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Computation tree logic

• CTL: Computation tree logic [2] [3]
• prominent branching time logic
• branching vs. linear time
• remember LTL: models are paths, here trees
• we could write
s |= ∀ϕ iff π |= ϕ for all path π starting in s (1)
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Unfolding a transition system to a tree

Transition system

s0start s1

s2s3

Unfolding
s0

s1

s2 s3

s3 s2 s3

s2 s3 s3 s2 s3
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Linear vs. branching

a(b+c)

start

a

b c

ab+ac

start

a

b

a

c
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Vending machine example

a(b+c)

start

coin?

coffee! tea!

ab+ac

start

coin?

coffee!

coin?

tea!
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Syntax

Φ ::= > | p | Φ1 ∧ Φ2 | ¬Φ | ∃ϕ | ∀ϕ state formulas
ϕ ::= ©Φ | Φ1 U Φ2 path formulas

Note: syntactic restriction.
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Example: ∞

∀�∀♦green
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Example: mutex and progress

∀�(¬crit1 ∨ ¬crit2)

(∀�∀♦crit1) ∧ (∀�∀♦crit2)
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Response
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Response

∀�(request → ∀♦response)
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Restart

LTL?
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Restart

∀�∃♦start

LTL?
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Derived syntax
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Semantics: |=

s |= p iff p ∈ V (s)
s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2
s |= ∃ϕ iff π |= ϕ for some π ∈ paths(s)
s |= ∀ϕ iff π |= ϕ for all π ∈ paths(s)

π |= ©Φ iff π1 |= Φ
π |= Φ1 U Φ2 iff ∃j ≥ 0.(πj |= Φ2 and ∀0 ≤ k < j.πk |= Φ1)
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Semantics for transition systems
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CTL semantics, example 1
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CTL semantics, example 2



IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-18

CTL semantics, example 3
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Semantics: Sat-set
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Comparison with LTL
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Intro

• focus on ENF (∃©, ∃ U , ∃�)
• recursive over structure of formula
• calculate sat(Φ)
• check I ⊆ sat(Φ)
• “global” model checking
• bottom-up traversal of the parse tree of Φ
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Normal forms

• state-formulas only
• remember LTL
• positive normal form
• interesting for us: existential NF

ENF

Φ ::= > | p | Φ1 ∧ Φ2 | ¬Φ
| ∃ © Φ | ∃Φ1 U Φ2 | ∃�Φ |
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Model checking CTL
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Model checking: example 1
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Model checking: example 2
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Model checking: example 2
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Basic algorithm

1 i n pu t : f i n i t e t r a n s i t i o n system T and Φ
2 output : T |= Φ
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 f o r a l l i ≤| Φ | do
5 f o r a l l Ψ ∈ sub(Φ) with | Ψ |= i do
6 compute sat(Ψ) from sat(Ψ′) (∗ max . genu ine Ψ′ ⊆ sat(Ψ) ∗)
7 od
8 od
9 r e t u r n I ⊆ sat(Φ)
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Recursive algorithm

1 i n pu t : f i n i t e t r a n s i t i o n system T and Φ
2 output : T |= Φ
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 sw i tch Φ
5 > => r e t u r n S
6 p => r e t u r n {s ∈ S | p ∈ V (s)}
7 Φ1 ∧ Φ2 => r e t u r n sat(Φ1) ∩ sat(Φ2)
8 ∃© Φ => r e t u r n {s ∈ S | post(s) ∩ sat(Φ)}
9 ∃(Φ1 U Φ2) => ``lfp f o r ∃ U ' '

10 ∃�Φ => ``gfp f o r ∃� ' '
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Backward calculation of ∃♦

1 T := sat(B) ;
2 wh i l e pre(T ) \ T 6= ∅ do
3 l e t s ∈ pre(T ) \ T ;
4 T := T ∪ {s} ;
5 od ;
6 r e t u r n T ;
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Massaging the algo

1 T := sat(B) ;
2 wh i l e pre(T ) \ T 6= ∅ do
3 l e t s ∈ pre(T ) \ T ;
4 T := T ∪ {s} ;
5 od ;
6 r e t u r n T ;

loop body
T := T ∪ {pick(pre(T ))}

Loop condition

T ⊃ T ∪ {pick(pre(T ))} or T 6= T ∪ {pick(pre(T ))} .
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Massaging the algo

1 T := sat(A) ;
2 wh i l e T 6= T ∪ {pick(pre(T ))}
3 T := T ∪ pick(pre(T )) ;
4 od ;
5 r e t u r n T ;

loop body
T := T ∪ {pick(pre(T ))}

Loop condition

T ⊃ T ∪ {pick(pre(T ))} or T 6= T ∪ {pick(pre(T ))} .
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Iteration

exit condition

T = T ∪ {pick(pre(T ))} .

