
Course Script
IN 5110: Specification and
Verification of Parallel Sys-
tems
IN5110, autumn 2021

Martin Steffen

https://martinsteffen.github.io/

ii Contents

Contents

5 SAT-based & bounded model checking 1
5.1 Intro . 1

5.1.1 What else need to be taken care of? 4
5.2 Bounded semantics . 5
5.3 Propositional encoding . 10

5 SAT-based & bounded model checking 1

5
SAT-based & bounded model checking
Chapter

What
is it

about?
Learning Targets of this Chapter

Bounded-model checking
Contents

5.1 Intro 1
5.2 Bounded semantics 5
5.3 Propositional encoding 10

5.1 Intro

The slides here take inspiration from the presentation [4] and the article [3]. Another good
(handbook-)article is [1].

We have talked about model checking, i.e., solving the problem whether or not a model
satisfies a given formula, of M |=? ϕ. The focus was on the model being a transition system
T , typically finite state, and the formula expressing some temporal property, written in
some some temporal logic or other. In particular we have covered so far LTL and automata-
based model checking and symbolic CTL model checking, using BDDs.

Definition 5.1.1 (Kripke structure). A Kripke structure or transition system is a tuple
(S, I,−→, V) where S is the set of states,I ⊆ S the set of initial states, −→ ⊆ S × S
the transition relation, and V : S → 2P the valuation function (aka. (state) labelling
function).

The conceptual idea of bounded model checking is quite trivial. When facing the task of
verifying a system, we simply give up on exploring all of the system, but content ourselves
in exploring it only up-to some point, i.e., imposing an upper bound on the exploration.
In the context of LTL-model checking, the upper bound is on the depth of exploration,
i.e., one puts a upper bound on the length on the paths the model checker explores.

Of course, the idea of putting an bound on the amount of effort spent in analysing a
system or model can take different forms. One could for instance limit the time the model
checker runs (or stop it from running if one looses patience waiting for an outcome).
That would also in a way be bounded model checking thought it would not fall into a
what is conventionally be called a bounded model checking technique; it would be too
ad-hoc. Characteristic for classical bounded model checking is also, that model checking
is presented as a SAT-solving problem, and just shutting down a process when it runs too
long does not qualify for that.

2 5 SAT-based & bounded model checking
5.1 Intro

But besides bounding the length of the paths, other criteria have been studied, for instance
the number of context switching in parallel processes etc. We will not cover alternatives,
but focus on the classical situation: exploring a system only up-to a paths of a fixed
length.

Above it was said that bounded model checking gives up the hope of exploring the whole
system, basically giving up the hope of system verification. One should probably formulate
that less categorical.

First, in principle bounded model checking may not give that up, one could increase the
bound iteratively until it spots an error or if one knows the bound is big enough. For
finite-state systems such may be possible. But on the other hand, even if possible, it is
somehow not too natural and a bit against the spirit of bounded model checking, which
focuses more on spotting errors within exactly specified bounds. Bounded model checking
shares this spirit-ual focus of finding errors with testing (focusing on a finite set of test
cases) and with run-time verification (looking just at one run).

Secondly, and probably more importantly: that unbounded model checking allows full and
absolute verification of correct systems resp. finding bugs in faulty ones is also more a
fiction. In the introductory part we discussed why that is is a naive view in practice. One
is that model checking typically works with models of the real system and with certain
abstractions. That alone may result in that some errors are overlooked (and/or lead to
the detection of spurious errors, which are errors caused by the abstraction but absent in
the more detailed system). And even in when abstracting away from certain details, the
state space may still be infinite or too big. So, when doing “unbounded” model checking
in such a situation, the analysis may find its natural bounds by the maximum memory
usage, for instance, or the practically acceptable running time.

Back from the more philosophical remarks, back to the technical realization of the general
idea of exploring all paths up to a fixed length of k. An important aspect of the approach
we have encountered already in connection with CTL-model checking. In a quite different
form, thought, but there is the general commonality of a

symbolic treatment via a propositional encoding for the purpose of the
exploration.

In the context of CTL model checking we have looked at how different propositional
constructs, ultimatly how propositional constraints can be represented and worked with.
The propositional encoding back then was to capture sets of states, and the transition
system etc. At some level, those entities where described by (quantified) boolean formulas.
The formulic constraints were interpreted as boolean (swiching) functions, ultimatelty
represented as ROBDDs.

