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Computation tree logic

CTL: Computation tree logic [2] [3]

prominent branching time logic

branching vs. linear time

remember LTL: models are paths, here trees

we could write

s E Ve

iff 7= for all path 7 starting in s

(1)

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

43



Unfolding a transition

Transition system
start. *@—’

& o

system to a tree

Unfolding

'
e N
I / : \
/ss\ T /85\
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Linear vs. branching

IN5110 -
Verification and

specification of
a(b+c) ab+ac parallel systems

Martin Steffen

start —>

start — Introduction
o a a Computation tree
logic
) CTL model
¢ .
/ \ checking
(o] (@] O O Fixpoints and

characterization of sat

Explicit vs. symbolic
Symbolic model
checking

Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

45



Vending machine

a(b+c)

start —»{
coin?
coffee! teal

example

ab+ac

start —>/
coin?, coin?
coffec! teal
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Example: oo

VOV green
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Example: mutex and progress

VO (=erity V —erits)

(VOVO erity) A (YVOVO erita)
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Response
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Response

VO (request — VOresponse)
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Restart

LTL?
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Restart

LTL?

VYOI start
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Derived syntax
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Semantics: |=

s Ep iff peV(s)

e iff notskE®

S’:(I)l/\q)g iff s)z@lands):<1>2

s = Je iff 7w @ for some 7 € paths(s)
s =V iff @ forall m € paths(s)

T = QO iff ™E®
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Semantics for transition systems
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CTL semantics, example 1

Vblack

J0black
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CTL semantics, example 2

VO black

V/(grayUblack)
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CTL semantics, example 3

3O VOblack

VO3 O black
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Semantics: Sat-set

The satisfaction set Sat(®) is the set of states in a transition system TS
that satisfies ®.

A transition system satisfies ®, written TS = &, iff all the initial states of
the TS satisfies ®: | C Sat(®), where | is the set of initial states in TS.
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Comparison with LTL

CTL and LTL are not equally expressive, but neither is more expressive
than the other.

Theorem 6.18 [1]

Let ® be a CTL formula, and ¢ the LTL formula that is obtained by
eliminating all path quantifiers in ®. Then:

® = ¢ or there exists no LTL formula that is equivalent to .
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Intro

e focus on ENF (30O, 3 U, 30)

® recursive over structure of formula

® calculate sat(®)

¢ check I C sat(®P)

e “global” model checking

® bottom-up traversal of the parse tree of ®
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Normal forms
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Model checking CTL

The task is to check whether a transition system TS satisifies a CTL

formula ®. This is the case when all the initial states / of the TS satisfy ®.

Basic Algorithm

© The set Sat(®P) of all states satisfying ® is computed recursively
(" from inside and out")

@ TS |= o iff | C Sat(d)

This can achieved by a bottom-up traversal of the CTL formula’s parse
tree.
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Model checking: example 1

@“‘

VO dead?

Sat(V{dead) = {dead}

The initial state born ¢ Sat(V{dead),
so TS £ VOdead
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Model checking: example 2

& =3O hungry A 3(eat U —dead)

Sat(3 O hungry) =
{born, sleep}

° Sat(®) = {born, sleep}

Sat(3(eatU—dead)) = {born,
hungry, eat, content, sleep}

Sat(—dead) = {born,
hungry, eat, content, sleep}

Sat(dead) = {dead}
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Model checking: example 2

Sat(®) = {born, sleep}

Because the only initial state is in
the formula’s satisfaction set, the

transition system satisfies the
formula.
ad

o
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© 0 N OO W N =

Basic algorithm

input: finite transition system 7 and &
output: T =&

for all ¢<|®| do
for all W€ sub(®) with | ¥ |=14 do
compute sat(¥) from sat(¥’) (* max. genuine ¥ C sat(¥) )
od
od
return I C sat(®)
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Recursive algorithm

input: finite transition system 7 and &
output: T =&

switch @
T => return S
P => return {s€S|peV(s)}
D1 A Py => return sat(P1) N sat(P2)
30 => return {s €S| post(s) N sat(P)}
(P U D) = “lfp for 3T
0P = ‘‘gfp for IO"!
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o OB W N

Backward calculation of 3¢

T := sat(B);
while pre(T)\T #0 do
let sepre(T)\T ;

T := TU{s};
od;
return T;

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-30



Lo S B N O N

Massaging the algo

T := sat(B);

while pre(T)\T #0 do
let sepre(T)\T ;
T := TU{s};

od;

return T;

loop body
T := T U {pick(pre(T))}

Loop condition

T D T U{pick(pre(T))} or T # T U {pick(pre(T))} .
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g A W N

Massaging the algo

T := sat(A);

while T # T U {pick(pre(T))}
T := T U pick(pre(T));

od;

return T;

loop body
T := T U {pick(pre(T))}

Loop condition

T DT UA{pick(pre(T))} or T # T U{pick(pre(T))} .
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Iteration

exit condition

T =T U{pick(pre(T))} .

