
Chapter 5
Sat-based & Bounded model check-
ing

Course “Model checking”
Martin Steffen
Autumn 2021

Section
Introduction

Chapter 5 “Sat-based & Bounded model checking”
Course “Model checking”
Martin Steffen
Autumn 2021

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-3

Model checking

S |=? ϕ

• origin [7]1 & [11]
• S (model of the) system,
• ϕ: formula in a suitable logic

• LTL
• CTL, CTL∗, modal µ-calculus
• . . .

• ultimately a fancy “graph exploration problem” (with
big graphs)

1the conference was 1981, the book was published 1982

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-4

Advantages of MC

• no proofs, “push button”
• diagnostic counterexamples
• logics used for MC can express many concurrency
problems

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-5

Main “disadvantage”

• state space explosion problem (aka state explosion
problem)
• problem “solution” space grows exponential is the
problem “description” space
• notably reachable state space exponential in the number

of processes

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-6

The 4 big breakthroughs combatting the
SSEP
Apart from
• advances in data structures,
• software engineering,
• tricks, optimizations, heuristics and
• general advances in processing power/memory.

Clarke identifies the following

“big 4” breakthroughs

1. symbolic techniques (notably using BDDs)2

2. partial order reduction
3. bounded model checking
4. CEGAR, localisation reduction [9] [4] [3]

2See later presentations

Section
SAT solving and SMT

Chapter 5 “Sat-based & Bounded model checking”
Course “Model checking”
Martin Steffen
Autumn 2021

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-8

SAT

• (boolean) satisfiability
• famous , prototypical NP-complete problem
•

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-9

SAT solver progress

• highly competitive field
• yearly “SAT-competition”3

taken from [6]

3http://www.satcompetition.org/

http://www.satcompetition.org/

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-10

Bounded model checking

• Origin: [1] (see also [2])

BMC starting point
Leverage sat-solving, a powerful a successful technique, to
do model checking

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-11

Cf.: Symbolic model checking and BDDs

• See separate presentation
• successful technique
• used (most prominently for HW) in industrial uses of
MC
• Two ingredients of SMC

• operating symbolically on representation of sets of
states

• use BDDs (= specific kind of graph representation of
boolean functions) to represent and operate on them

• like SMC/BDD-based MC: BMC based on “boolean
encodings”

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-12

Bad news: the MC problem/reachability is
not a SAT problem :-(
• MC here:4

• models are kind of transition systems/Kripke structures
. . .

• spec’s are “temporal logic” formulas

solving an MC problem
It all boils down to some form of fancy graph reachability

• “reachability”, however:
• a form of “fixpoint” calculation5
• fixpoints are emphatically not part of boolean logic.6

4The term “model checking”, i.e., solving M |=? ϕ can be applied in
different settings as well. A boolean assignment can be seen as model of
a propositional formula, for instance. That is of course a SAT problem.
But we are interested transition systems satisfying a TL formula.

5see also the presentation about µ-calculus.
6They are not even part of first-order logic. Implicitly they are part

in temporal logics, though (eventually, until etc.)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-13

Good news: bounded MC can be seen as
SAT :-)

less ambitious goal
Can I find an error (conterexample) in the behavior of the
system considering up-to k steps from the initial states

• price to pay: no more “verification”7

• bug-hunting
• simple core idea

7but MC is typically verification of a model/abstraction anyhow
and/or verification up until the MC runs out of time/memory.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-14

LTL and “existential” LTL

• remember: LTL (linear time temporal logic) and
definition of

S |= ϕ

• ϕ must hold for all paths of S
• If S 6|= ϕ (error), then exists a paths π such that
π 6|= ϕ

For explicitness’ sake
path quantifiers8

∀ϕ and ∃ϕ

• assume NNF

8one single quantifier as prefix to an LTL formula.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-15

Terminology: witnesses

counterexample for

S |= �p corresponds to S |= ∀�p

corresponds to the question if there exists a witness9

♦¬p

• Goal: find finite (fixed bound) prefixes as witness to
an existential model checking problem (LTL)
• conceptually easy if original ∀ϕ is a safety prop.
• liveness? witness for ∃�?