Here, we are concerned representing finite paths through a given transition system (not
(the evolution of) sets of states as in the CTL case). That means, the boolean formulas
look different, but the idea is similar.

In the CTL case, which does a backwards, breadth-first exploration, a crucial ingredient
was to capture the set of predecessor states for a given set A of states. That set spre(A)
was captured by a formula that relied on (propositional) existential quantification and

5 SAT-based & bounded model checking
5.1 Intro 3

relied on the propositional representation of the states and the transition relation −→ of
the transition system.

Following similar ideas, it’s plausible that one can represent a finite path of the form

s0 −→ s1 −→ . . . −→ sm . (5.1)

As mentioned earlier, in its basic form, bounded model checking focuses in finding errors,
namely errors that can be spotted with a finite distance, say k, from the initial states.
One could, if one prefers that, spot errors with a finite distance of a different point in the
program, or errors doing the same thing backwards, i.e., errors at most k-step before a
given point, maybe before the end of the program. Those variations are inessential for the
idea, and let’s discuss it by assuming we do it forward, and start at an initial state, and
let’s assume there’s only one of those, which is a common set-up anyway.

Encoding the path from equation (5.1) as SAT problem descibes all paths of finite length
m, i.e., the solutions to that SAT-problem are those paths. Indirectly that descibes also
all states sm that are at a distance m away from the initial state s0.

Now, if we see bounded model checking as a form of bug-hunting with a bound how deep
to look for a bug, then of course it’s not good enough to encode equation (5.1). Assume
that we are after a safety property, a simple invariance �A′, with A′ propositional. Seen
as a state formula, it means we want to establish resp. refute ∀�A′. To refute it means
to establish an existential state formula of the form

∃♦A (5.2)

(with A = ¬A′). Taking the path specification from equation (5.1), i.e., its SAT encoding
and with proposition A at hand, one can formulate that

s0 −→ s1 −→ . . . −→ sm ∧ sm satifies A (5.3)

The states are best understood as variables. As far as s0 is concerned, there may only be
one state that qualifies, under the assumption that the model has only one initial state.
Checking equation (5.3) for a satifying solution mean, looking for states s0, . . . sm such
that sm satisfies the proposition A. To say it differently but equivalently, the si are best
seen as exitentially quantified. At any rate, in this way, equation (5.3) does not represent
a particular path with concrete states s0 to sm, but all paths of length m that start at the
initial state and with some end-state sm that satisfies A. That symbolic treatment is similar
to what we have seen in CTL model checking where one crucial trick was to represent the
sets of states and the set of predecessor states of a given set in a propositional manner.

So we know that we can capture paths of length m and a witness to ∃♦A from equation
(5.2). Let’s abbreviate the corresponding formula from equation (5.3) by

∃♦mA (5.4)

with m fixed. Now, we are looking for witnesses at an arbitrary distances, i.e., what we
are actually after is something like ∃m : N.∃♦m. That’s not a propositional formula. The
inner existential quantifier is ok, we made use of existential quantifications also in the

4 5 SAT-based & bounded model checking
5.1 Intro

encoding of pre(A) for CTL model checking. It quantifies over finite entities, resp. their
propositional representation. So, that can be done propistionally, in so-called quantified
boolean or quantified propositional logics, which is ultimately not much different than
propositional logic without that operation. In particular it’s about finite structures.

But the outer quantification ∃m : N, that’s a different story, that’s no longer propositional.
Another way to see it, to look for a witness means to solve the sat-problem ∃♦A is to
solve

∃♦0A ∨ ∃♦1A ∨ ∃♦2A ∨ . . . (5.5)

That’s just a different way of expression the existential quantification over N. And of
course neither that is propositionally allowed. Disjunctions, of course, are allowed, but
equation (5.5) makes use of an inifinite disjunction, which one cannot do.

But that’s where the boundedness of bounded model checking comes in. The sat-constraint
∃♦A captures standard, unbounded model checking, unfortunately in a non-propositinal
way. But if we restrict ourselves to find a witness only up-to a fixed depth k, then the
setting becomes finite. Instead of the existential quantification over all natural numbers,
one has to deal only with a quantification ∃m ∈ {0, . . . , k}, resp. the infinite disjunction
from equation (5.5) is now defused to a propositional finite disjunction

k∨
m=0

∃♦mA (5.6)

5.1.1 What else need to be taken care of?

We sketched the core idea behind sat-based bounded model checking. In the short remarks,
we simplified the situation slightly, basically by focusing on finding a encoding for a the
problem ∃♦m≤kA and looking for a satisfying witness for that. That corresponds to
refuting the simple invariance property ∀�¬A, at least in a bounded manner.

