means with the loop’s exit condition from
equation (1.13) that Tk+1 = F (Tk) = T . Additionally, it’s immedeate to see that not only
Tk = Tk+1, but also Tk+1 = Tk+2 = Tk+3. So, once an application of F to the current
value of set T does not increase any more (and the loop stops), no further applications
would increase it later, perhaps after further iterations without any increase.

A = T0 ⊂ T1 ⊂ T2 ⊂ . . . ⊂ Tk = Tk+1 = Tk+2 . . . (1.15)

It’s also said that the iteration or the chain of Ti’s stabilizes at the point where Tk+1 = Tk
for the first time, and it’s characteristic that, once stabilized, it will remain at that point
forever. Thus it makes perfect sense to make stabilization the exit condition for the
iteration.
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For all elements Ti in the chain, we know that

A ⊆ Ti, and Ti ⊆ Tj+1 . (1.16)

Equation (1.15) is more explicit about that for indices lower than k, it’s Ti ⊂ Tj+1, for
those higher it’s Ti ⊂ Tj+1, but the ⊆-relations from equation (1.16) are stating something
correct, nonetheless. Actually, without knowing the concrete k where the iteration sta-
bilzise, that seems to be best we can say about how the Ti’s hang together. Actually, also
the code of the algorithm does not operate with a concrete k: it’s based on a while-loop,
iterating until stabilization not on a for-loop.1

The sets Ti are representing the status of the interation in the different rounds, but based
on the observation from equation 1.16, we could more abstractly (without mentioning any
looping construct) require

Goal (a): Find me a set T such that (a) it contains A and such that (b) F (T )
does not make it larger.

There will later be a refinement of that goal, but anyway, the current version can be
captured by the following two in-equations, inequations in the sense of ⊇

T ⊇ A
T ⊇ F (T ) where F (X) = pick∅(pre(X)) ∪X

(1.17)

That can be seen as (in-)equation system, where T is the variable over which the equation
system is formulated. Actually, it’s a recursive equation system; at least the second (in-
)equation is recursive in T . Solving it corresponds to the goal stated just above.

That’s all fine and good, but what has it to do with fix-points? Well, at the stabilization
point, say Tk, we have Tki

= F (Tk), and that means Tk, calculated iteratively solves it.

We can also combine the two in-equations from equation (1.18) into a single line.

T ⊇ F ′(T ) where F ′(X) = pick∅(pre(X)) ∪X ∪A (1.18)

Now we have one single, recursive (in).equation, and we know that Tk solves it, i.e.,
Tk ⊇ F ′(Tk), actually, as explained, Tk = F ′(Tk). In other words

Tk is a fixpoint of F ′, i.e., it solves T = F ′(T ).

I.e., we have found a solution not only of equation (1.18) using ⊇, but also of the corre-
sponding constraint using equality (and using X instead of T , to stress that it’s a variable
of the equation):

X = F ′(X) (1.19)
1For-loop in the sense of an loop with a fixed number of iterations, like for i = 0 to k, not in the
sense of loops using the for-keyword in Java.
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After all this massaging, we have cast goal (1) into the form of a fixpoint equation,
resp. an “fixpoing inequation” in equation (1.18). The technical term for the latter is
pre-fixpoint; there are also post-fixpoints, where ⊇ is used the other way around, but
here, for the shown construction for ∃♦, we are into pre-fixpoints. Actually, for the dual
of “eventually” temporal property, the �, it works the other way around and operates a
post-fixpoint (and a fixpoint).

We said, that the Tk calculated by the algo is both a pre-fixpoint as well as a fix-point of
F ′, i.e, it solves both equations (1.19) and (1.18). Obviously, each fix-point is at the same
time a pre-fixpoint as well (and also a post-fixpoint, for that matter). But the fixpoint
formulation with = and the pre-fixpoint formulation with ⊇ are not the same constraint:
the former imposes stricter requirements on the set of solutions, in other words, there are
pre-fixpoints which are not also fixpoints.

Actually, that fact us not really important. It’s true that equations (1.19) and (1.18) are
not expressing the same constraints and one has more solutions than the other, but they
do have the same solution(s) where it matters.