9in logics in general, a witness is a thing (here a path) that gives
(constructive) evidence to an existential formula

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-15

Terminology: witnesses

counterexample for

S |= �p corresponds to S |= ∀�p

corresponds to the question if there exists a witness9

♦¬p

• Goal: find finite (fixed bound) prefixes as witness to
an existential model checking problem (LTL)
• conceptually easy if original ∀ϕ is a safety prop.
• liveness? witness for ∃�? ⇒ loops

9in logics in general, a witness is a thing (here a path) that gives
(constructive) evidence to an existential formula

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-16

Paths with and without loops

No loop

• •si
• • •sk

• only prefix with back loop can be witness for �p

(k, l)-loop

•s0 • •sl
• •si

•sk

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-17

Loops
Given: TS/Kripke-structure. transition relation −→.

Definition
Assume l ≤ k. A path π is a (k, l)-loop if πk −→ πl and

π = u · vω (1)

with
u = π0 . . . πl−1 and v = πl . . . πk

A path π is a k-loop if there exists an l with 0 ≤ l ≤ k s.t. π
is a (k, l)-loop

• remember: paths π are (infinite) sequences of “states”
(worlds)
• loops here is about those states (not “edges” of the
picture)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-18

Bounded semantics

• remember the “normal” semantics of LTL from before,
relating formulas and paths
• [[ϕ]] or π |= ϕ

• now: the new “looping paths” (k-loops) as basis for
bounded semantics, i.e., basis for BMC
• note: “finite” prefixes (loops) can give information for
infinite paths, thus serve as witnesses
• boundes semantics for path

with loop: “unchanged”
without loop: be aware of the cut-off and be

pessimistic

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-19

Bounded semantics: for loops

Definition (Bounded semantics: with lasso)

Let π be a k-loop. A formula ϕ is valid along π with bound
k, written

π |=k ϕ ,

iff π |= ϕ.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-20

Bounded semantics: without loops

Definition
Let π be a path which is not a k-loop. Then an LTL formula
ϕ is valid along π with bound k, written

π |=k ϕ ,

iff π |=0
k ϕ, given below.

• earlier π |= ϕ, corresponding here to |=0

• k is treated as “cut-off”:
• what comes afterward: unknown
• if in doubt : “false”, i.e., the path is not valid/does not

satisfy the formula in the bounded manner
• for ©: don’t “look” beyond k
• for �: be pessimistic
• for ♦: positive answer at least possible within the bound

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-21

Bounded semantics: without loops (|=i
k)

Definition (Bounded semantics: without lasso)

π |=i
k p iff p ∈ L(πi)

π |=i
k ¬p iff p /∈ L(πi)

π |=i
k ϕ1 ∧ ϕ2 iff π |=i

k ϕ1 and π |=i
k ϕ2

π |=i
k ϕ1 ∨ ϕ2 iff π |=i

k ϕ1 or π |=i
k ϕ2

π |=i
k �ϕ is always false

π |=i
k ♦ϕ iff ∃j.i ≤ j ≤ k. π |=j

k ϕ

π |=i
k ©ϕ iff i < k and π |=i+1

k ϕ

π |=i
k ϕ1 U ϕ2 iff ∃j, i ≤ j ≤ k.π |=j

k ϕ2 and ∀n, i ≤ n < j.π |=n
k ϕ1

π |=i
k ϕ1 R ϕ2 iff ∃j, i ≤ j ≤ k.π |=j

k ϕ1 and ∀n, i ≤ n < j.π |=n
k ϕ2

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-22

Bounded → unbounded semantics
• Note, the connection is done for existential LTL
(formulas of the form ∃ϕ, not like ∀ϕ)
• unbounded semantics as limit of the bounded ones

(for all/arbitrary bounds k)

Lemma (Easy direction (per path))

π |=k ϕ implies π |= ϕ

Lemma (For TSs/KSs)

S |= ∃ϕ implies S |=k ∃ϕ for some k ≥ 0

Theorem

S |= ∃ϕ iff S |=k ∃ϕ for some k ≥ 0

Section
Reducing bounded model checking
to SAT

Chapter 5 “Sat-based & Bounded model checking”
Course “Model checking”
Martin Steffen
Autumn 2021