T0 = A
Tj+1 = F (Tj) where F (X) = pick∅(pre(X)) ∪X

Stabilization

A = T0 ⊂ T1 ⊂ T2 ⊂ . . . ⊂ Tk = Tk+1 = Tk+2 . . .
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Characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F (T ) does not make it larger.
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Characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F (T ) does not make it larger.

Goal (a)

T ⊇ A
T ⊇ F (T ) where F (X) = pick∅(pre(X)) ∪X



IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-33

Characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F (T ) does not make it larger.

Goal (a)

T ⊇ A
T ⊇ F (T ) where F (X) = pick∅(pre(X)) ∪X

T ⊇ F ′(T ) where F ′(X) = pick∅(pre(X)) ∪X ∪A
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Fixpoint

A = T0 ⊂ T1 ⊂ T2 ⊂ . . . ⊂ Tk = Tk+1 = Tk+2 . . .

Fixpoint

Tk+1 = F (Tk) = Tk
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(Pre-)Fixpoint

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F (T ) does not make it larger.

Tk solves the following

fixpoint

F (X) = X
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4-35

(Pre-)Fixpoint

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F (T ) does not make it larger.

Tk solves the following

fixpoint

F (X) = X

pre-fixpoint

F (X) ⊆ X
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That was only half of the characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F (T ) does not make it larger.

A = T0 ⊂ T1 ⊂ T2 ⊂ . . . ⊂ Tk = Tk+1 = Tk+2 . . .
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4-36

That was only half of the characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F (T ) does not make it larger.

A = T0 ⊂ T1 ⊂ T2 ⊂ . . . ⊂ Tk = Tk+1 = Tk+2 . . .

Goal (b)

Find the smallest set T satisfying goal (a).
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Smallest (pre-)fixpoint

• interested in the smallest (pre)-fixpoint

fixpoint

F (X) = X

pre-fixpoint

F (X) ⊆ X

Facts

1. unique
2. smallest fixpoint = smallest pre-fixpoint
3. Tk in the iteration is actually that lfp
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Explicit-state vs. symbolic model checking

The code again:
1 T := sat(A) ;
2 wh i l e T 6= T ∪ {pick(pre(T ))}
3 T := T ∪ pick(pre(T )) ;
4 od ;
5 r e t u r n T ;

Explicit-state
exploring states individually

symbolic
exploring sets of states (sat)
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Breadth-first?

1 T := sat(B) ;
2 wh i l e T 6= T ∪ pre(T ) do
3 T := T ∪ pre(T )
4 od ;
5 r e t u r n T ;

- likewise: fix-point

But is it actually better?
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Breadth-first?

1 T := sat(B) ;
2 wh i l e T 6= T ∪ pre(T ) do
3 T := T ∪ pre(T )
4 od ;
5 r e t u r n T ;

- likewise: fix-point

But is it actually better?

Not really
if the exploration adds pre(T )
states individually.
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4-39

Breadth-first?

1 T := sat(B) ;
2 wh i l e T 6= T ∪ pre(T ) do
3 T := T ∪ pre(T )
4 od ;
5 r e t u r n T ;

- likewise: fix-point

But is it actually better?

Not really
if the exploration adds pre(T )
states individually.

better
if one can calculate pre(T ) all
at once!
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Symbolic model checking

key: efficient representation of

• transition system
• sets of states
• different operations on those sets, in particular
• symbolic exploration by efficent calculation of pre in a
set of state
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First: characterize all operators

1. sat(>) = S.
2. sat(p) = {s ∈ S | p ∈ V (s), for any p ∈ P}.
3. sat(Φ1 ∧ Φ2) = sat(Φ1) ∩ sat(Φ2).
4. sat(¬Φ) = S \ sat(Φ).
5. sat(∃©Φ) = {s ∈ S | ∃s′.s −→ s′ ∧ s′ ∈ sat(Φ)}
6. sat(∃(Φ1 U Φ2)) is the smallest subset T of S

such that
6.1 sat(Φ2) ⊆ T and
6.2 s ∈ sat(Φ1) and ∃s′ ∈ T.s −→ s′ implies s ∈ T .