That has to do with one missing piece of the story. So far, we have covered only what we
called goal (a), which we have turned into a (pre-)fixpoint requirement, and we said Tk
solves both formulation. But indeed, Tk not only satisfies Tk = F ′(Tk) and Tk ⊇ F ′(Tk),
in the chain from equation (1.15), k is the first point where that happens. In other
words, Tk is the smallest set from the chain that solves the fixpoint resp. the pre-fixpoint
formulation.

Actually, it’s not just the smallest set in the chain with that property, one can prove that
it’s generally the smallest fixpoint as well as the smallest pre-fixpoint (not just in the
particular chain-construction). So, while the pref-fixpoint formulation has more solution,
as far as the smallest solutions are concerned, and that’s what we are after, both formula-
tions are indeed equivalent. Additionally, one can prove that there the smallest solution is
unique. Thus, it’s the (unique) smallest solutution for goal (a) that we are after as the
set sat(∃♦).

Goal (b): Find the smallest set T satisfying goal (a).

That may seem a long and winded explanation for something quite simple, namely how
do a (backward and random) graph exploration to determine sat(A). That may be so, but
also semantics resp. algorithms for ∃ U and ∃� can be explained and justifiedsimilarly
(the one for ∃� calclating greatest (post-)fixpoints, gfp’s). Also other temporal operators
left out of the restricted ENF syntax are given as fixpoints (some as least (pre-)fixpoints,
some as greates (post-)fixpoints). With the slightly longish explations in case of the
simpler ∃♦ setting, boiling down to a very straightforward graph exploration, we can keep
the presentation of the slighty more complex cases short. But before that, there is another
issue to address. With all the talk about fixpoints and how to solve them, we lost sight of
another aspect of CTL model checking, namely that it’s a well-known example of symbolic
model checking.
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Explicit state vs. symbolic model checking

The skeleton recursive model checking algorithm from Listing 1.2 is working with sets of
states, the sat(lstateform)-sets. As explained, the two last and most complicated cases
case switch are doing fixpoint iteration, calculating some gfp or lfp.

If we look at the way it has been explained,the basic step picks one individual state s in
each round, adding it to the set T of explored states.

That’s the way, explicit-state model checking works. In the spirit of symbolic model
checking, it’s better to explore the graph by adding whole sets of states in each iterative
step. That can easily be written down. Instead of the iteration from equation (1.14), using
pick∅(pre(X)), we simply add all states of pre(X) in one swoop:

T0 = A
Tj+1 = F (Tj) where F (X) = pre(X) ∪X

(1.20)

Likeise, the code from Listing 1.4 is readily adapted to the one of Listing 1.5.
1 T := sat(B) ;
2 while T 6= T ∪ pre(T ) do
3 T := T ∪ pre(T )
4 od ;
5 return T ;

Listing 1.5: “Breadth first” backward exploration for ∃♦A

The latter seems even even simpler than the one from before, so why did we not start the
fixpoint explanation with this one? Indeed we could have done that, everything would have
worked analogously. Nonetheess, we started the exposition with the explicit-state version
for two reasons. One is, showing both versions may rub in the difference between symbolic
model checking on the one hand and explicit-state model checking on the other. Secondly,
the graph explication here can be seen as a specific explication strategy, namely breadth-
first exploration. The previous one is a random exploration. The random exploration can
also be seen as the most “general” strategy, a strategy that covers all specific exploration
strategies, like breadth-first, depth-first and other traversal strategies. If one can convince
oneselve that even this random strategies has good properties (like doing the job, and
terminating), then all other strategies, being included in the non-deterministic one, also
have those properties (and one does not have to re-consider the correctness or termination
question for all possible more concrete strategies). Of course, in practise, some strategies
and heuristic may be more efficient than others, but that’s an optimization question, not
one whether the strategy works at all.