However, we want apply the approach not just to formulas ∀�A′, which is the simplest
form of a safety property, but to all of LTL.

Generally, of course, that’s not possible: one cannot hope to verify or refute a property by
looking only at path of finite length. At least not the the way we told the story. Additional
considerations would come it, which are somehow orthogonal, and thus not in the spirit
of the story of bounded model checking as sat problem over finite paths. We leave those
extra considerations out in this discussion (for now, or completely).

That actually also applies to the situation from above, when reasoning about ∀�A′ in a
bounded manner. We can refute that property by finding a finite counter example. But
one cannot verify it in the described manner (without additional tricks), i.e., we cannot
decide the logical status of that formula.

The above formula is the simplest form of safety property. But the same can be said about
liveness properties, neither their status can be decided. The situation is somehow dual,

5 SAT-based & bounded model checking
5.2 Bounded semantics 5

however. Let’s take as property to verify ∀♦ϕ, which means ∃�¬ϕ for refutation resp. as
sat problem. In a bounded form, it’s about sat-solving

∃�≤k¬ϕ . (5.7)

If there exists a solution to the constraint, i.e., a path as witness for that formula, resp.
a counter-example for the original formula in its bounded form ∀♦≤kϕ, then we have a
finite witness-path where always ¬ϕ. But having established the constraint (5.7) does not
imply that also ∃�¬ϕ, in other words, we cannot dis-prove ∀♦ϕ. One the other hand, if
the constraint (5.7) is not satisfiable, it means ∀♦≤kϕ is the case, and that means also
unboundedly ∀♦ϕ where it holds.

So the safety property could be disproved in a bounded manner (if it actually does not
hold), and one gets counter-example for it. The sample liveness propert could be proved
(if it actually holds).

In some way, that’s not posible. There are properties that cannot be refuted in that
manner (nor can they be verified that way). At least not the the way we told the story.
Additional considerations would come it, which are somehow orthogonal, and thus not in
the spirit of the story of bounded model checking as sat problem over finite paths. We
leave those extra considerations out in this discussion (for now, or completely).

Without any extra tricks, it’s clear that one cannot verify a problem ∀♦ϕ, and one cannot
refute it, i.e. find a counter-example as a witness for the negation ∃�¬ϕ. Looking only at
paths up-to length k (and without extra tricks) gives no information about the status of
∀♦ϕ. Looking at a single path (for the sake of argument) and assuming that ϕ does not
hold up to k, it’s clear that without looking beyond the bound we cannot know

But we are of course not doing model checking on one path, but all paths up to a given
bound. If, by some lucky chance, ϕ would become true within the explored k-horizon
on all bounded paths, then one could conclude that ∀♦ϕ actually holds. But we are not
getting hold of all such paths. We are doing sat-solving and are working with ∃�¬ϕ. The
information we get is either

∃�≤k¬ϕ or ∀♦≤kϕ

and we only get to know that there exists bounded path where �¬ϕ or else not.

If there does not exist such bounded path where ¬ϕ is always true, it means ∀�≤kϕforit
has not information about the situation beyond the bound, and it does not help. If, on
the other hand, there exists a bounded path where �ϕ holds, it carries no information
eather

5.2 Bounded semantics

We have covered the standard semantics of LTL earlier, interpreting LTL formulas over
infinite paths. The interpretation of formulas over a transition system being a derived
notion.

6 5 SAT-based & bounded model checking
5.2 Bounded semantics

In the CTL-part, in particular in the model checking part, we restricted our interest to
formulas in a particular normal form, it was CTL-formulas in ENF, existential normal
form. We also mentioned that other normal forms exists, for CTL or other logics. We
use a quite common such normal form here for LTL and bounded model checking, namely
negation normal form, NFF.

In such a form, one restricts the use of negation in that only atomic propositions or
propositional variables are allowed to occur negated and negation cannot be used on
compound formulas. To compensate for that, we need both ∧ and ∨, both ♦ and � etc.