Ty, = A
Tjt1 = F(Tj) where F(X) = picky(pre(X))UX

Stabilization

A=T0CT1CTQC...CTkZTk+1=Tk+2...
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Characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F(T) does not make it larger.
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Characterization

Goal (a)

Find me a set T such that (a) it contains A and such that

(b) F(T) does not make it larger.

Goal (a)
r 2
r 2

A
F(T)

where F(X) = picky(pre(X)) U X
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Characterization

Goal (a) IN5110 —
Verification and
Find me a set T such that (a) it contains A and such that specification of

(b) F(T') does not make it larger.

Goal (a)

ORIV,

A
F(T)

F(T)

where  F(X) = picky(pre(X)) U X

where

parallel systems
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Fixpoint

A=TyochhcTyC...CTy=Tk11 =Tit2...

Fixpoint

Tyy1 = F(Ty) =Ty

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-34



(Pre-)Fixpoint

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F(T') does not make it larger.

T}, solves the following

fixpoint

F(X)=X
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(Pre-)Fixpoint

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F(T') does not make it larger.

T}, solves the following

fixpoint pre-fixpoint

F(X)=X F(X)C X
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That was only half of the characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F(T) does not make it larger.

A:T0CT1CTQC...CTk:Tk+1:Tk+2...
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That was only half of the characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F(T) does not make it larger.

A:T()CTlCTQC...CTk:Tk+1:Tk+2...

Goal (b)
Find the smallest set T satisfying goal (a).
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Smallest (pre-)fixpoint

® interested in the smallest (pre)-fixpoint

fixpoint pre-fixpoint
FX)=X FX)CX
Facts
1. unique

2. smallest fixpoint = smallest pre-fixpoint

3. T}, in the iteration is actually that Ifp
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L N N

Explicit-state vs. symbolic model checking

The code again:

T = sat(A);

while T # T U {pick(pre(T))}
T := T U pick(pre(T));

od;

return T;

Explicit-state

exploring states individually

symbolic

exploring sets of states (sat)
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g oA W N

Breadth-first?

T := sat(B);

while T #TUpre(T) do
T := TUpre(T)

od;

return T;

- likewise: fix-point

But is it actually better?
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g A W N

Breadth-first?

T := sat(B);

while T # T Upre(T) do
T := TUpre(T)

od;

return T;

- likewise: fix-point

But is it actually better?

Not really

if the exploration adds pre(T)
states individually.
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g A W N

Breadth-first?

IN5110 -
Verification and
T := sat(B) ; specification of
while T 75 TU pre(T) do parallel systems
dT =TU pre(T) Martin Steffen
odad;

return T; Introduction

Computation tree

- likewise: fix-point logic
CTL rpodel
But is it actually better? checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

NOt rea"y better Symbolic model
checkin

if the exploration adds pre(T') if one can calculate pre(T) all s e

states individually. at once! e

Binary decision
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Working with BDDs



Symbolic model checking
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First:

characterize all operators

oSG s W

sat(T) =

sat(p)—{8€S|p€V( ), for any p € P}.

sat(Py A\ Pg) = sat(Py) N sat(Ps).
(
(

. sat(—~®) = S\ sat(P).
csat(3OP)={se S| I.s = NS € sat(P)}
. sat(3(Py U Pq)) is the smallest subset T' of S

such that

6.1 sat(®2) C T and
6.2 s € sat(Py) and Is' € T.s — s' implies s € T.

. sat(30P) is the largest subset T' of S such that

7.1 T C sat(P) and
7.2 s €T implies 3s' € T.s' — s.
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Example 3(T U (a =

&) A (a # b))
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Example 3(T U (a =c¢) A (a # b))
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Symbolic?