Talking about optimization: who actually said that bread-first exploration is better than
some alternatives? Indeed, explicit state model checking, say for LTL, is often based on
depth-first search, the memory footprint of breadth-first search is mostly not managable.
Also with the code from Listing 1.5, if the step

T := T ∪ pre(T ) (1.21)
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is nothing else but an innler loop through pre(T ), like

forall s ∈ pre(T ).do T := T ∪ {s}

we have not gained much except that it’s not breadth-first instead of a random explo-
ration, and that’s of dubious value in itself. To make sense, the step from equation (1.21)
but be done efficiently, and that implies, not by interating through the predecessors indi-
vidually.

Indeed, it’s crucial for symbolic model checking not just “have” sets returned as result,
as sketched in the code of Listing 1.1, but all steps of the algorithms should be calculated
more or less efficently on those sets, and more often a step is to be executed, the higher the
pay-off if that steps is efficent. Certainly, the exploration steps for the temporal formulas
are done repeately, so in particular the calculation of pre(T ) should be effcient. Likewise,
checking for equality is needed for finding out f the desired has been reached, and union
T ∪pre(T ) will be needed in the inner loops of the algorithm. In the next section we cover
how that can be achieved. It will be based on a propositional encoding, conceptually
working with (a particular representation of) boolean functions, known as binary decision
diagrams, BDDs. The BDDs will be a particular form of binary DAGs, but to connect
them to the algorithms, it’s more conventent not explain the encoding directly in terms of
the BDDS, but rather in propositional formulas.

Now that we have explained in some depth the nature of the exploration for ∃♦ as solving
a (pre-)fixpoint inequation in an iterative manner, we give the correponding characteriza-
tions for ∃ U and ∃�. The until-case is a slight generalization of the “eventually” case.
The case for ∃� is dual insofar it is defined as greatest fixpoint, and consequently, the
iteration does not work by enlarging a set until stabilization, but dually be making it
smaller step by step, until stabilization.

1. sat(>) = S.
2. sat(p) = {s ∈ S | p ∈ V (s), for any p ∈ P}.
3. sat(Φ1 ∧ Φ2) = sat(Φ1) ∩ sat(Φ2).
4. sat(¬Φ) = S \ sat(Φ).
5. sat(∃© Φ) = {s ∈ S | ∃s′.s −→ s′ ∧ s′ ∈ sat(Φ)}
6. sat(∃(Φ1 U Φ2)) is the smallest subset T of S such that

a) sat(Φ2) ⊆ T and
b) s ∈ sat(Φ1) and ∃s′ ∈ T.s −→ s′ implies s ∈ T .

7. sat(∃�Φ) is the largest subset T of S such that
a) T ⊆ sat(Φ) and
b) s ∈ T implies ∃s′ ∈ T.s′ −→ s.

Figure 1.6: Characterization of CTL operators

1 T := sat(Φ2) ;
2 while {s ∈ sat(Φ1) \ T | post(s) ∩ T 6= ∅} 6= ∅ do
3 let s ∈ {s ∈ sat(Φ1) \ T | post(s) ∩ T 6= ∅} ;
4 T := T ∪ {s} ;
5 od ;
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6 return T ;

Listing 1.6: Fixpoint calculation for ∃Φ1 U Φ2

1 T := sat(Φ) ;
2 while {s ∈ T | post(s) ∩ T = ∅} 6= ∅ do
3 let s ∈ {s ∈ T | post(s) ∩ T = ∅} ;
4 T := T \ {s} ;
5 od ;
6 return T ;

Listing 1.7: Fixpoint calculation for ∃�Φ

1.4 Symbolic model checking

This section will show how the previous approach can be “encoded” or “represented” in a
way that leads to an efficient implementation. The encoding will ultimately “binary”, i.e.,
by bits. That this is possible should be clear, since we are dealing with a finite problem,
the transition system has finitely many states, we are checking propositinal formulas, and
also there are finitely many sets if states sat, the algorithms uses. With everything being
finite, it’s clear that one can represent it by bits. With everything finite, it uses a finite
amount of memory when implemented. But there’s more to it than that the problem is
finite and when implemented on some computer, everything is ultimately bits and bytes
anyway.

We look more systematically at how the nececcary encodings and operations on that can
be encoded or represented. And for that we start by introducing a particular form of
boolean functions, called switching functions.