In the presentation (following [1]), we leave out, however, the until-operator and the other
binary temporal operators. Not that it would be complex, but the presentation is slightly
simpler.

An initialzed path satisfying ϕ is called a witness for ∃ϕ.

or counter example, remember refutation

π of a transition system T

witness of ϕ in T is a path starting in an initial states and that satisfies ϕ.

We assume the formulas in negation normal form.

Looking for witnesses for formulas of the form ∃♦ϕ. In other words the approach can deal
straightforwardly with finding counter-examples for formulas of the form ∀�ϕ′, generally
counter-examples to safety properties.

In the dual case of looking for counter-examples for liveness properties, i.e., looking for wit-
nesses of for instance formulas of the form ∃�ϕ, things get more involved. It’s intuitively
clear that a finite prefix of an infinite path cannot be used as witness for

∃�ϕ . (5.8)

Unless one adds one additional clever idea, a central one for bounded model checking in
the form discussed here.

The idea is to take into account looping behavior. Consider Figure 5.1, depicting a
loop or a lasso. Both words are used for that, in the original publication it was called
loop, though in the handbook article, the word “lasso” is used. I prefer lasso, and a lasso
consists of two parts, the stem, in the picture going from s0 to sl and the loop part, the
part depicted as cycle at the end.

The picture is a visualization of lasso or loop, but it’s (also) understood as a path, i.e.,
an infinite sequence of states (see Definition 5.2.1). The infinite path it respesents has a
finite prefix, the stem, and then an infinite repetition of the looping part (see also equation
(5.9)).

Even if, technically, a lasso is an infinite path, it can be finitely represented, as in Figure
5.1 and it also can detected looking only at a finite prefix. Having reached state sk and
detecting that one can continue to a state one has seen before, state sl in the picture,

5 SAT-based & bounded model checking
5.2 Bounded semantics 7

•s0 • •sl
• •si

•sk

Figure 5.1: A lasso

shows that there is a cycle in the transition system. It shows also that the prefix can be
extended to a infinite path by repeating the cycle forever. That means that in a situation
with a lasso, a finite prefix can actually serve as a witness for the from equation (5.8).
Note that it’s important that in the approach, looking for witnesses, we are dealing with
existentially quantified formulas ∃ϕ, so the detection of a loop shows there exists an infinite
path as witness. So a finite sequence of k + 1-states represents (the existance of) a lasso,
if continues, and we use the term lasso also for that finite representation consisting of
s0 . . . sk, with the last state sk as the one with the back-transition to some earlier sl.

Definition 5.2.1 (Lasso). Assume l ≤ k. A path π is a (k, l)-lasso if πk −→ πl and

π = u · vω (5.9)

with
u = π0 . . . πl−1 and v = πl . . . πk

A path π is a k-lasso if there exists an l with 0 ≤ l ≤ k s.t. π is a (k, l)-lasso

Of course, not all finite paths are k-lassos, for instance if all states are different. Techni-
cally, that’s not the only reason, why a path of length k + 1 is no lasso. The definition as
given insists that, to be a lasso, the last state sk loops back, if an earlier state sm with
m < k is repeated, then technically that’s not a loop. But its prefix s0s1 . . . sm would be.
In the larger picture, it’s not so important, as the approach works with prefixes of paths
of all length up-to a pre-defined upper bound say k, i.e., the lasso at m will be detected
and taken into account.

At any rate, some finite path of length k + 1 are lassos (or contain lassos in their prefix)
and some not. One could increase k, increasing also the chance to find some lassos. Having
a path with a lasso is a good thing, because, as explained, in this favorable situation, we
can hope to use it as witness for an �-style formula (or a counter-example for an original
liveness property). Of course not all lassos are factually a witness for such a formula, the
ϕ must also hold at all positions.

But for non-loop finite paths, the situation is worse. They can serve as witness for ∃♦ϕ
formulas; for that kind of properties the lassos play no role. But without loop, they don’t
contain information for ∀�ϕ-formulas.

When we will define the so-called bounded semantics for LTL, i.e., when a finite path
satisfies an LTL formula, we distinguish the two situations: paths which are lassos and
paths which are not. In both cases, sometimes the finite path can serve at a witness. In
this case the semantic will report back that this is the case.

