Chapter 4
CTL and CTL*

Course “Model checking”
Martin Steffen
Autumn 2021

Section

Introduction

Chapter 4 "CTL and CTL*"
Course “Model checking”
Martin Steffen
Autumn 2021

Computation tree logic

CTL: Computation tree logic [2] [3]

prominent branching time logic

branching vs. linear time

remember LTL: models are paths, here trees

we could write

s E Ve

iff 7= for all path 7 starting in s

(1)

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

43

Unfolding a transition

Transition system
start. *@—’

& o

system to a tree

Unfolding

'
e N
I / : \
/ss\ T /85\

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

44

Linear vs. branching

IN5110 -
Verification and

specification of
a(b+c) ab+ac parallel systems

Martin Steffen

start —>

start — Introduction
o a a Computation tree
logic
) CTL model
¢ .
/ \ checking
(o] (@] O O Fixpoints and

characterization of sat

Explicit vs. symbolic
Symbolic model
checking

Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

45

Vending machine

a(b+c)

start —»{
coin?
coffee! teal

example

ab+ac

start —>/
coin?, coin?
coffec! teal

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic
Symbolic model
checking

Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

46

Section

Computation tree logic

Chapter 4 "CTL and CTL*”
Course “Model checking”
Martin Steffen

Autumn 2021

Syntax

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

® = T |p| ©&1ADPy | =P | Jp | Vo state formulas

Computation tree

o u= O | ¢ U Py path formulasiogic

Note: syntactic restriction. CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

48

Example: oo

VOV green

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

49

Example: mutex and progress

VO (=erity V —erits)

(VOVO erity) A (YVOVO erita)

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-10

Response

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-11

Response

VO (request — VOresponse)

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic
Symbolic model
checking

Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-11

Restart

LTL?

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-12

Restart

LTL?

VYOI start

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-12

Derived syntax

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-13

Semantics: |=

s Ep iff peV(s)

e iff notskE®

S’:(I)l/\q)g iff s)z@lands):<1>2

s = Je iff 7w @ for some 7 € paths(s)
s =V iff @ forall m € paths(s)

T = QO iff ™E®

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
ecking

T E® Udy iff 3j>0.(r = ®yand VO < k < jmb = O fomrs o

Encoding

Binary decision
diagrams
Working with BDDs

414

Semantics for transition systems

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic
Symbolic model
checking

Switching functions
Encoding

Binary decision
diagrams
Working with BDDs

4-15

CTL semantics, example 1

Vblack

J0black

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic
Symbolic model
checking

Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-16

CTL semantics, example 2

VO black

V/(grayUblack)

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model

checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-17

CTL semantics, example 3

3O VOblack

VO3 O black

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-18

Semantics: Sat-set

The satisfaction set Sat(®) is the set of states in a transition system TS
that satisfies ®.

A transition system satisfies ®, written TS = &, iff all the initial states of
the TS satisfies ®: | C Sat(®), where | is the set of initial states in TS.

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

419

Comparison with LTL

CTL and LTL are not equally expressive, but neither is more expressive
than the other.

Theorem 6.18 [1]

Let ® be a CTL formula, and ¢ the LTL formula that is obtained by
eliminating all path quantifiers in ®. Then:

® = ¢ or there exists no LTL formula that is equivalent to .

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

7 CTL model

Lemma 6.19
VOVOa # O0a

checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

420

Section
CTL model checking

Chapter 4 "CTL and CTL*”
Course “Model checking”
Martin Steffen

Autumn 2021

Intro

e focus on ENF (30O, 3 U, 30)

® recursive over structure of formula

® calculate sat(®)

¢ check I C sat(®P)

e “global” model checking

® bottom-up traversal of the parse tree of ®

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-22

Normal forms

IN5110 -

Verification and

* state-formulas only S
® remember LTL Martin Steffen
® positive normal form

Introduction

® interesting for us: existential NF f};‘;”"taﬁm rec
CTL model
ENF checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

® u= T |p| &21AD | =@ -
| ElO@ | EI(pl U@g | J0® | checking

Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

423

Model checking CTL

The task is to check whether a transition system TS satisifies a CTL

formula ®. This is the case when all the initial states / of the TS satisfy ®.

Basic Algorithm

© The set Sat(®P) of all states satisfying ® is computed recursively
(" from inside and out")

@ TS |= o iff | C Sat(d)

This can achieved by a bottom-up traversal of the CTL formula’s parse
tree.

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

424

Model checking: example 1

@“‘

VO dead?