1.4.1 Switching functions

The symbolic approach here makes heavy use of boolean functions, representing the tran-
sition system and the model checking algorithm operates on boolean function, and the
ultimate data structures, the BDDs, are som particular representation for boolean func-
tions. This section here fixes a few definitions and notations needed later.

As for boolean values, we use 0 and 1 (and not ⊥ and ⊥, as we did in connection with
logics (but it’s notation only anyway). Boolean functions are functions of type {0, 1}n →
{0, 1}. For later developments, it’s more handy (and more conventional) to identify the
function arguments not by their position, but by name, i.e., th fuctions are seen as of type
Var → {0, 1}, where Var is a finite set of variables, typically z1, z2, . . . etc., or similar.
Let’s call those function (boolean) evaluation functions, with typical element η, and write
Eval(z1, . . . , zm) for evaluation functions over the set {z1, . . . , zm}, i.e.

Eval(Var) = Var → {0, 1} . (1.22)

What we call evaluation function here is basically a fixed-size bit-vector, only that it’s
addressed by names of variables (not offsets from its start, so to say). For a concrete
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such vector with values b1 . . . bm, we use the notation [z1 = b1, . . . , zm = bm]. We may
abbreviate that as [~z = ~b] (or even ~b...)

A central role play also a particular form of boolean functions, called switching functions.
Those are boolean-values function over evaluation functions.

Definition 1.4.1 (Switching function). A switching function for Var = {z1, z2, . . . , zm}
is a function

f : Eval(Var)→ {0, 1} = (Var → {0, 1})→ {0, 1} . (1.23)

The special case Var = ∅ is allowed. In this case, the switching functions for the empty
set are the constants 0 or 1

The terminology of “switching functions” is perhaps a bit peculiar, perhaps peculiar for
BDDs or bit-valued functions in the tradition of Shannon. As said, nn evaluation function
is nothing else than a bit-vector (where variables are used as name for the different slots)
and a switching function is a set of such bit vectors (or a predicate over such vectors).

In a way, we have encountered evaluation functions and switching functions already, though
we did not use the terminology (as it’s not common to speak of switching functions there).
For propositional logic, formulas were interpreted over the domain of boolean values B,
but that’s of course the same as the set {0, 1} of bits. Propositional formulas contain
propositional variables, where we used p, q, etc., back then, where here we write zi and
similar for the same thing. A propositional formula ϕ, containing some variables, is
interpreted as the set of all variable assignments to the involved propositional variables,
that make the formula true. The standard notation for that is

σ |= ϕ , (1.24)

the assignment σ satisfies ϕ; we also called σ amodel of ϕ. Alternatively (but equivalently),
we said, the semantics of ϕ is the set of a variables assignemnts that satisfies it, i.e.

[[ϕ]] = {σ | σ |= ϕ} .

The variable assignments σ are nothing else than the evalution functions (here denoted
by η) and [[ϕ]] is nothing else than what we call here switching functions.

So, a switching function as defined in equation (1.23) represents the semantics of boolean
formula or the solution set of a boolean sat-constraint etc. It’s an explicit representation of
the solutions, i.e., it’s not a formula constructed from a given grammar (with a particular
set of operators). The representation is also in the form of bit-vectors, which is promising
with respect of efficency. It’s also “standardized”: With the variables fixed, each solution
set of a formula is represented by one switching function, representing the semantics of the
formula. Syntactic, formulaic representation are not unique. A semantics of a particular
formula can be expressed in infinitely many different ways.

Switching functions (perhaps realized with bit-sequences) sounds like a decent route to
implement propositional formulas. As fine as it sounds, one thing such a representation
is not: compact. An array of bit-vectors is basically nothing else than a truth table
representation.
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The BDDs that are central for this section is nothing else than a better, on average more
compact representation for boolean functions, based on trees. Compactness is an impor-
tant criterion for choosing a representation, but it’s not the only one. Data is not just
stored, it’s also accessed, worked with and changed. For determining if a variable assign-
ment satisfies a formula, as in equation (1.24) a tabular representation may be fast, but
we need other operations as well, also when using the representations for model checking,
here CTL model checking, as in one of the different flavors of the core algorithm from
earlier. The operations we need should be at least on average be executable efficiently.