8 5 SAT-based & bounded model checking
5.2 Bounded semantics

But there will be cases where the finite prefix contains not enough information to serve
as a witness (and to serve as counter-example for the original ∀-formula). We discussed
the case that obviously non-lasso prefixes can never serve as witness for �-formulas. But
the same problem, the fact that a finite prefix does not contain enough information, also
applies to ♦-formulas. If we want a witness for ♦ϕ, but the finite prefix contains no
occurrence of ϕ, we likewise don’t know.

The question is

What should the semantics give as an answer is such “don’t know’-situations?

One possibility could be to work not with a binary logic with true and false, but perhaps
with true, false, and “don’t know”. Some approaches for run-time verification use a 3-
valued version of LTL for that.1 But here we do something else. We stick to 2 boolean
values, but in case of not knowing, the bounded semantics reacts pessimistically and gives
false as judgement. The emphasis is on finding a witness for a formula (resp. a counter-
example for the non-negated property), and if the length of exploration cannot be used as
such a witness, then, with the current bound, there is no witness (yet) and the finite path
does not satify the formula in the bounded semantics.

Let’s now define the bounded semantics, and let’s do that in the form of a satisfaction
relation |=, as before. The bounded version is written |=k, where k is the bound up-to
which we consider the path. As mentioned, the definition is given in two “variants”, one
for paths which are in the form of a lasso, and one for finite paths where that is not the
case. In the latter case we will also work with a refined version of |=k, written |=i

k, see
below. Let’s start with the lasso-case.

Definition 5.2.2 (Bounded semantics: with lasso). Let π be a k-loop. A formula
ϕ is valid along π with bound k, written

π |=k ϕ iff π |= ϕ .

The definition is quite trivial, it’s the original, unchanged semantics |=. In the presence
of a k-loop and with the bound at k, we have all the information we need. The loop case
is exact, non approximative.

On the other hand, that’s only the case if we consider the bounded semantics on one path
(as the definition does). In the larger conceptual picture, we are exploring a transition
system, and we are exploring paths up-to a bound of k. Thinking in particular about
looking for a witness for ∃�ϕ, in the positive case, namely that the formula holds, the
semantic is exact also in the larger picture of exploring the transition system. In the
negative outcome, however, when the lasso-path does not satisfy the formula, of course it
does not mean . . .

1Actually also 4-valued version. It’s 4 values in that they make use of 2 version of “unknown”, somehow
like “unknown, but it looks good”, and “unknown, but it looks bad”, a “tendency” towards true resp
false. This is an informal description and not 100% accurate, and there are technical reasons which
speak for 4 values instead of 3.

5 SAT-based & bounded model checking
5.2 Bounded semantics 9

Definition 5.2.3 (Bounded semantics: without lasso).

π |=i
k p iff p ∈ L(πi)

π |=i
k ¬p iff p /∈ L(πi)

π |=i
k ϕ1 ∧ ϕ2 iff π |=i

k ϕ1 and π |=i
k ϕ2

π |=i
k ϕ1 ∨ ϕ2 iff π |=i

k ϕ1 or π |=i
k ϕ2

π |=i
k �ϕ is always false

π |=i
k ♦ϕ iff ∃j.i ≤ j ≤ k. π |=j

k ϕ

π |=i
k ©ϕ iff i < k and π |=i+1

k ϕ

π |=i
k ϕ1 U ϕ2 iff ∃j, i ≤ j ≤ k.π |=j

k ϕ2 and ∀n, i ≤ n < j.π |=n
k ϕ1

π |=i
k ϕ1 R ϕ2 iff ∃j, i ≤ j ≤ k.π |=j

k ϕ1 and ∀n, i ≤ n < j.π |=n
k ϕ2

Now that we have established the bounded semantics, we look into it connection to the
original one. Basically, in the limit, both semantics coincide. The bounded semantics is an
approximation of the real semantics, in the sense that in case of a positive answer in the
bounded semantics, that carries over to the real, unbounded semantics. In other words,
the bounded semantics is a sound approximation of the unbounded semantics, and that
for every bound k. See Lemma 5.2.4.

Lemma 5.2.4 (Soundness (per path)).

π |=k ϕ implies π |= ϕ

That’s not surprising, and was easy to achieve: the bounded semantics in case of not having
enough information, stipulated that the formula does not hold. The reverse direction,
completeness is harder, and it means that ultimately, if a formula for existential LTL
holds in a transition system, it also holds for the bounded semantics, if only the k is large
enough. See Lemma 5.2.5.

