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Model checking

S |=? ϕ

• origin [7]1 & [11]
• S (model of the) system,
• ϕ: formula in a suitable logic

• LTL
• CTL, CTL∗, modal µ-calculus
• . . .

• ultimately a fancy “graph exploration problem” (with
big graphs)

1the conference was 1981, the book was published 1982
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Advantages of MC

• no proofs, “push button”
• diagnostic counterexamples
• logics used for MC can express many concurrency
problems
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Main “disadvantage”

• state space explosion problem (aka state explosion
problem)
• problem “solution” space grows exponential is the
problem “description” space
• notably reachable state space exponential in the number

of processes
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The 4 big breakthroughs combatting the
SSEP
Apart from
• advances in data structures,
• software engineering,
• tricks, optimizations, heuristics and
• general advances in processing power/memory.

Clarke identifies the following

“big 4” breakthroughs

1. symbolic techniques (notably using BDDs)2

2. partial order reduction
3. bounded model checking
4. CEGAR, localisation reduction [9] [4] [3]

2See later presentations
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SAT

• (boolean) satisfiability
• famous , prototypical NP-complete problem
•
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SAT solver progress

• highly competitive field
• yearly “SAT-competition”3

taken from [6]

3http://www.satcompetition.org/

http://www.satcompetition.org/
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Bounded model checking

• Origin: [1] (see also [2])

BMC starting point
Leverage sat-solving, a powerful a successful technique, to
do model checking
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Cf.: Symbolic model checking and BDDs

• See separate presentation
• successful technique
• used (most prominently for HW) in industrial uses of
MC
• Two ingredients of SMC

• operating symbolically on representation of sets of
states

• use BDDs (= specific kind of graph representation of
boolean functions) to represent and operate on them

• like SMC/BDD-based MC: BMC based on “boolean
encodings”
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Bad news: the MC problem/reachability is
not a SAT problem :-(
• MC here:4

• models are kind of transition systems/Kripke structures
. . .

• spec’s are “temporal logic” formulas

solving an MC problem
It all boils down to some form of fancy graph reachability

• “reachability”, however:
• a form of “fixpoint” calculation5
• fixpoints are emphatically not part of boolean logic.6

4The term “model checking”, i.e., solving M |=? ϕ can be applied in
different settings as well. A boolean assignment can be seen as model of
a propositional formula, for instance. That is of course a SAT problem.
But we are interested transition systems satisfying a TL formula.

5see also the presentation about µ-calculus.
6They are not even part of first-order logic. Implicitly they are part

in temporal logics, though (eventually, until etc.)
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Good news: bounded MC can be seen as
SAT :-)

less ambitious goal
Can I find an error (conterexample) in the behavior of the
system considering up-to k steps from the initial states

• price to pay: no more “verification”7

• bug-hunting
• simple core idea

7but MC is typically verification of a model/abstraction anyhow
and/or verification up until the MC runs out of time/memory.
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LTL and “existential” LTL

• remember: LTL (linear time temporal logic) and
definition of

S |= ϕ

• ϕ must hold for all paths of S
• If S 6|= ϕ (error), then exists a paths π such that
π 6|= ϕ

For explicitness’ sake
path quantifiers8

∀ϕ and ∃ϕ

• assume NNF

8one single quantifier as prefix to an LTL formula.
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Terminology: witnesses

counterexample for

S |= �p corresponds to S |= ∀�p

corresponds to the question if there exists a witness9

♦¬p

• Goal: find finite (fixed bound) prefixes as witness to
an existential model checking problem (LTL)
• conceptually easy if original ∀ϕ is a safety prop.
• liveness? witness for ∃�?

9in logics in general, a witness is a thing (here a path) that gives
(constructive) evidence to an existential formula
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Terminology: witnesses

counterexample for

S |= �p corresponds to S |= ∀�p

corresponds to the question if there exists a witness9

♦¬p

• Goal: find finite (fixed bound) prefixes as witness to
an existential model checking problem (LTL)
• conceptually easy if original ∀ϕ is a safety prop.
• liveness? witness for ∃�? ⇒ loops

9in logics in general, a witness is a thing (here a path) that gives
(constructive) evidence to an existential formula
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Paths with and without loops

No loop

• •si
• • •sk

• only prefix with back loop can be witness for �p

(k, l)-loop

•s0 • •sl
• •si

•sk
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Loops
Given: TS/Kripke-structure. transition relation −→.