Another positive property when choosing a representation is uniqueness of representation.
Those unique representations are sometimes called canonical forms. Some also call them
/normal forms/ in some fields, though in our context, being a normal form does not imply
unqiueness. For instance, conjunctive normal forms and its dual disjunctive normal forms,
and others, are not unique. They still are some standard representation, and can be used
as basis for a genuinely canonical forms, then e.g. called canonical conjunctive normal
form.

Often, having a canonical representation can be a very good thing, especially when none
needs to comparing the elements one implements. For instance, if one has a truly canonical
representation of propositional formulas, one can check that they are equivalent by check-
ing if their representation is identical. That’s typically faster to establish than checking
for equivalence, which basically means that the two formulas imply each other.

But working with canical (or normal) forms can also be a “burden”. Often one operates on
the data, here “formulas” or representations of switching functions. It’s not generally the
case, that the combination of two canonical forms is again canonical. Also other operations,
one needs to perform on the data may not preserve canonicity (or normal-ity).

A common and prominent form of CTL model checking is based on so-called BDDs, binary
decision diagrams. As tree-like data structure, the representation is generally much more
compact than a tabular form of the switching functions. Additional conditions on top
of the BDDs make assure that the data structure will be a canonical representation of
boolean functions. Finally, it turns out that the operations we need to do on the boolean
functions can be done pretty painlessly.

We have talked a bit vaguely about “operations” we will need to do for model checking, but
which are those? We can consult for instance the simple recursive formulation of the model
checking algorithm from Listing 1.2. Model checking works by calculating the sat(Φ) in a
fashion working bottom-up through the formula in question. Since the sets sat(_) of states
are encoded propositionally, (“symbolically”) (see Section 1.4.2), ultimately by BDDs, the
code shows what needs to be calculated on BDDs. Based on the reduced syntax of CTL,
and besides the base cases of > and the propositival variables, it’s conjunction, negation,
the next operator, and the fixpoint calculations for ∃� and ∃ U .

Before we come to some technical definitions, let’s wrap up and summarize points about
switching functions from Definition 1.4.1. The concept can be seen as a set of variable
assignments or evaluations (or a set of bit-vectors). It can also be seen as representing
propositional formulas or propositional constraintsl. A boolean formula represents a set
of valuations as in equation (1.24), but one can also turn it upside down: a switching
function represents as set of different but equivalent propositional formulas.
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Boolean operators for switching functions

Boolean operators like ∨, ∧ and the other construct larger formulas from smaller ones.
The operators have their corresponding semantical counter-parts for switching functions.
Their definition is straightforward, it’s kind of like defining truth tables but using the
more fanciful definitions based on functions over functions.

Let’s cover the base cases of propositional formulas first, propositional variables and the
constants 0 and 1.

Given an evaluation or bit-vector from Var → {0, 1}, a projection on some variable z ∈ V ar
pick that variable’s value in the evalution. A projection function onto a variable zi, written
projzi

, is of type (Var → {0, 1})→ {0, 1}, i.e., it’s a switching function.

In the view if switching function as a set of solutions to a propositional constraint, a
projection function focuses on one variable one. The outcome depends on the value of
that variable one, the value of all others play no role. That means, the switching function
projz conresponds to the atomic boolean formula or constraint z. I.e., [[z]] = projz. Often
one writes just z for the projection. Similarly, for the two constant switching functions,
one that maps all variable assignments to 0 and the other all to 1, one simply write 0 and
1.

Let’s show, as example for composing switching functions, the definition for disjunction.for
composing switching functions

Note that the switching functions are defined over a set of variables. When combining
two switching functions, one has to make a decision, if one defines it only for functions
over the same set of variable, or if one is more relaxed and don’t insist on that. It’s not
a big difference either way. If one is strict, one would simply need a way to extend the
domain of a function to operate on a larger set of variables. This way, before combining
two functions, one would extend both, if needed, to operate on the common, joint set of
variables.

The definition is is the more relaxed one and allows to combine switching functions with
different domains. But as said, it’s not a crucial choice.