Lemma 5.2.5 (Completeness (for TSs/KSs)).

S |= ∃ϕ implies S |=k ∃ϕ for some k ≥ 0

Both results together give the following

Theorem 5.2.6.
S |= ∃ϕ iff S |=k ∃ϕ for some k ≥ 0

So, to use a bounded model checker, one has pick a large enough k and the tool gives
the correct answer. The k may not be known, so one could guess one. Or better, model
checker could increase the k automaticall in case an attempt is unsuccessful, hoping that
one finds an positive answer at some point and before running out of resources.

Besides that one may well run out of resouces before one gets a positive answer, banking
in on soundness, the case where the ∃ϕ does not hold is principally more problematic.

10 5 SAT-based & bounded model checking
5.3 Propositional encoding

Completeness from Lemma 5.2.5 states that in this case, one need to check |=k for all
k ≥ 0! That’s of course not doable.

The existential LTL formula ∃ϕ is typically the negation of a standard ∀-formula, one
tries to refute. That’s why we said, bounded model checking focuses on finding bugs (i.e.,
refuting the original formula), but not on verification: one cannot check the bounded
model checking problem for all k.

There are things one can do about that. For instance, in a finite-state system, if one knows
the size of the transition system (more precisely its diameter), one can use that to know
when there’s no use in looking for larger k’s, and if until then one has not found a witness
(a counter-example to the original ∀-formula), one is sure there is none. But we don’t into
that further.

5.3 Propositional encoding

Next we will present how a bounded model checking problem can be addressed by sat-
solving by showing an encoding of such problems. We show the encoding as originally
proposed, which is a pretty straightforward translation of the bounded LTL semantics
and of course the transition system into propositional logics. Indeed, afterwards, other
encodings and representation have been proposed, for instance some working with Büchi-
automata or other techniques that lead to more efficient implementations. See for instance
[5] which is also covered in [1]. Also explicit-state, non-symbolic method have been ex-
plored for bounded model checking. See for instance for some discussion of different
techniques [2].

Here, as said, we stick to the original proposal of the encoding. Some of that we basically
know already from symbolic model checking of CTL, namely how to encode the transition
system. Here we don’t need to encode the set of predecessors pre, but finite paths through
the system, but the priciples are the same. Talking about CTL model checking: in that
part we continued to explain how the encoding can be understood as boolean switching
functions, and how those can be canonically represented as BDDs. That one popular way
in CTL model checking.

Here we don’t do that, we just show the formulaic representation as boolean formula. How
to handle those we leave to a SAT-solver, which may not be based on BDDs; most SAT
solvers are using variations of David-Putnam’s procedure (DP).

Goal: [[T, ϕ]]k is satisfiable by some π iff π is a witness for ϕ

The encoding will be done in three separate parts, one dealing with the (finite paths) of
the given transition system. Secondly, capturing the loop or lasso condition, and finally,
representing the formula ϕ, resp. its bounded satisfaction relation. The latter part is split
into the semantics dealing with paths with a lasso, and those without (as it was defined
earlier)

5 SAT-based & bounded model checking
5.3 Propositional encoding 11

Encoding the transition system

Let’s start with the transition system, resp. bounded paths through it. Let T be a
transition system, then

[[T]]k , I(s0) ∧
k−1∧
i=0

si −→ si+1 (5.10)

Loop condition

Remember the concept of (k, l)-loop or lasso and of k-lasso from Definition 5.2.1 (remember
also Figure 5.1). Both are readily encodable. lLk, representing a (k, l)-loop is a simple
abbreviation for the fact that there is an edge in the transition system between the to
involved states.

lLk , sk −→ sl

With that the k-lasso is given as a finite disjunction (or bounded existential quantification)
as follow:

Definition 5.3.1 (Loop condition).

Lk ,
k∨

l=0
lLk

Encoding (the semantics of) ϕ

Earlier, the bounded semantics was defined using the relation |=. Here we capture the
semantics as the set of states where the formula holds, i.e., for encode [[_]].