Definition
Assume l ≤ k. A path π is a (k, l)-loop if πk −→ πl and

π = u · vω (1)

with
u = π0 . . . πl−1 and v = πl . . . πk

A path π is a k-loop if there exists an l with 0 ≤ l ≤ k s.t. π
is a (k, l)-loop

• remember: paths π are (infinite) sequences of “states”
(worlds)
• loops here is about those states (not “edges” of the
picture)
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Bounded semantics

• remember the “normal” semantics of LTL from before,
relating formulas and paths
• [[ϕ]] or π |= ϕ

• now: the new “looping paths” (k-loops) as basis for
bounded semantics, i.e., basis for BMC
• note: “finite” prefixes (loops) can give information for
infinite paths, thus serve as witnesses
• boundes semantics for path

with loop: “unchanged”
without loop: be aware of the cut-off and be

pessimistic
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Bounded semantics: for loops

Definition (Bounded semantics: with lasso)

Let π be a k-loop. A formula ϕ is valid along π with bound
k, written

π |=k ϕ ,

iff π |= ϕ.
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Bounded semantics: without loops

Definition
Let π be a path which is not a k-loop. Then an LTL formula
ϕ is valid along π with bound k, written

π |=k ϕ ,

iff π |=0
k ϕ, given below.

• earlier π |= ϕ, corresponding here to |=0

• k is treated as “cut-off”:
• what comes afterward: unknown
• if in doubt : “false”, i.e., the path is not valid/does not

satisfy the formula in the bounded manner
• for ©: don’t “look” beyond k
• for �: be pessimistic
• for ♦: positive answer at least possible within the bound
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Bounded semantics: without loops (|=i
k)

Definition (Bounded semantics: without lasso)

π |=i
k p iff p ∈ L(πi)

π |=i
k ¬p iff p /∈ L(πi)

π |=i
k ϕ1 ∧ ϕ2 iff π |=i

k ϕ1 and π |=i
k ϕ2

π |=i
k ϕ1 ∨ ϕ2 iff π |=i

k ϕ1 or π |=i
k ϕ2

π |=i
k �ϕ is always false

π |=i
k ♦ϕ iff ∃j.i ≤ j ≤ k. π |=j

k ϕ

π |=i
k ©ϕ iff i < k and π |=i+1

k ϕ

π |=i
k ϕ1 U ϕ2 iff ∃j, i ≤ j ≤ k.π |=j

k ϕ2 and ∀n, i ≤ n < j.π |=n
k ϕ1

π |=i
k ϕ1 R ϕ2 iff ∃j, i ≤ j ≤ k.π |=j

k ϕ1 and ∀n, i ≤ n < j.π |=n
k ϕ2
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Bounded → unbounded semantics
• Note, the connection is done for existential LTL
(formulas of the form ∃ϕ, not like ∀ϕ)
• unbounded semantics as limit of the bounded ones

(for all/arbitrary bounds k)

Lemma (Easy direction (per path))

π |=k ϕ implies π |= ϕ

Lemma (For TSs/KSs)

S |= ∃ϕ implies S |=k ∃ϕ for some k ≥ 0

Theorem

S |= ∃ϕ iff S |=k ∃ϕ for some k ≥ 0
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BMC via SAT

• so far:
• definition of the bounded MC problem
• we convinced ourself: BMC approximates MC (at least

for existential path formulas)
• Now: reduce to sat-solving

Goal
[[S, ϕ]]k is satisfiable iff π is a witness for ϕ

• sat -problems: formula with (propositional) variables
• encoding given in 3 parts. given k

1. valid initial path for S and
2. satisfaction of formula if

• there’s a loop or
• there’s no loop

• remember symbolic CTL model checking
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Kripke-structure/transition system

Definition (Kripke structure)

A Kripke structure or transition system is a tuple
(S, I,−→, V ) where S is the set of states,I ⊆ S the set of
initial states, −→ ⊆ S × S the transition relation, and
V : S → 2P the valuation function (aka. (state) labelling
function).