Let’s consider two switching functions f1 and f2, over the respective variable domains

{z1, . . . zn, . . . , zm} and {zn, . . . zm, . . . , zk}

with 0 ≤ n ≤ m ≤ k. In other words, the two function have the variables zn, . . . , zm in
common, the variables z1, . . . , zn−1 resp zm+1, . . . , zk are exclusive for f1 resp. f2. The
switching function over the combined set {z1, . . . , zk} representing the disjunction is given
as

(f1 ∨ f2)([z1 = b1, . . . , zk = bk]) =
max(f1([z1 = b1, . . . , zm = bm]), f2([zn = bn, . . . , zk = bk]))

(1.25)

max represents the disjunction of bits (assuming that 1 is larger than 0 . . . ). Each function
f1 and f2 takes only the variables in its domain into account, of course. The outcome of
f1 only depends on the values chosen for z1, . . . , zm, the other variables are irrelevant. will
define the related notion of essential variables a little further down below in Definition
1.4.3.
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Cofactors and Shannon expansion

Next some other operations on switching function that help explaining how to encode
the data structures for the algorithm and also BDDs later. We start with cofactors and
the related notion of Shannon expansion. Note in passing, the master thesis of Claude
Shannon, the inventor or discoverer of information theory is sometimes called “the most
important Master thesis ever written”2 (I did not find the exact origin of that quote),
and the thesis was concerned with boolean logics and electric circuits (not yet with what
became known as information theory, actually Shannon coined the term).

Back to the issues at hand. When viewed as constraints, the positive resp. negative
cofactor of a switching function wrt. a variable simply means setting the variable to 1
resp. to 0. That can be captured as follows.

Definition 1.4.2 (Cofactors). Assume a variable set Var = {z, y1, . . . , ym} and let f :
(Var → {0, 1}) → {0, 1} be a switching function over it. The positive cofactor of f for
variable z, written f |z=1 is the switching function given by

f |z=1 (b1, . . . , bm) = f(1, b1, . . . , bm) (1.26)

The negative cofactor of f for z, written f |z=0 is defined analogously. If f is a switching
function for {z1, . . . , zk, y1, . . . , ym}, then we write f |z1=b1,...,zk=bk

for the iterated cofactor
of f , given by

f |z1=b1,...,zk=bk
= (. . . (f |z=b1) . . .) |zk=bk

(1.27)

Switching functions are defined over a given set of variables, one could call it their domain.
It’s similar to boolean formulas. Often, for formulas, the set of variables is not explicitly
given, it’s just all for variables occurring in the formula. Sometimes it’s useful to make it
more explicit also there, for instance, considering a formula like x1 ∧ x2 to be a formula
over, say x1, x2, and x3, even though x3 is not mentioned. It just means, to be true, x1
and x2 have to be true, but the value of x3 is arbitrary, it does not affect the outcome.

If course, even if a variable is mentioned in a formula, it does not mean its value has an
influence on the outcome. For instance, taking the proposition x1 ∧ x2 ∧ (x3 ∨ ¬x3), the
variable x3 now occurs, but its value is still inessential.

Anyway, whether a value for a variables influences the outcome is the criteron for being
essential. That can use used to define essential variables for switching functions.

Definition 1.4.3 (Essential variable). A variable z is essential for a switching function,
if

f |z=1 6= f |z=0 . (1.28)

Next the important concept of Shannon expansion. Actually it’s also known as Boolean
expansion, i.e., it’s approximately a century older than Shannon’s works.

2See https://dspace.mit.edu/handle/1721.1/11173 or https://www.cs.virginia.edu/
~evans/greatworks/shannon38.pdf. Coincidentally, Shannon’s Master thesis [3] also uses the
term “symbolic analysis” in its title “A Symbolic Analysis of Relay and Switching Circuits”.

https://dspace.mit.edu/handle/1721.1/11173
https://www.cs.virginia.edu/~evans/greatworks/shannon38.pdf
https://www.cs.virginia.edu/~evans/greatworks/shannon38.pdf
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Lemma 1.4.4 (Shannon expansion). Let f be a switching function for Var . Then

f = (¬z ∧ f |z=1) ∨ (z ∧ f |z=0) (1.29)

for all variables z from Var .