7. sat(∃�Φ) is the largest subset T of S such that
7.1 T ⊆ sat(Φ) and
7.2 s ∈ T implies ∃s′ ∈ T.s′ −→ s.
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Example ∃(> U (a = c) ∧ (a 6= b))
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Example ∃(> U (a = c) ∧ (a 6= b))
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Symbolic?

“Symbolic Model Checking: 1020 States and be-
yond” [1]

• explicit state vs. symbolic
• normal forms
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Switching functions

“bit-vectors”

Eval(Var) = Var → {0, 1} .

Switching function

f : Eval(Var)→ {0, 1} = (Var → {0, 1})→ {0, 1}

cf. propositional semantics [[ϕ]]
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Boolean operators on switching functions

• cf. truth tables
• all boolean operators and constants have (of course) an
analogue on switching functions
• syntax vs. semantics
• canonical (and/or normal) forms
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Operators on switching functions (2)

Projection of a “bit-vector” onto a variable

projzi
: (Var → {0, 1})→ {0, 1}

Disjunction
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Operators on switching functions (2)

Projection of a “bit-vector” onto a variable

projzi
: (Var → {0, 1})→ {0, 1}

Disjunction

(f1 ∨ f2)([z1 = b1, . . . , zk = bk]) =
max(f1([z1 = b1, . . . , zm = bm]), f2([zn = bn, . . . , zk = bk]))
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Cofactors

Definition (Cofactors)

Assume a variable set Var = {z, y1, . . . , ym} and let
f : (Var → {0, 1})→ {0, 1} be a switching function over it.
The positive cofactor of f for variable z, written f |z=1 is
the switching function given by

f |z=1 (b1, . . . , bm) = f(1, b1, . . . , bm) (2)

The negative cofactor of f for z, written f |z=0 is defined
analogously. If f is a switching function for
{z1, . . . , zk, y1, . . . , ym}, then we write f |z1=b1,...,zk=bk

for
the iterated cofactor of f , given by

f |z1=b1,...,zk=bk
= (. . . (f |z=b1) . . .) |zk=bk

(3)
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Essential variables

Definition (Essential variable)

A variable z is essential for a switching function, if

f |z=1 6= f |z=0 . (4)
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Shannon expansion

Lemma (Shannon expansion)

Let f be a switching function for Var . Then

f = (¬z ∧ f |z=1) ∨ (z ∧ f |z=0) (5)

for all variables z from Var .
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Binary decision tree z1 ∧ (¬z2 ∨ z3)
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Propositional encoding

T = (S,−→, I,P, L)

Task: encode by boolean formulas / switching functions

• all ingredients of T
• sat(_)
• realise operations during the mc-algo by operations on
the encodings, in particular pre
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Characteristic function

Equivalent (isomorphic) views

• 2S ≡ S → {0, 1} (or S → B)
• B ⊆ S χB



IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-54

Encoding states and subsets of states

• that this is possible, should be obvious
• use propositional variables x1, . . . , xn
• padding: assume S = Eval(~x) = {x1, . . . , xn} → {0, 1}

Sets of states B ⊆ S
χB : (Eval(~x)→ {0, 1} = (~x→ {0, 1})→ {0, 1}
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Encoding the transition relation −→

−→ ⊆ S × S

• make a “copy” of ~x: different variables ~x′

• renaming operation on switching functions [y ← x]

Encode −→ as ∆

∆ : ((~x, ~x′)→ {0, 1})→ {0, 1},

∆(s1, s2[~x′ ← ~x]) =
{

1 if s1 −→ s2
0 else
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Remember charaterization and the fixpoints

1. sat(>) = S.
2. sat(p) = {s ∈ S | p ∈ V (s), for any p ∈ P}.
3. sat(Φ1 ∧ Φ2) = sat(Φ1) ∩ sat(Φ2).
4. sat(¬Φ) = S \ sat(Φ).
5. sat(∃©Φ) = {s ∈ S | ∃s′.s −→ s′ ∧ s′ ∈ sat(Φ)}
6. sat(∃(Φ1 U Φ2)) is the smallest subset T of S

such that
6.1 sat(Φ2) ⊆ T and
6.2 s ∈ sat(Φ1) and ∃s′ ∈ T.s −→ s′ implies s ∈ T .

