
Chapter 4
CTL and CTL∗

Course “Model checking”
Martin Steffen
Autumn 2021

Section
Introduction

Chapter 4 “CTL and CTL∗”
Course “Model checking”
Martin Steffen
Autumn 2021

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-3

Computation tree logic

• CTL: Computation tree logic [2] [3]
• prominent branching time logic
• branching vs. linear time
• remember LTL: models are paths, here trees
• we could write
s |= ∀ϕ iff π |= ϕ for all path π starting in s (1)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-4

Unfolding a transition system to a tree

Transition system

s0start s1

s2s3

Unfolding
s0

s1

s2 s3

s3 s2 s3

s2 s3 s3 s2 s3

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-5

Linear vs. branching

a(b+c)

start

a

b c

ab+ac

start

a

b

a

c

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-6

Vending machine example

a(b+c)

start

coin?

coffee! tea!

ab+ac

start

coin?

coffee!

coin?

tea!

Section
Computation tree logic

Chapter 4 “CTL and CTL∗”
Course “Model checking”
Martin Steffen
Autumn 2021

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-8

Syntax

Φ ::= > | p | Φ1 ∧ Φ2 | ¬Φ | ∃ϕ | ∀ϕ state formulas
ϕ ::= ©Φ | Φ1 U Φ2 path formulas

Note: syntactic restriction.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-9

Example: ∞

∀�∀♦green

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-10

Example: mutex and progress

∀�(¬crit1 ∨ ¬crit2)

(∀�∀♦crit1) ∧ (∀�∀♦crit2)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-11

Response

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-11

Response

∀�(request → ∀♦response)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-12

Restart

LTL?

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-12

Restart

∀�∃♦start

LTL?

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-13

Derived syntax

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-14

Semantics: |=

s |= p iff p ∈ V (s)
s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2
s |= ∃ϕ iff π |= ϕ for some π ∈ paths(s)
s |= ∀ϕ iff π |= ϕ for all π ∈ paths(s)

π |= ©Φ iff π1 |= Φ
π |= Φ1 U Φ2 iff ∃j ≥ 0.(πj |= Φ2 and ∀0 ≤ k < j.πk |= Φ1)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-15

Semantics for transition systems

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-16

CTL semantics, example 1

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-17

CTL semantics, example 2

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-18

CTL semantics, example 3

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-19

Semantics: Sat-set

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-20

Comparison with LTL

Section
CTL model checking

Chapter 4 “CTL and CTL∗”
Course “Model checking”
Martin Steffen
Autumn 2021

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-22

Intro

• focus on ENF (∃©, ∃ U , ∃�)
• recursive over structure of formula
• calculate sat(Φ)
• check I ⊆ sat(Φ)
• “global” model checking
• bottom-up traversal of the parse tree of Φ

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-23

Normal forms

• state-formulas only
• remember LTL
• positive normal form
• interesting for us: existential NF

ENF

Φ ::= > | p | Φ1 ∧ Φ2 | ¬Φ
| ∃ © Φ | ∃Φ1 U Φ2 | ∃�Φ |

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-24

Model checking CTL

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-25

Model checking: example 1

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-26

Model checking: example 2

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-27

Model checking: example 2

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-28

Basic algorithm

1 i n pu t : f i n i t e t r a n s i t i o n system T and Φ
2 output : T |= Φ
3 −−−
4 f o r a l l i ≤| Φ | do
5 f o r a l l Ψ ∈ sub(Φ) with | Ψ |= i do
6 compute sat(Ψ) from sat(Ψ′) (∗ max . genu ine Ψ′ ⊆ sat(Ψ) ∗)
7 od
8 od
9 r e t u r n I ⊆ sat(Φ)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-29