“Symbolic Model Checking: 10%° States and be-
yond” [1]

® explicit state vs. symbolic

® normal forms
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Switching functions

“bit-vectors”

FEval(Var) = Var — {0,1} .

Switching function

f: Bval(Var) — {0,1} = (Var — {0,1}) — {0,1}

cf. propositional semantics [¢]
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Boolean operators on switching functions

e cf. truth tables

* all boolean operators and constants have (of course) an
analogue on switching functions

® syntax vs. semantics

* canonical (and/or normal) forms

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-46



Operators on switching functions (2)
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Operators on switching functions (2)
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Cofactors

Definition (Cofactors)

Assume a variable set Var = {z,y1,...,ym} and let
f:(Var — {0,1}) — {0,1} be a switching function over it.
The positive cofactor of f for variable z, written f |,—; is
the switching function given by

fle=1 (b1, . bm) = f(1,b1,...,bm) (2)

The negative cofactor of f for z, written f |,—¢ is defined
analogously. If f is a switching function for

{1, 2k, Y1, -, Ym}, then we write f |, —p, . —p, for
the iterated cofactor of f, given by

f ’21:b17~~~7zk:bk: ( . (f ’Z=b1) .- ) ’Zk:bk (3)
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Essential variables

Definition (Essential variable)

A variable z is essential for a switching function, if

fla=17 f |2=0
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Shannon expansion

Lemma (Shannon expansion)

Let f be a switching function for Var. Then
f=0E2Af =) V(A S =0)

for all variables z from Var.
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Binary decision

tree 21 A (-2 V 23)
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Propositional encoding

T =(S,—,1,P,L)

Task: encode by boolean formulas / switching functions

¢ all ingredients of T
° sat(_)

® realise operations during the mc-algo by operations on
the encodings, in particular pre
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Characteristic function

Equivalent (isomorphic) views

*25=5 10,1} (or S — B)

e BCS

XB
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Encoding states and subsets of states

® that this is possible, should be obvious
® use propositional variables x1,...,z,
® padding: assume S = Eval(Z) = {z1,...,xn} — {0,1}

Sets of states B C S
xB : (Fval(Z) — {0,1} = (¥ — {0,1}) — {0,1}

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

454



Encoding the transition relation —

—-C xS

® make a “copy” of #: different variables 7’

® renaming operation on switching functions [y < z]

Encode — as A

A:((#,2) — {0,1}) — {0,1},

1 if81—>82

- N
A(sy, sol@ + Z]) = 0 else
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Remember charaterization and the fixpoints

1' Sat(T) Verli;\ilcsaltilt()]n_and
specification of
2. sat(p) = {8 €S| peV(s), forany p € P}. parallel systems
3. sat(Py A P2) = sat(P1) N sat(Pa). Wiartin Steffen
4. Sat(—' ) S \ sa,t( ) Introduction
5 5at(3QP)={se€ S| Is.s > N5 € sat(P)} g on tree
6. sat(3(Py U Pg)) is the smallest subset T' of S GTL mode
such that Fixpaints and
6.1 sat(®3) C T and S ——
6.2 s € sat(Py) and Is' € T.s — s' implies s € T. Syl it
checking
7. sat(30P) is the largest subset T of S such that Switing factions
71 T g sat(@) and B;‘;;ll;gdecision
7.2 s €T implies s’ € T.s' — s. diagrams
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3 () A means, calculating pre

pre-calulation as switching function

37 A(Z,7) AxAlE — 7]
———

sepre(s’)

—_—
s'eA
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3¢: basically iteration over pre

One step: 7)1 = pre(Tj)

3. A&, 7)) A (7« 4] (6)
—_—— —, —
s€pre(s’) s'eT;
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o OB W N

3 U: not much harder...

Jo(@) = xa,(@);
j = 0;
repeat
fir1(@) = fi01(@) V (x4, (&) AT A T) A f5(2));

until f;(Z) = fj—1(Z);
return  f;(&).
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finally dC]

fo@ = xa@);
j = 0;
repeat
Fi+1(@) = fj41(&) AT AE, &) A £5(@));
until f;(Z) = fj-1(2);
return  f;(Z).

Largest fixpoint

® sets get smaller in the iteration
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How to efficiently implement all that?