Sat(V{dead) = {dead}

The initial state born ¢ Sat(V{dead),
so TS £ VOdead

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-25

Model checking: example 2

& =3O hungry A 3(eat U —dead)

Sat(3 O hungry) =
{born, sleep}

° Sat(®) = {born, sleep}

Sat(3(eatU—dead)) = {born,
hungry, eat, content, sleep}

Sat(—dead) = {born,
hungry, eat, content, sleep}

Sat(dead) = {dead}

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-26

Model checking: example 2

Sat(®) = {born, sleep}

Because the only initial state is in
the formula’s satisfaction set, the

transition system satisfies the
formula.
ad

o

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

427

© 0 N OO W N =

Basic algorithm

input: finite transition system 7 and &
output: T =&

for all ¢<|®| do
for all W€ sub(®) with | ¥ |=14 do
compute sat(¥) from sat(¥’) (* max. genuine ¥ C sat(¥))
od
od
return I C sat(®)

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic
CTL model

checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-28

Recursive algorithm

input: finite transition system 7 and &
output: T =&

switch @
T => return S
P => return {s€S|peV(s)}
D1 A Py => return sat(P1) N sat(P2)
30 => return {s €S| post(s) N sat(P)}
(P U D) = “lfp for 3T
0P = ‘‘gfp for IO"!

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-29

o OB W N

Backward calculation of 3¢

T := sat(B);
while pre(T)\T #0 do
let sepre(T)\T ;

T := TU{s};
od;
return T;

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-30

Lo S B N O N

Massaging the algo

T := sat(B);

while pre(T)\T #0 do
let sepre(T)\T ;
T := TU{s};

od;

return T;

loop body
T := T U {pick(pre(T))}

Loop condition

T D T U{pick(pre(T))} or T # T U {pick(pre(T))} .

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

431

g A W N

Massaging the algo

T := sat(A);

while T # T U {pick(pre(T))}
T := T U pick(pre(T));

od;

return T;

loop body
T := T U {pick(pre(T))}

Loop condition

T DT UA{pick(pre(T))} or T # T U{pick(pre(T))} .

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

431

Iteration

exit condition

T =T U{pick(pre(T))} .

Ty, = A
Tjt1 = F(Tj) where F(X) = picky(pre(X))UX

Stabilization

A=T0CT1CTQC...CTkZTk+1=Tk+2...

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

432

Characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F(T) does not make it larger.

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

Characterization

Goal (a)

Find me a set T such that (a) it contains A and such that

(b) F(T) does not make it larger.

Goal (a)
r 2
r 2

A
F(T)

where F(X) = picky(pre(X)) U X

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of s¢

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding
Binary decision
diagrams

Working with BDDs

Characterization

Goal (a) IN5110 —
Verification and
Find me a set T such that (a) it contains A and such that specification of

(b) F(T') does not make it larger.

Goal (a)

ORIV,

A
F(T)

F(T)

where F(X) = picky(pre(X)) U X

where

parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Explicit vs. symbolic

Symbolic model
checking
Switching functions
Encoding

Binary decision
diagrams

F/(X) = p@ck@ (pre(X)) UXUA Working with BDDs

Fixpoint

A=TyochhcTyC...CTy=Tk11 =Tit2...

Fixpoint

Tyy1 = F(Ty) =Ty

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-34

(Pre-)Fixpoint

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F(T') does not make it larger.

T}, solves the following

fixpoint

F(X)=X

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sa

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding
Binary decision
diagrams

Working with BDDs

(Pre-)Fixpoint

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F(T') does not make it larger.

T}, solves the following

fixpoint pre-fixpoint

F(X)=X F(X)C X

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of s

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding
Binary decision
diagrams

Working with BDDs

That was only half of the characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F(T) does not make it larger.

A:T0CT1CTQC...CTk:Tk+1:Tk+2...

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

That was only half of the characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F(T) does not make it larger.

A:T()CTlCTQC...CTk:Tk+1:Tk+2...

Goal (b)
Find the smallest set T satisfying goal (a).

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

Smallest (pre-)fixpoint

® interested in the smallest (pre)-fixpoint

fixpoint pre-fixpoint
FX)=X FX)CX
Facts
1. unique

2. smallest fixpoint = smallest pre-fixpoint

3. T}, in the iteration is actually that Ifp

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sa

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-37

L N N

Explicit-state vs. symbolic model checking

The code again:

T = sat(A);

while T # T U {pick(pre(T))}
T := T U pick(pre(T));

od;

return T;

Explicit-state

exploring states individually

symbolic

exploring sets of states (sat)

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

g oA W N

Breadth-first?