Recursive algorithm

1 i n pu t : f i n i t e t r a n s i t i o n system T and Φ
2 output : T |= Φ
3 −−−
4 sw i tch Φ
5 > => r e t u r n S
6 p => r e t u r n {s ∈ S | p ∈ V (s)}
7 Φ1 ∧ Φ2 => r e t u r n sat(Φ1) ∩ sat(Φ2)
8 ∃© Φ => r e t u r n {s ∈ S | post(s) ∩ sat(Φ)}
9 ∃(Φ1 U Φ2) => ``lfp f o r ∃ U ' '

10 ∃�Φ => ``gfp f o r ∃� ' '

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-30

Backward calculation of ∃♦

1 T := sat(B) ;
2 wh i l e pre(T) \ T 6= ∅ do
3 l e t s ∈ pre(T) \ T ;
4 T := T ∪ {s} ;
5 od ;
6 r e t u r n T ;

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-31

Massaging the algo

1 T := sat(B) ;
2 wh i l e pre(T) \ T 6= ∅ do
3 l e t s ∈ pre(T) \ T ;
4 T := T ∪ {s} ;
5 od ;
6 r e t u r n T ;

loop body
T := T ∪ {pick(pre(T))}

Loop condition

T ⊃ T ∪ {pick(pre(T))} or T 6= T ∪ {pick(pre(T))} .

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-31

Massaging the algo

1 T := sat(A) ;
2 wh i l e T 6= T ∪ {pick(pre(T))}
3 T := T ∪ pick(pre(T)) ;
4 od ;
5 r e t u r n T ;

loop body
T := T ∪ {pick(pre(T))}

Loop condition

T ⊃ T ∪ {pick(pre(T))} or T 6= T ∪ {pick(pre(T))} .

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-32

Iteration

exit condition

T = T ∪ {pick(pre(T))} .

T0 = A
Tj+1 = F (Tj) where F (X) = pick∅(pre(X)) ∪X

Stabilization

A = T0 ⊂ T1 ⊂ T2 ⊂ . . . ⊂ Tk = Tk+1 = Tk+2 . . .

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-33

Characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F (T) does not make it larger.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-33

Characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F (T) does not make it larger.

Goal (a)

T ⊇ A
T ⊇ F (T) where F (X) = pick∅(pre(X)) ∪X

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-33

Characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F (T) does not make it larger.

Goal (a)

T ⊇ A
T ⊇ F (T) where F (X) = pick∅(pre(X)) ∪X

T ⊇ F ′(T) where F ′(X) = pick∅(pre(X)) ∪X ∪A

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-34

Fixpoint

A = T0 ⊂ T1 ⊂ T2 ⊂ . . . ⊂ Tk = Tk+1 = Tk+2 . . .

Fixpoint

Tk+1 = F (Tk) = Tk

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-35

(Pre-)Fixpoint

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F (T) does not make it larger.

Tk solves the following

fixpoint

F (X) = X

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-35

(Pre-)Fixpoint

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F (T) does not make it larger.

Tk solves the following

fixpoint

F (X) = X

pre-fixpoint

F (X) ⊆ X

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-36

That was only half of the characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F (T) does not make it larger.

A = T0 ⊂ T1 ⊂ T2 ⊂ . . . ⊂ Tk = Tk+1 = Tk+2 . . .

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-36

That was only half of the characterization

Goal (a)

Find me a set T such that (a) it contains A and such that
(b) F (T) does not make it larger.

A = T0 ⊂ T1 ⊂ T2 ⊂ . . . ⊂ Tk = Tk+1 = Tk+2 . . .

Goal (b)

Find the smallest set T satisfying goal (a).

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-37

Smallest (pre-)fixpoint

• interested in the smallest (pre)-fixpoint

fixpoint

F (X) = X

pre-fixpoint

F (X) ⊆ X

Facts

1. unique
2. smallest fixpoint = smallest pre-fixpoint
3. Tk in the iteration is actually that lfp

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-38

Explicit-state vs. symbolic model checking

The code again:
1 T := sat(A) ;
2 wh i l e T 6= T ∪ {pick(pre(T))}
3 T := T ∪ pick(pre(T)) ;
4 od ;
5 r e t u r n T ;

Explicit-state
exploring states individually

symbolic
exploring sets of states (sat)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-39

Breadth-first?