• transition relation: a predicate:10 −→ : S2 → B
• initial states: a predicate I : S → B

10[2] write T (s1, s2) for our infix relational notation s1 −→ s2, where
T is the transition relation predicate.
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1st component: Translating S

• remember transition system/Kripke stuctures S
• states si. Consider si as variables
• transition relation: as predicate T (sk, sl), we write still

infix sk −→ sl

• unfolding of the transition relation

[[T ]]k , I(s0) ∧
k−1∧
i=0

si −→ si+1 (2)

• remember in CTL how we encoded S × S
• states in KS: propositional variables sk
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Loop condition
• Remember the def. of (k, l)-loop
•s0 • •sl

• •si
•sk

• simple abbreviation

lLk , sk −→ sl

• loop condition holds11 iff there is a back loop from a
state sk back to a previous state sl (which can be sk)

Definition (Loop condition)

Lk ,
k∨

l=0
lLk

11resp. it will hold when applied to a path consisting of a sequence of
states si, which are considered as propositional variables, as said. the
word “back” makes sense only if one interprets the variables to be “in a
sequence”.
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Successor in a loop

a rather unsurprising definition: define “successor”

succ(i) of i in a (k, l)-loop as
• succ(i) = i+ 1 for i < k

• succ(i) = l for k
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2nd component: translating formula with a
loop

propositional part: boring

l[[p]]ik , p(si)
l[[¬p]]ik , ¬p(si)

l[[ϕ1 ∧ ϕ2]]ik , l[[ϕ1]]ik ∧ l[[ϕ2]]ik
l[[ϕ1 ∨ ϕ2]]ik , l[[ϕ1]]ik ∨ l[[ϕ2]]ik
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Cont’d
Actually straightforward
• loop → no cut-off → “standard semantics”
• remember unrolling of fixpoints12

temporal part: a bit more interesting

l[[�ϕ]]ik , l[[ϕ]]ik ∧ l[[�ϕ]]succ(i)
k

l[[♦ϕ]]ik , l[[ϕ]]ik ∨ l[[♦ϕ]]succ(i)
k

l[[©ϕ]]ik , l[[ϕ]]succ(i)
k

l[[ϕ1 U ϕ2]]ik , l[[ϕ1]]ik ∨ l[[ϕ1 U ϕ2]]succ(i)
k

l[[ϕ1 R ϕ2]]ik , l[[ϕ2]]ik ∧ l[[ϕ1 R ϕ2]]succ(i)
k

12Cf. also the presentation about the µ-calculus. Also in the
construction of the Büchi-automaton from an LTL formula, that
unrolling played a role (for U ).
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Translation without a loop

• same principles
• “index” l not needed
• instead of the more complex succ(i): simply i+ 1.
• otherwise: the definition stays “the same”)
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3rd component: translating formula without
a loop

Inductive case ∀i ≤ k:

propositional part: boring again

[[p]]ik , p(si)
[[¬p]]ik , ¬p(si)

[[ϕ1 ∧ ϕ2]]ik , [[ϕ1]]ik ∧ [[ϕ2]]ik
[[ϕ1 ∨ ϕ2]]ik , [[ϕ1]]ik ∨ [[ϕ2]]ik
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Loop-case (cont’d)
Inductive case ∀i ≤ k:

temporal part: a bit more interesting

[[�ϕ]]ik , [[ϕ]]ik ∧ [[�ϕ]]i+1
k

[[♦ϕ]]ik , [[ϕ]]ik ∨ [[♦ϕ]]i+1
k

[[©ϕ]]ik , [[ϕ]]i+1
k

[[ϕ1 U ϕ2]]ik , [[ϕ1]]ik ∨ [[ϕ1 U ϕ2]]i+1
k

[[ϕ1 R ϕ2]]ik , [[ϕ2]]ik ∧ [[ϕ1 R ϕ2]]i+1
k

• base case: [[ϕ]]k+1
k , false
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Putting it together

[[S, ϕ]]k , [[S]]k∧
( (¬Lk ∧ [[ϕ]]0k)
∨ (

∨k
l=0(lLk ∧ l[[ϕ]]0k) )

(3)

Theorem

[[S, ϕ]]ksatisfiable iff S |=k ∃ϕ .
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Further info

• The technical slides here recap parts of the journal
article [2] by the inventors of BMC
• BMC for software [8]
• Survey [10]
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