T := sat(B);

while T #TUpre(T) do
T := TUpre(T)

od;

return T;

- likewise: fix-point

But is it actually better?

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

g A W N

Breadth-first?

T := sat(B);

while T # T Upre(T) do
T := TUpre(T)

od;

return T;

- likewise: fix-point

But is it actually better?

Not really

if the exploration adds pre(T)
states individually.

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding
Binary decision
diagrams

Working with BDDs

g A W N

Breadth-first?

IN5110 -
Verification and
T := sat(B) ; specification of
while T 75 TU pre(T) do parallel systems
dT =TU pre(T) Martin Steffen
odad;

return T; Introduction

Computation tree

- likewise: fix-point logic
CTL rpodel
But is it actually better? checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

NOt rea"y better Symbolic model
checkin

if the exploration adds pre(T') if one can calculate pre(T) all s e

states individually. at once! e

Binary decision
diagrams
Working with BDDs

Symbolic model checking

IN5110 -
Verification and
specification of
parallel systems

key: efficient representation of Martin Steffen

. | .
® transition system ntroduction

Computation tree

® sets of states logic
e different operations on those sets, in particular S,Tetkﬁ;de'
® symbolic exploration by efficent calculation of pre in a thd'ﬁ
set of state Symbolic model
checking

Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-40

First:

characterize all operators

oSG s W

sat(T) =

sat(p)—{8€S|p€V(), for any p € P}.

sat(Py A\ Pg) = sat(Py) N sat(Ps).
(
(

. sat(—~®) = S\ sat(P).
csat(3OP)={se S| I.s = NS € sat(P)}
. sat(3(Py U Pq)) is the smallest subset T' of S

such that

6.1 sat(®2) C T and
6.2 s € sat(Py) and Is' € T.s — s' implies s € T.

. sat(30P) is the largest subset T' of S such that

7.1 T C sat(P) and
7.2 s €T implies 3s' € T.s' — s.

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction
Computation tree

logic

CTL model

checking
Fixpoints and
char:

n of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions
Encoding

Binary decision
diagrams
Working with BDDs

441

Example 3(T U (a =

&) A (a # b))

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

442

Example 3(T U (a =c¢) A (a # b))

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

442

Section

Symbolic model checking

Chapter 4 "CTL and CTL*”
Course “Model checking”
Martin Steffen

Autumn 2021

Symbolic?

“Symbolic Model Checking: 10%° States and be-
yond” [1]

® explicit state vs. symbolic

® normal forms

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

444

Switching functions

“bit-vectors”

FEval(Var) = Var — {0,1} .

Switching function

f: Bval(Var) — {0,1} = (Var — {0,1}) — {0,1}

cf. propositional semantics [¢]

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

445

Boolean operators on switching functions

e cf. truth tables

* all boolean operators and constants have (of course) an
analogue on switching functions

® syntax vs. semantics

* canonical (and/or normal) forms

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-46

Operators on switching functions (2)

IN5110 -
Verification and
specification of
parallel systems

- . . - Martin Steffen
Projection of a “bit-vector” onto a variable

Introduction

o Computation tree
pro]zi : (Var — {07 1}) — {O, 1} logic
CTL model
checking

Fixpoints and
characterization of sat

Disjunction Exlct vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

447

Operators on switching functions (2)

IN5110 —

Verification and

Projection of a “bit-vector” onto a variable specification of

parallel systems

Martin Steffen

proj,. : (Var — {0,1}) — {0, 1}

Introduction

Computation tree

logic
Disjunction CTL model

checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

(fiVi)(er=0b1,..., 2 = bg]) = S
max(fl([zl =b,...,2m = bm]), fg([zn =by,...,2L = by E"C;;mgf'

Binary decision
diagrams
Working with BDDs

447

Cofactors

Definition (Cofactors)

Assume a variable set Var = {z,y1,...,ym} and let
f:(Var — {0,1}) — {0,1} be a switching function over it.
The positive cofactor of f for variable z, written f |,—; is
the switching function given by

fle=1 (b1, . bm) = f(1,b1,...,bm) (2)

The negative cofactor of f for z, written f |,—¢ is defined
analogously. If f is a switching function for

{1, 2k, Y1, -, Ym}, then we write f |, —p, . —p, for
the iterated cofactor of f, given by

f ’21:b17~~~7zk:bk: (. (f ’Z=b1) .-) ’Zk:bk (3)

IN5110 —
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

448

Essential variables

Definition (Essential variable)

A variable z is essential for a switching function, if

fla=17 f |2=0

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-49

Shannon expansion

Lemma (Shannon expansion)

Let f be a switching function for Var. Then
f=0E2Af =) V(A S =0)

for all variables z from Var.