® switching functions
f: Eval(Var) — {0,1} = (Var — {0,1}) — {0, 1}

® + operations thereon

® binary decision trees

FARAY (—|Z2 V 2’3)

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams

Working with BDDs

4-62



Issues
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From BDTs to (RO)BDDs

IN5110 -
. Verificati d
® addressing both problems specification of
) L. i parallel systems
¢ reduced ordered binary decision diagrams P
artin effen
e often "BDDs" just mean ROBDDs
Introduction
® two general Ideas Computation tree
logic
Two general ideas CTL model
checking

to addess both mentioned problems. o Pt

Explicit vs. symbolic

Canonicity: fix an order on the variables Symbolic model
R , . checking
Size: don't represent duplicate parts of the graph e

Encoding

more than once

Binary decision
diagrams
Working with BDDs
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As first easy step

BDT to OBDD

* have only 2 terminal nodes (for 0 and for 1), no
duplicate leaves (BDD), and

¢ fix an order on the var's (OBDD)
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Example OBDD

a(=bVe)

with order

a<b<ec
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Reduced OBBDs

Reduce

Uniqueness

no 2 nodes for the same
variable have the
“same” high- and
low-children = merge
isomorphic subgraphs

non-redundent tests

no variable node has
identical high and low
children
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Merge isomorphic subgraphs

al(—bVec)

with order

a<b<ec
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Remove reduncancy

al(—bVec)

with order

a<b<ece

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams

Working with BDDs



ROBDDs as canonical representation
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ROBDDs as canonical representation

Canonicity

For every boolean function f : (Var — {0,1}) — {0,1} and
a give variable ordering, there exists exactly one ROBDD
representing f

facts
equivalence checking satisfiability
linear time constant time
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But where is the catch?

Satisfiability
Isn't SAT NP-complete?
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Sensitivity to variable order

(a1 Ab1) v (a2 Ab2) v (a3 A b3)
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Sensitivity to variable order

different variable orders = different ROBBDs
crucial in practice to find a (in many cases) good order
finding the best: NP-hard

heuritics exists

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams

Working with BDDs



Representing boolean functions is not all

® canonical, often (but not always) compact
representation

® we also need to “work” with them

® remember the CTL model checking algorithms
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Boolean operators (Apply)

¢ boolean operators on (R)OBBDs

® recursively over the two OBDDs

* based on Shannon'’s (or Boole's) expansion
® preserve the order

¢ if working on ROBBs, re-reduce the result.
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Logical operations on OBDDs

Logical negation (—)

» Replace the value of each leaf node by its negation

All 16 logical operations can be applied on boolean functions using

the Apply algorithm.

Restriction of the variable x; to a constant b:

> flaeb(x, o xn) = fxi, 0, Xio1, by xiga, -

> f|x1: positive Shannon cofactor of f for x;
» {0 negative Shannon cofactor of f for x;

To compute the new OBDD:
» We traverse the tree in a depth-first manner

v

> All incoming edges to v, s.t. var(v) = x; should be redirected

to low(v) if b=0or high(v)if b=1
» Reduce the OBDD
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Apply

Shannon expansion:
> = (=xAflxeo) V(XA Flxet)
» Allows us to split a problem into two subproblems
Using the Apply algorithm to solve all 16 logical operations. Let
> o be a two-argument logical operation (and, or, xor etc.)
» f and ' be two boolean functions
» v and v/ be the OBDDs roots for f and £/
» var(v) = x and var(v') = X’
If both v and v/ are drains:
» fef =val(v)eval(Vv)
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Apply (cont’d)

If x = x':
» Recursively solve the two subproblems:
fof' =(=xA(flxco® o))V (xXA(Fflxc1®lxe1))
» The root of this new OBDD will be a new node w such that
» var(w) = x
> low(w) will be OBDD for (|xc0 ® f'|x0)
> high(w) will be OBDD for (f|xc1® f/|x1)

If x < x’ (x = x; and x’ = x; where i < j):
- e = (ax A (Flvco® )V (x A (Flect o )
» Similar for x > x’

Algorithm is polynomial with dynamic programming
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Boolean quantification

If f is a function, x is a variable, then

> 3x.f = (Flxeo) V (flxet)

> Vx.f = (Fleco) A (Flie1)
We need to compute the OBDD for both subproblems using the
Restrict algorithm:

> f|x—o: For each node v where var(v) = x

» Incoming edges are redirected to low(v)
» Remove node v

> f..1: For each node v where var(v) = x

» Incoming edges are redirected to high(v)
> Remove node v
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