7. sat(∃�Φ) is the largest subset T of S such that
7.1 T ⊆ sat(Φ) and
7.2 s ∈ T implies ∃s′ ∈ T.s′ −→ s.
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∃© A means, calculating pre

pre-calulation as switching function

∃~x′.∆(~x, ~x′)︸ ︷︷ ︸
s∈pre(s′)

∧χA[~x′ ← ~x]︸ ︷︷ ︸
s′∈A
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∃♦: basically iteration over pre

One step: Tj+1 = pre(Tj)

∃~x′.∆(~x, ~x′)︸ ︷︷ ︸
s∈pre(s′)

∧ fj [~x′ ← ~x]︸ ︷︷ ︸
s′∈Tj

(6)
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∃ U : not much harder...

1 f0(~x) := χA1 (~x) ;
2 j := 0 ;
3 r epeat
4 fj+1(~x) := fj+1(~x) ∨ (χA2 (~x) ∧ ∃~x′.∆(~x, ~x′) ∧ fj(~x′)) ;
5 u n t i l fj(~x) = fj−1(~x) ;
6 r e t u r n fj(~x) .
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finally ∃�

1 f0(~x) := χA(~x) ;
2 j := 0 ;
3 r epeat
4 fj+1(~x) := fj+1(~x) ∧ ∃~x′.∆(~x, ~x′) ∧ fj(~x′)) ;
5 u n t i l fj(~x) = fj−1(~x) ;
6 r e t u r n fj(~x) .

Largest fixpoint

• sets get smaller in the iteration
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How to efficiently implement all that?

• switching functions

f : Eval(Var)→ {0, 1} = (Var → {0, 1})→ {0, 1}

• + operations thereon
• binary decision trees

z1 ∧ (¬z2 ∨ z3)
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Issues

• size: still exponential
• non-canonical
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From BDTs to (RO)BDDs

• addressing both problems
• reduced ordered binary decision diagrams
• often “BDDs” just mean ROBDDs
• two general ideas

Two general ideas
to addess both mentioned problems.
Canonicity: fix an order on the variables

Size: don’t represent duplicate parts of the graph
more than once
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As first easy step

BDT to OBDD
• have only 2 terminal nodes (for 0 and for 1), no
duplicate leaves (BDD), and
• fix an order on the var’s (OBDD)
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Example OBDD

a ∧ (¬b ∨ c) with order a < b < c
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Reduced OBBDs

Reduce

Uniqueness
no 2 nodes for the same
variable have the
“same” high- and
low-children ⇒ merge
isomorphic subgraphs

non-redundent tests
no variable node has
identical high and low
children
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Merge isomorphic subgraphs

a ∧ (¬b ∨ c) with order a < b < c
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Remove reduncancy

a ∧ (¬b ∨ c) with order a < b < c
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ROBDDs as canonical representation

Canonicity
For every boolean function f : (Var → {0, 1})→ {0, 1} and
a give variable ordering, there exists exactly one ROBDD
representing f

facts

equivalence checking satisfiability
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ROBDDs as canonical representation

Canonicity
For every boolean function f : (Var → {0, 1})→ {0, 1} and
a give variable ordering, there exists exactly one ROBDD
representing f

facts

equivalence checking
linear time

satisfiability
constant time
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But where is the catch?

Satisfiability
Isn’t SAT NP-complete?
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Sensitivity to variable order



IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-73

Sensitivity to variable order

• different variable orders ⇒ different ROBBDs
• crucial in practice to find a (in many cases) good order
• finding the best: NP-hard
• heuritics exists
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Representing boolean functions is not all

• canonical, often (but not always) compact
representation
• we also need to “work” with them
• remember the CTL model checking algorithms
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Boolean operators (Apply)

• boolean operators on (R)OBBDs
• recursively over the two OBDDs
• based on Shannon’s (or Boole’s) expansion
• preserve the order
• if working on ROBBs, re-reduce the result.
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Logical operations on OBDDs
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Apply
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Apply (cont’d)
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Boolean quantification
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