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

Binary decision

tree 21 A (-2 V 23)

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-51

Propositional encoding

T =(S,—,1,P,L)

Task: encode by boolean formulas / switching functions

¢ all ingredients of T
° sat(_)

® realise operations during the mc-algo by operations on
the encodings, in particular pre

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

452

Characteristic function

Equivalent (isomorphic) views

*25=5 10,1} (or S — B)

e BCS

XB

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

Encoding states and subsets of states

® that this is possible, should be obvious
® use propositional variables x1,...,z,
® padding: assume S = Eval(Z) = {z1,...,xn} — {0,1}

Sets of states B C S
xB : (Fval(Z) — {0,1} = (¥ — {0,1}) — {0,1}

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

454

Encoding the transition relation —

—-C xS

® make a “copy” of #: different variables 7’

® renaming operation on switching functions [y < z]

Encode — as A

A:((#,2) — {0,1}) — {0,1},

1 if81—>82

- N
A(sy, sol@ + Z]) = 0 else

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

Remember charaterization and the fixpoints

1' Sat(T) Verli;\ilcsaltilt()]n_and
specification of
2. sat(p) = {8 €S| peV(s), forany p € P}. parallel systems
3. sat(Py A P2) = sat(P1) N sat(Pa). Wiartin Steffen
4. Sat(—') S \ sa,t() Introduction
5 5at(3QP)={se€ S| Is.s > N5 € sat(P)} g on tree
6. sat(3(Py U Pg)) is the smallest subset T' of S GTL mode
such that Fixpaints and
6.1 sat(®3) C T and S ——
6.2 s € sat(Py) and Is' € T.s — s' implies s € T. Syl it
checking
7. sat(30P) is the largest subset T of S such that Switing factions
71 T g sat(@) and B;‘;;ll;gdecision
7.2 s €T implies s’ € T.s' — s. diagrams

4-56

3 () A means, calculating pre

pre-calulation as switching function

37 A(Z,7) AxAlE — 7]
———

sepre(s’)

—_—
s'eA

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

3¢: basically iteration over pre

One step: 7)1 = pre(Tj)

3. A&, 7)) A (7« 4] (6)
—_—— —, —
s€pre(s’) s'eT;

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

o OB W N

3 U: not much harder...

Jo(@) = xa,(@);
j = 0;
repeat
fir1(@) = fi01(@) V (x4, (&) AT A T) A f5(2));

until f;(Z) = fj—1(Z);
return f;(&).

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
i of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-59

finally dC]

fo@ = xa@);
j = 0;
repeat
Fi+1(@) = fj41(&) AT AE, &) A £5(@));
until f;(Z) = fj-1(2);
return f;(Z).

Largest fixpoint

® sets get smaller in the iteration

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

Section

Binary decision diagrams

Chapter 4 "CTL and CTL*”
Course “Model checking”
Martin Steffen

Autumn 2021

How to efficiently implement all that?

® switching functions
f: Eval(Var) — {0,1} = (Var — {0,1}) — {0, 1}

® + operations thereon

® binary decision trees

FARAY (—|Z2 V 2’3)

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams

Working with BDDs

4-62

Issues

IN5110 -
Verification and
specification of
parallel systems

® size: still exponential

® non-canonical
Martin Steffen

itroduction

omputation tree
gic

TL model
1ecking

ixpoints and
haracterization of sat

xplicit vs. symbolic

ymbolic model
1ecking

witching functions

ncoding

inary decision
wagrams

Working with BDDs

From BDTs to (RO)BDDs

IN5110 -
. Verificati d
® addressing both problems specification of
) L. i parallel systems
¢ reduced ordered binary decision diagrams P
artin effen
e often "BDDs" just mean ROBDDs
Introduction
® two general Ideas Computation tree
logic
Two general ideas CTL model
checking

to addess both mentioned problems. o Pt

Explicit vs. symbolic

Canonicity: fix an order on the variables Symbolic model
R , . checking
Size: don't represent duplicate parts of the graph e

Encoding

more than once

Binary decision
diagrams
Working with BDDs

4-64

As first easy step

BDT to OBDD

* have only 2 terminal nodes (for 0 and for 1), no
duplicate leaves (BDD), and

¢ fix an order on the var's (OBDD)