Figure 1.7

Figure 1.7: Binary decision tree for z1 ∧ (¬z2 ∨ z3)

Definition 1.4.5 (Existential quantification).

∃z.f = f |z=1 ∨f |z=0 (1.30)

1.4.2 Encoding transition systems by switching functions

The CTL model checking algorithm does its job by exploring the transition system by
calculating sat(_) of the subformulas of the given CTL formula. Next we show how the
transition system and the sat-formulas can be represented by switching functions, i.e. that
this data can be propositionally represented.

That this is possible, in principle, should be obvious, as mentioned. To find such an
propositional encoding just means ultimately represents them by “bits” and bitectors.
The transition system is finite, and all possible subsets of states are finite, as well, so
that certainly is possible. But let’s still review how it can be achieved systematically. By
systematically, we mean “symbolically”, using boolean formulas, propositional variables,
etc.

Let’s start by reminding us about transition systems. A transition system is of the form

T = (S, (Act),−→, I,P, L)

and we need to find an systematic way to encode it. In the incoding, we ignore the
(transition) labels or actions Act) as irrelevant.
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Encoding the states and sets of states

That’s easy, we basically need enough bits so that there are enough different bit-patterns
to have one for each state. For the states s ∈ S, one uses propositional variables x1, . . . , xn,
each state represented by some concrete evaluation [x1 = b1, . . . , xn = bn] : {x1, . . . , xn} →
{0, 1}, so the encoding of a state s is given by a bit-vector enc(s) = b1, . . . , bn. Should the
transition system not have exactly 2n for some n is not a problem, the are simply unused
bit-patterns. We identify in the following the set of states with the bit patterns, i.e. we
assume that

S = ~x→ {0, 1} .

We need to represents sets of states as well, i.e., sets B ⊆ S. That’s pretty simple,
and based on the fact that the set of all subsets of a set, say subsets of S is isorphic
to all functions for S to {0, 1} (or B or any 2-element set). I.e. 2S is the “same” as
S → {0, 1}. A subset B ⊆ S is equivalently represented by a function, conventionally call
its characteristic function and written χB. For all elements of S, the function gives back
1 if the element is in B, and 0 otherwise.

χB : (Eval(~x)→ {0, 1} = (~x→ {0, 1})→ {0, 1} = S → {0, 1} .

Being a finite function, it can also be seen as a bit-vector implementation of B, with the
vector of length | S |.

The transition function

What works for sets of states, works analogously for the transition relation −→⊆ S × S,
i.e., working with the characteristic function. We represent that as switching function,
i.e., a {0, 1}-valued function over variables. To represent the tuple space S×S, one needs
to “duplicate” (the encoding of) S. We refer, when describing the encoding, to the states
by variables xi, and to get another copy of it, we simply assume a second, disjoint set
of variables written x′1, . . . , x′n, and taking the original variables x to refer to the source
state of a transition and the primed versions y′ as the target. The corresponding switching
function is then of type Eval(~x, ~x′) = (~x, ~x′) → {0, 1}. We write ∆ for functions of that
type (not χ−→, using the general notation for characteristic functions).

∆ : ((~x, ~x′)→ {0, 1})→ {0, 1}, ∆(s1, s2[~x′ ← ~x]) =
{

1 if s1 −→ s2
0 else . (1.31)

In equation (1.31), the s2[~x′ ← ~x] represents state s2 with the variables ~x renamed to or
substituted by their primed counter-parts ~x′. Actually, we have not made an argument
that we can actually do that. We are using variables and symbols, and of course one
can substitute variables in a formula. But ultimately the formulaic writing refers to
switching function. For instance, when mentioning a variable x, we are actually meaning
a corresponding projection function. Section 1.4.1 covered all kinds of switching functions
and operations on them, including the mentioned projection functions and how to combine
them with boolean operators (which will be used later). But we have not covered how to
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interpret renaming like s2[~x′ ← ~x] as operation on switching function. We leave that bit
out in the presentation, it can be straightforwardly done.