1 T := sat(B) ;
2 wh i l e T 6= T ∪ pre(T) do
3 T := T ∪ pre(T)
4 od ;
5 r e t u r n T ;

- likewise: fix-point

But is it actually better?

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-39

Breadth-first?

1 T := sat(B) ;
2 wh i l e T 6= T ∪ pre(T) do
3 T := T ∪ pre(T)
4 od ;
5 r e t u r n T ;

- likewise: fix-point

But is it actually better?

Not really
if the exploration adds pre(T)
states individually.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-39

Breadth-first?

1 T := sat(B) ;
2 wh i l e T 6= T ∪ pre(T) do
3 T := T ∪ pre(T)
4 od ;
5 r e t u r n T ;

- likewise: fix-point

But is it actually better?

Not really
if the exploration adds pre(T)
states individually.

better
if one can calculate pre(T) all
at once!

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-40

Symbolic model checking

key: efficient representation of

• transition system
• sets of states
• different operations on those sets, in particular
• symbolic exploration by efficent calculation of pre in a
set of state

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-41

First: characterize all operators

1. sat(>) = S.
2. sat(p) = {s ∈ S | p ∈ V (s), for any p ∈ P}.
3. sat(Φ1 ∧ Φ2) = sat(Φ1) ∩ sat(Φ2).
4. sat(¬Φ) = S \ sat(Φ).
5. sat(∃©Φ) = {s ∈ S | ∃s′.s −→ s′ ∧ s′ ∈ sat(Φ)}
6. sat(∃(Φ1 U Φ2)) is the smallest subset T of S

such that
6.1 sat(Φ2) ⊆ T and
6.2 s ∈ sat(Φ1) and ∃s′ ∈ T.s −→ s′ implies s ∈ T .

7. sat(∃�Φ) is the largest subset T of S such that
7.1 T ⊆ sat(Φ) and
7.2 s ∈ T implies ∃s′ ∈ T.s′ −→ s.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-42

Example ∃(> U (a = c) ∧ (a 6= b))

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-42

Example ∃(> U (a = c) ∧ (a 6= b))

Section
Symbolic model checking

Chapter 4 “CTL and CTL∗”
Course “Model checking”
Martin Steffen
Autumn 2021

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-44

Symbolic?

“Symbolic Model Checking: 1020 States and be-
yond” [1]

• explicit state vs. symbolic
• normal forms

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-45

Switching functions

“bit-vectors”

Eval(Var) = Var → {0, 1} .

Switching function

f : Eval(Var)→ {0, 1} = (Var → {0, 1})→ {0, 1}

cf. propositional semantics [[ϕ]]

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-46

Boolean operators on switching functions

• cf. truth tables
• all boolean operators and constants have (of course) an
analogue on switching functions
• syntax vs. semantics
• canonical (and/or normal) forms

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-47

Operators on switching functions (2)

Projection of a “bit-vector” onto a variable

projzi
: (Var → {0, 1})→ {0, 1}

Disjunction

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-47

Operators on switching functions (2)

Projection of a “bit-vector” onto a variable

projzi
: (Var → {0, 1})→ {0, 1}

Disjunction

(f1 ∨ f2)([z1 = b1, . . . , zk = bk]) =
max(f1([z1 = b1, . . . , zm = bm]), f2([zn = bn, . . . , zk = bk]))

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-48

Cofactors

Definition (Cofactors)

Assume a variable set Var = {z, y1, . . . , ym} and let
f : (Var → {0, 1})→ {0, 1} be a switching function over it.
The positive cofactor of f for variable z, written f |z=1 is
the switching function given by

f |z=1 (b1, . . . , bm) = f(1, b1, . . . , bm) (2)