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-24

BMC via SAT

• so far:
• definition of the bounded MC problem
• we convinced ourself: BMC approximates MC (at least

for existential path formulas)
• Now: reduce to sat-solving

Goal
[[S, ϕ]]k is satisfiable iff π is a witness for ϕ

• sat -problems: formula with (propositional) variables
• encoding given in 3 parts. given k

1. valid initial path for S and
2. satisfaction of formula if

• there’s a loop or
• there’s no loop

• remember symbolic CTL model checking

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-25

Kripke-structure/transition system

Definition (Kripke structure)

A Kripke structure or transition system is a tuple
(S, I,−→, V) where S is the set of states,I ⊆ S the set of
initial states, −→ ⊆ S × S the transition relation, and
V : S → 2P the valuation function (aka. (state) labelling
function).

• transition relation: a predicate:10 −→ : S2 → B
• initial states: a predicate I : S → B

10[2] write T (s1, s2) for our infix relational notation s1 −→ s2, where
T is the transition relation predicate.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-26

1st component: Translating S

• remember transition system/Kripke stuctures S
• states si. Consider si as variables
• transition relation: as predicate T (sk, sl), we write still

infix sk −→ sl

• unfolding of the transition relation

[[T]]k , I(s0) ∧
k−1∧
i=0

si −→ si+1 (2)

• remember in CTL how we encoded S × S
• states in KS: propositional variables sk

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-27

Loop condition
• Remember the def. of (k, l)-loop
•s0 • •sl

• •si
•sk

• simple abbreviation

lLk , sk −→ sl

• loop condition holds11 iff there is a back loop from a
state sk back to a previous state sl (which can be sk)

Definition (Loop condition)

Lk ,
k∨

l=0
lLk

11resp. it will hold when applied to a path consisting of a sequence of
states si, which are considered as propositional variables, as said. the
word “back” makes sense only if one interprets the variables to be “in a
sequence”.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-28

Successor in a loop

a rather unsurprising definition: define “successor”

succ(i) of i in a (k, l)-loop as
• succ(i) = i+ 1 for i < k

• succ(i) = l for k

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-29

2nd component: translating formula with a
loop

propositional part: boring

l[[p]]ik , p(si)
l[[¬p]]ik , ¬p(si)

l[[ϕ1 ∧ ϕ2]]ik , l[[ϕ1]]ik ∧ l[[ϕ2]]ik
l[[ϕ1 ∨ ϕ2]]ik , l[[ϕ1]]ik ∨ l[[ϕ2]]ik

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-30

Cont’d
Actually straightforward
• loop → no cut-off → “standard semantics”
• remember unrolling of fixpoints12

temporal part: a bit more interesting

l[[�ϕ]]ik , l[[ϕ]]ik ∧ l[[�ϕ]]succ(i)
k

l[[♦ϕ]]ik , l[[ϕ]]ik ∨ l[[♦ϕ]]succ(i)
k

l[[©ϕ]]ik , l[[ϕ]]succ(i)
k

l[[ϕ1 U ϕ2]]ik , l[[ϕ1]]ik ∨ l[[ϕ1 U ϕ2]]succ(i)
k

l[[ϕ1 R ϕ2]]ik , l[[ϕ2]]ik ∧ l[[ϕ1 R ϕ2]]succ(i)
k

12Cf. also the presentation about the µ-calculus. Also in the
construction of the Büchi-automaton from an LTL formula, that
unrolling played a role (for U).