Indeed if one has convinced oneself that all the relevant notations and concepts have
their counterpart in the chosen representation, the switching functions, one can work
formulaically with variables, and renaming of variables, boolean formulas, etc. In the
context of LTL, we have talked about products of automata resp. transition systems (let’s
not make a fundamental discinction here in the discussion). We covered two simple cases,
the synchronous and the asynchronous production or parallel composition. Imagine one is
modelling a system, consisting of a number number transitions systems running in parallel,
either synchronously or asychronously depending on the kind of system. Then the CTL
model checking is done of the overall combined transition system.

If now each of the processes is encoded in the described way as switching function, then
one could figure out if it’s possible to define paralell composition directly on switching
functions. And it’s possible, but we omit also that here.

1.4.3 Exploring the encoding for model checking

Now with the transition system safely encoded, we need to show how the algorithm(s)
cover earlier can be made working on those encodings. We have seen different versions of
the algorithm(s), some more concrete than others. The overall design does not change,
the algorithms works bottom-up through the structure of the given CTL formula. That
has nothing to do with whatever encoding we have chosen, here switching functions, but it
could be anything, so we don’t have to change anything there. So the recursive algorithmic
skeleton from Listing 1.2 can remain unchanged.

Let’s then discuss the individual cases of the algo from Listing 1.2 one by one. For the
temporal cases, see in particular also the corresponding cases from the characterization
from Figure 1.6.

The first four cases in the switch statement are covered. In particular, ∧ and ¬ can be
interpreted on switching functions. The case for ∃ © A requires to encode the pre-set
calculation. With the encoding of the transition relation −→ and with the encoding of
existential quantification and the renaming operation, the set {s ∈ S | ∃s′.s −→ s′ ∧ s′ ∈
sat(Φ)} can be straightforwardly encoded as

∃~x′.∆(~x, ~x′)︸ ︷︷ ︸
s∈pre(s′)

∧χA[~x′ ← ~x]︸ ︷︷ ︸
s′∈A

(1.32)

Insteat of the U -case, let’s discuss here how to represent ∃♦, as we elaborated the fixpoint
iteration on that slightly simpler special case. So, how to encode ∃♦? Let’s look at the
formulation from Listing 1.5, the breadth-first backward exploration.

It’s an iterative calculation of the predecessor sets. Of course the iteration itself needs
not to be “encoded”, it’s still a loop. What needs to be encoded is the start set and the
iterative step in each round from Tj to Tj+1 = Tj ∪ pre(Tj).

The start set T0 = A can be represented by a switching function f0 = χA. Each Tj will
likewise be representd by a switching function fj = χTj . And with ♦ being basically
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an iterated version of ©, the iteration step is basically what we have covered for ∃© in
equation (1.32):

∃~x′.∆(~x, ~x′)︸ ︷︷ ︸
s∈pre(s′)

∧ fj [~x′ ← ~x]︸ ︷︷ ︸
s′∈Tj

(1.33)

The treatment of th until-operator is not much harder to encode (see its characterization
from Figure 1.6). The resulting code is shown in Listing 1.8.

1 f0(~x) := χA1 (~x) ;
2 j := 0 ;
3 repeat
4 fj+1(~x) := fj+1(~x) ∨ (χA2 (~x) ∧ ∃~x′.∆(~x, ~x′) ∧ fj(~x′)) ;
5 until fj(~x) = fj−1(~x) ;
6 return fj(~x) .

Listing 1.8: Symbolic exploration sat(∃(A1 U A2))

Finally, Listing 1.9 shows how to do the case for ∃�. The innovation here is that the
greates fixpoint is calculated: in each iteration round, the current approximation gets
smaller not larger, using ∧, not ∨.

1 f0(~x) := χA(~x) ;
2 j := 0 ;
3 repeat
4 fj+1(~x) := fj+1(~x) ∧ ∃~x′.∆(~x, ~x′) ∧ fj(~x′)) ;
5 until fj(~x) = fj−1(~x) ;
6 return fj(~x) .

Listing 1.9: Symbolic exploration sat(∃�A)
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