The negative cofactor of f for z, written f |z=0 is defined
analogously. If f is a switching function for
{z1, . . . , zk, y1, . . . , ym}, then we write f |z1=b1,...,zk=bk

for
the iterated cofactor of f , given by

f |z1=b1,...,zk=bk
= (. . . (f |z=b1) . . .) |zk=bk

(3)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-49

Essential variables

Definition (Essential variable)

A variable z is essential for a switching function, if

f |z=1 6= f |z=0 . (4)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-50

Shannon expansion

Lemma (Shannon expansion)

Let f be a switching function for Var . Then

f = (¬z ∧ f |z=1) ∨ (z ∧ f |z=0) (5)

for all variables z from Var .

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-51

Binary decision tree z1 ∧ (¬z2 ∨ z3)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-52

Propositional encoding

T = (S,−→, I,P, L)

Task: encode by boolean formulas / switching functions

• all ingredients of T
• sat(_)
• realise operations during the mc-algo by operations on
the encodings, in particular pre

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-53

Characteristic function

Equivalent (isomorphic) views

• 2S ≡ S → {0, 1} (or S → B)
• B ⊆ S χB

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-54

Encoding states and subsets of states

• that this is possible, should be obvious
• use propositional variables x1, . . . , xn
• padding: assume S = Eval(~x) = {x1, . . . , xn} → {0, 1}

Sets of states B ⊆ S
χB : (Eval(~x)→ {0, 1} = (~x→ {0, 1})→ {0, 1}

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-55

Encoding the transition relation −→

−→ ⊆ S × S

• make a “copy” of ~x: different variables ~x′

• renaming operation on switching functions [y ← x]

Encode −→ as ∆

∆ : ((~x, ~x′)→ {0, 1})→ {0, 1},

∆(s1, s2[~x′ ← ~x]) =
{

1 if s1 −→ s2
0 else

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-56

Remember charaterization and the fixpoints

1. sat(>) = S.
2. sat(p) = {s ∈ S | p ∈ V (s), for any p ∈ P}.
3. sat(Φ1 ∧ Φ2) = sat(Φ1) ∩ sat(Φ2).
4. sat(¬Φ) = S \ sat(Φ).
5. sat(∃©Φ) = {s ∈ S | ∃s′.s −→ s′ ∧ s′ ∈ sat(Φ)}
6. sat(∃(Φ1 U Φ2)) is the smallest subset T of S

such that
6.1 sat(Φ2) ⊆ T and
6.2 s ∈ sat(Φ1) and ∃s′ ∈ T.s −→ s′ implies s ∈ T .

7. sat(∃�Φ) is the largest subset T of S such that
7.1 T ⊆ sat(Φ) and
7.2 s ∈ T implies ∃s′ ∈ T.s′ −→ s.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-57

∃© A means, calculating pre

pre-calulation as switching function

∃~x′.∆(~x, ~x′)︸ ︷︷ ︸
s∈pre(s′)

∧χA[~x′ ← ~x]︸ ︷︷ ︸
s′∈A

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-58

∃♦: basically iteration over pre

One step: Tj+1 = pre(Tj)

∃~x′.∆(~x, ~x′)︸ ︷︷ ︸
s∈pre(s′)

∧ fj [~x′ ← ~x]︸ ︷︷ ︸
s′∈Tj

(6)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-59

∃ U : not much harder...

1 f0(~x) := χA1 (~x) ;
2 j := 0 ;
3 r epeat
4 fj+1(~x) := fj+1(~x) ∨ (χA2 (~x) ∧ ∃~x′.∆(~x, ~x′) ∧ fj(~x′)) ;
5 u n t i l fj(~x) = fj−1(~x) ;
6 r e t u r n fj(~x) .

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-60

finally ∃�

1 f0(~x) := χA(~x) ;
2 j := 0 ;
3 r epeat
4 fj+1(~x) := fj+1(~x) ∧ ∃~x′.∆(~x, ~x′) ∧ fj(~x′)) ;
5 u n t i l fj(~x) = fj−1(~x) ;
6 r e t u r n fj(~x) .