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

Example OBDD

a(=bVe)

with order

a<b<ec

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

Reduced OBBDs

Reduce

Uniqueness

no 2 nodes for the same
variable have the
“same” high- and
low-children = merge
isomorphic subgraphs

non-redundent tests

no variable node has
identical high and low
children

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams

Working with BDDs

4-67

Merge isomorphic subgraphs

al(—bVec)

with order

a<b<ec

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams

Working with BDDs

Remove reduncancy

al(—bVec)

with order

a<b<ece

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams

Working with BDDs

ROBDDs as canonical representation

IN5110 -
Verification and
specification of

Canonicity parallel systems

Martin Steffen

For every boolean function f : (Var — {0,1}) — {0,1} and

a give variable ordering, there exists exactly one ROBDD Introduction
o Computation tree
representing f logic
CTL model
faCtS checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

equivalence checking satisfiability

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

ROBDDs as canonical representation

Canonicity

For every boolean function f : (Var — {0,1}) — {0,1} and
a give variable ordering, there exists exactly one ROBDD
representing f

facts
equivalence checking satisfiability
linear time constant time

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-70

But where is the catch?

Satisfiability
Isn't SAT NP-complete?

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams

Working with BDDs

4-71

Sensitivity to variable order

(a1 Ab1) v (a2 Ab2) v (a3 A b3)

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams

Working with BDDs

472

Sensitivity to variable order

different variable orders = different ROBBDs
crucial in practice to find a (in many cases) good order
finding the best: NP-hard

heuritics exists

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams

Working with BDDs

Representing boolean functions is not all

® canonical, often (but not always) compact
representation

® we also need to “work” with them

® remember the CTL model checking algorithms

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

474

Boolean operators (Apply)

¢ boolean operators on (R)OBBDs

® recursively over the two OBDDs

* based on Shannon'’s (or Boole's) expansion
® preserve the order

¢ if working on ROBBs, re-reduce the result.

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

Logical operations on OBDDs

Logical negation (—)

» Replace the value of each leaf node by its negation

All 16 logical operations can be applied on boolean functions using

the Apply algorithm.

Restriction of the variable x; to a constant b:

> flaeb(x, o xn) = fxi, 0, Xio1, by xiga, -

> f|x1: positive Shannon cofactor of f for x;
» {0 negative Shannon cofactor of f for x;

To compute the new OBDD:
» We traverse the tree in a depth-first manner

v

> All incoming edges to v, s.t. var(v) = x; should be redirected

to low(v) if b=0or high(v)if b=1
» Reduce the OBDD

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

Apply

Shannon expansion:
> = (=xAflxeo) V(XA Flxet)
» Allows us to split a problem into two subproblems
Using the Apply algorithm to solve all 16 logical operations. Let
> o be a two-argument logical operation (and, or, xor etc.)
» f and ' be two boolean functions
» v and v/ be the OBDDs roots for f and £/
» var(v) = x and var(v') = X’
If both v and v/ are drains:
» fef =val(v)eval(Vv)

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-77

Apply (cont’d)

If x = x':
» Recursively solve the two subproblems:
fof' =(=xA(flxco® o))V (xXA(Fflxc1®lxe1))
» The root of this new OBDD will be a new node w such that
» var(w) = x
> low(w) will be OBDD for (|xc0 ® f'|x0)
> high(w) will be OBDD for (f|xc1® f/|x1)

If x < x’ (x = x; and x’ = x; where i < j):
- e = (ax A (Flvco®)V (x A (Flect o)
» Similar for x > x’

Algorithm is polynomial with dynamic programming

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

Boolean quantification

If f is a function, x is a variable, then

> 3x.f = (Flxeo) V (flxet)

> Vx.f = (Fleco) A (Flie1)
We need to compute the OBDD for both subproblems using the
Restrict algorithm:

> f|x—o: For each node v where var(v) = x

» Incoming edges are redirected to low(v)
» Remove node v

> f..1: For each node v where var(v) = x

» Incoming edges are redirected to high(v)
> Remove node v

IN5110 -
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking

Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

References |

IN5110 -
Verification and
specification of
parallel systems

Bibliography Martin Steffen

[1] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. (1992). Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2):142-170.

[2] Clarke, E. M. and Emerson, E. A. (1982). Design and synthesis of synchronisation skeletons using
branching time temporal logic specifications. In Kozen, D., editor, Proceedings of the Workshop on
Logic of Programs 1981, volume 131 of Lecture Notes in Computer Science, pages 244-263. Springer
Verlag.

[3] Queille, J. P. and Sifakis, J. (1982). Specification and verification of concurrent systems in CESAR.
In Dezani-Ciancaglini, M. and Montanari, U., editors, Proceedings of the 5th International
Symposium on Programming 1981, volume 137 of Lecture Notes in Computer Science, pages
337-351. Springer Verlag.

5-80

	CTL and CTL*