Lasso-case: bounded semantics for a (k, l)-loop Encoding the propositional part as
propositnal formula is, of course, trivial

l[[p]]ik , p(si)
l[[¬p]]ik , ¬p(si)

l[[ϕ1 ∧ ϕ2]]ik , l[[ϕ1]]ik ∧ l[[ϕ2]]ik
l[[ϕ1 ∨ ϕ2]]ik , l[[ϕ1]]ik ∨ l[[ϕ2]]ik

The temporal part is a but more interesting. To do that, we also need to “define” the
successor of a state, resp. we need to convince ourselves that one can propositionally refer

12 5 SAT-based & bounded model checking
5.3 Propositional encoding

to the successor of a state in a path with a loop. We use succ(i) to refer to the successor
of i in a (k, l)-loop as

succ(i) =
{
i+ 1 for i < k
l for k (5.11)

l[[�ϕ]]ik , l[[ϕ]]ik ∧ l[[�ϕ]]succ(i)
k

l[[♦ϕ]]ik , l[[ϕ]]ik ∨ l[[♦ϕ]]succ(i)
k

l[[©ϕ]]ik , l[[ϕ]]succ(i)
k

l[[ϕ1 U ϕ2]]ik , l[[ϕ1]]ik ∨ l[[ϕ1 U ϕ2]]succ(i)
k

l[[ϕ1 R ϕ2]]ik , l[[ϕ2]]ik ∧ l[[ϕ1 R ϕ2]]succ(i)
k

Translation for paths without a loop The translation follows the same principles (the
index l is not needed obviously here). And instead of the more “complex” succ(i) from
before, we can simply use i+ 1, otherwise: the definition stays “the same”

The propositional part is boring again (and we don’d show it):

For the temporal case, we can make, we have ∀i ≤ k:

[[�ϕ]]ik , [[ϕ]]ik ∧ [[�ϕ]]i+1
k

[[♦ϕ]]ik , [[ϕ]]ik ∨ [[♦ϕ]]i+1
k

[[©ϕ]]ik , [[ϕ]]i+1
k

[[ϕ1 U ϕ2]]ik , [[ϕ1]]ik ∨ [[ϕ1 U ϕ2]]i+1
k

[[ϕ1 R ϕ2]]ik , [[ϕ2]]ik ∧ [[ϕ1 R ϕ2]]i+1
k

We can see it as induction case. The “induction” goes backwards insofar the situation of
i is defined in terms of i+ 1. So the base case is the one at the end, namely for k + 1.

[[ϕ]]k+1
k , false (5.12)

Putting it together Finally, we can put the three ingredients together, the encoding of
the paths, the loop condition, and the encoding of the formula.

[[S, ϕ]]k , [[S]]k∧
((¬Lk ∧ [[ϕ]]0k)
∨ (

∨k
l=0(lLk ∧ l[[ϕ]]0k))

(5.13)

Theorem 5.3.2.
[[S, ϕ]]k satisfiable iff S |=k ∃ϕ .

Bibliography
Bibliography 13

Bibliography
[1] Biere, A. (2009). Bounded model checking. In Biere, A., Heule, M., van Maaren, H.,

and Walsh, T., editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, pages 457–481. IOS Press.

[2] Clarke, E., Kroening, D., Ouaknine, J., and Strichman, O. (2005). Computational
challenges- in bounded model checking. Software Tools for Technology Transfer (STTT),
7(2):174–184.

[3] Clarke, E. M. (2008). Model checking – my 27-year quest to overcome the state ex-
plosion problem. In Cervesato, I., Veith, H., and Voronkov, A., editors, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning: 15th International Conference, LPAR
2008, Doha, Qatar, November 22-27, 2008. Proceedings, Lecture Notes in Artificial In-
telligence, pages 182–182. Springer Verlag.

[4] Clarke, E. M. (2017). SAT-based bounded and unbounded model checking. Available
electronically on the net. Data of publication unknown.

[5] Latvala, T., Biere, A., Heljanko, K., and Junttila, T. (2004). Simple bounded ltl
model checking. In Hu, A. J. and Martin, A. K., editors, Proceedings of the 5th In-
ternational Conference on Formal Methods in Computer-Aided Design (FMCAD’04),
Austin, Texas, USA, November 2004., volume 3312 of Lecture Notes in Computer Sci-
ence. Springer Verlag. An extended version is available as University of Helsinki Tech-
nical Report UT-TCS-A92.

14 Index
Index

Index
lasso, 6

NFF, 6

	Contents
	SAT-based & bounded model checking
	Intro
	What else need to be taken care of?

	Bounded semantics
	Propositional encoding