Largest fixpoint

• sets get smaller in the iteration

Section
Binary decision diagrams

Chapter 4 “CTL and CTL∗”
Course “Model checking”
Martin Steffen
Autumn 2021

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-62

How to efficiently implement all that?

• switching functions

f : Eval(Var)→ {0, 1} = (Var → {0, 1})→ {0, 1}

• + operations thereon
• binary decision trees

z1 ∧ (¬z2 ∨ z3)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-63

Issues

• size: still exponential
• non-canonical

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-64

From BDTs to (RO)BDDs

• addressing both problems
• reduced ordered binary decision diagrams
• often “BDDs” just mean ROBDDs
• two general ideas

Two general ideas
to addess both mentioned problems.
Canonicity: fix an order on the variables

Size: don’t represent duplicate parts of the graph
more than once

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-65

As first easy step

BDT to OBDD
• have only 2 terminal nodes (for 0 and for 1), no
duplicate leaves (BDD), and
• fix an order on the var’s (OBDD)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-66

Example OBDD

a ∧ (¬b ∨ c) with order a < b < c

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-67

Reduced OBBDs

Reduce

Uniqueness
no 2 nodes for the same
variable have the
“same” high- and
low-children ⇒ merge
isomorphic subgraphs

non-redundent tests
no variable node has
identical high and low
children

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-68

Merge isomorphic subgraphs

a ∧ (¬b ∨ c) with order a < b < c

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-69

Remove reduncancy

a ∧ (¬b ∨ c) with order a < b < c

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-70

ROBDDs as canonical representation

Canonicity
For every boolean function f : (Var → {0, 1})→ {0, 1} and
a give variable ordering, there exists exactly one ROBDD
representing f

facts

equivalence checking satisfiability

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-70

ROBDDs as canonical representation

Canonicity
For every boolean function f : (Var → {0, 1})→ {0, 1} and
a give variable ordering, there exists exactly one ROBDD
representing f

facts

equivalence checking
linear time

satisfiability
constant time

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-71

But where is the catch?

Satisfiability
Isn’t SAT NP-complete?

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-72

Sensitivity to variable order

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-73

Sensitivity to variable order

• different variable orders ⇒ different ROBBDs
• crucial in practice to find a (in many cases) good order
• finding the best: NP-hard
• heuritics exists

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-74

Representing boolean functions is not all

• canonical, often (but not always) compact
representation
• we also need to “work” with them
• remember the CTL model checking algorithms

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-75

Boolean operators (Apply)

• boolean operators on (R)OBBDs
• recursively over the two OBDDs
• based on Shannon’s (or Boole’s) expansion
• preserve the order
• if working on ROBBs, re-reduce the result.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-76

Logical operations on OBDDs

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-77

Apply

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-78

Apply (cont’d)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Computation tree
logic

CTL model
checking
Fixpoints and
characterization of sat

Explicit vs. symbolic

Symbolic model
checking
Switching functions

Encoding

Binary decision
diagrams
Working with BDDs

4-79

Boolean quantification

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

5-80

References I

Bibliography

[1] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. (1992). Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2):142–170.

[2] Clarke, E. M. and Emerson, E. A. (1982). Design and synthesis of synchronisation skeletons using
branching time temporal logic specifications. In Kozen, D., editor, Proceedings of the Workshop on
Logic of Programs 1981, volume 131 of Lecture Notes in Computer Science, pages 244–263. Springer
Verlag.

[3] Queille, J. P. and Sifakis, J. (1982). Specification and verification of concurrent systems in CESAR.
In Dezani-Ciancaglini, M. and Montanari, U., editors, Proceedings of the 5th International
Symposium on Programming 1981, volume 137 of Lecture Notes in Computer Science, pages
337–351. Springer Verlag.

	CTL and CTL*