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-31

Translation without a loop

• same principles
• “index” l not needed
• instead of the more complex succ(i): simply i+ 1.
• otherwise: the definition stays “the same”)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-32

3rd component: translating formula without
a loop

Inductive case ∀i ≤ k:

propositional part: boring again

[[p]]ik , p(si)
[[¬p]]ik , ¬p(si)

[[ϕ1 ∧ ϕ2]]ik , [[ϕ1]]ik ∧ [[ϕ2]]ik
[[ϕ1 ∨ ϕ2]]ik , [[ϕ1]]ik ∨ [[ϕ2]]ik

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-33

Loop-case (cont’d)
Inductive case ∀i ≤ k:

temporal part: a bit more interesting

[[�ϕ]]ik , [[ϕ]]ik ∧ [[�ϕ]]i+1
k

[[♦ϕ]]ik , [[ϕ]]ik ∨ [[♦ϕ]]i+1
k

[[©ϕ]]ik , [[ϕ]]i+1
k

[[ϕ1 U ϕ2]]ik , [[ϕ1]]ik ∨ [[ϕ1 U ϕ2]]i+1
k

[[ϕ1 R ϕ2]]ik , [[ϕ2]]ik ∧ [[ϕ1 R ϕ2]]i+1
k

• base case: [[ϕ]]k+1
k , false

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-34

Putting it together

[[S, ϕ]]k , [[S]]k∧
((¬Lk ∧ [[ϕ]]0k)
∨ (

∨k
l=0(lLk ∧ l[[ϕ]]0k))

(3)

Theorem

[[S, ϕ]]ksatisfiable iff S |=k ∃ϕ .

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-35

Further info

• The technical slides here recap parts of the journal
article [2] by the inventors of BMC
• BMC for software [8]
• Survey [10]

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-36

References I
Bibliography
[1] Biere, A., Cimatti, A., Clarke, E. M., Fujita, M., and Zhu, Y. (2009). Symbolic model checking

using SAT procedures instead of BDDs. In Proceedings of DAC’09: Design Automation Conference,
pages 317–320. ACM.

[2] Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., and Zhu, Y. (2003). Bounded model checking.
Advances in Computers, 58(11):117–148.

[3] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. (2000). Counterexample-guided abstraction
refinement. In Emerson, E. A. and Sistla, A. P., editors, Proceedings of the 12th International
Conference on Computer-Aided Verification (CAV ’00), volume 1855 of Lecture Notes in Computer
Science, pages 154–169. Springer Verlag.

[4] Clarke, E. C., Kurshan, R. P., and Veith, H. (2010). The localization reduction and
counter-examble guided abstraction refinement. In Manna, Z. and Peled, D., editors, Pnueli
Festschrift, volume 6200 of Lecture Notes in Computer Science, pages 61–71. Springer Verlag.

[5] Clarke, E. M. (2008). Model checking – my 27-year quest to overcome the state explosion problem.
In Cervesato, I., Veith, H., and Voronkov, A., editors, Logic for Programming, Artificial Intelligence,
and Reasoning: 15th International Conference, LPAR 2008, Doha, Qatar, November 22-27, 2008.
Proceedings, Lecture Notes in Artificial Intelligence, pages 182–182. Springer Verlag.

[6] Clarke, E. M. (2017). SAT-based bounded and unbounded model checking. Available electronically
on the net. Data of publication unknown.

[7] Clarke, E. M. and Emerson, E. A. (1982). Design and synthesis of synchronisation skeletons using
branching time temporal logic specifications. In Kozen, D., editor, Proceedings of the Workshop on
Logic of Programs 1981, volume 131 of Lecture Notes in Computer Science, pages 244–263. Springer
Verlag.

[8] Kroening, D., Lerda, F., and Clarke, E. (2004). Bounded model checking for software. In Jensen, K.
and Podelski, A., editors, Proceedings of TACAS 2004, volume 2988 of Lecture Notes in Computer
Science. Springer Verlag.

[9] Kurshan, R. P. (1993). Automata Theoretic Verification of Coordinating Processes. Princeton
University Press.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

SAT solving and
SMT

Reducing bounded
model checking to
SAT

5-37

References II

[10] Prasad, M. R., Biere, A., and Gupta, A. (2005). A survey of recent advances in sat-based formal
verification. International Journal on Software Tools for Technology Transfer, 7(2):156–173.

[11] Queille, J. P. and Sifakis, J. (1982). Specification and verification of concurrent systems in
CESAR. In Dezani-Ciancaglini, M. and Montanari, U., editors, Proceedings of the 5th International
Symposium on Programming 1981, volume 137 of Lecture Notes in Computer Science, pages
337–351. Springer Verlag.

	Sat-based & Bounded model checking

