
Chapter 5
Partial-order reduction

Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

Chapter 5
Learning Targets of Chapter “Partial-order reduc-
tion”.

The chapter gives an introduction to partial order
reduction, an important optimization technique to avoid
or at least mitigate the state-space explosion problem.

Chapter 5
Outline of Chapter “Partial-order reduction”.

Introduction

Independence and invisibility

POR for LTL−©
Calculating the ample sets

Section
Introduction

Chapter 5 “Partial-order reduction”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-5

State space explosion problem

• MC in general “intractable”
• fundamental limitation: combinatorial
• state space: exponential in problem size

• in particular in number of processes

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-6

Battling the state space explosion

• symbolic techniqes,
• BDDs
• abstraction
• compositional approaches
• symmetry reduction
• special data representations
• “compiler optimizations”: slicing, live variable analysis
. . .
• here: partial order reduction

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-7

“Asynchronous” systems and interleaving

• remember: synchronous and asynchronous product (in
connection with LTL model checking)
• asynchronous: softwared and asynchonous HW
• synchronous: often HW, global clock
• interleaving (of steps, actions, transitions . . .)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-8

Where does the name come from?

• partial-order semantics
• what is concurrent execution (or parallel)
• “causal” order
• “true” concurrency vs. interleaving semantics
• “math” fact: PO equivalent set of all linearizations
• “reality” fact: POR not always based on that math-fact
• perhaps better name for POR: “COR”:

commutativity-based reduction

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-9

Basic idea

• important case of a general approach

Exploiting “equivalences”
Instead if checking all “situations”,
• figure which are equivalent (also wrt. to the property)
• check only one (or at least not all) representatives per
equivalence class

• see also symmetry reduction
• 8 queens problem
• POR: equivalent behaviors

http://www.nqueens.de/sub/SearchAlgoUseSymm.en.html

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-10

(Labelled) transition systems

• basically unchanged,
• assume initial states
• states labelled with sets 2AP

• state-labelling function L
• transitions are as well

• alternatively multiple transition relations: instead of α−→,
we also see α as relation

(S, S0,−→, L)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-11

Determinism and enabledness

• remember: α−→ deterministic
• in that case: also write s′ = α(s) for s α−→ s′ (or
α(s, s′))

Enabledness
α−→ enabled in s, if s α−→

Otherwise α−→ disabled in s.
• path π:

s0
α0−→ s1

α1−→ s2
α2−→ . . .

• not necessarily infinite

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-12

Concurrency in asynchronous systems
• independent transitions
• arbitrary orderings or linearizations (= interleavings)
• [actions themselves assumed atomic / indivisible]

• raw math calculation: n transition relations
• n! different orderings
• 2n states

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-13

Reducing the state space

• goal: pruning the state space

Super-unrealistic:

1. generate explititly the state space by DFS
2. then prune it (remove equivalent transitions & states)
3. then model check the property

unrealistic (but for presentation reasons)

1. generate explictly the reduced state space (using
modified DFS)

2. then model check the property

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-13

Reducing the state space

• goal: pruning the state space

Super-unrealistic:

1. generate explititly the state space by DFS
2. then prune it (remove equivalent transitions & states)
3. then model check the property

unrealistic (but for presentation reasons)

1. generate explictly the reduced state space (using
modified DFS)

2. then model check the property

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-14

Modified DFS: ample set
• standard DFS: basically recursion (probably with

explicit stack)
• exploration: explore “successor states”, i.e.,

follow all enabled transitions

• graph exploration (not tree): check for revisits

Modification/improvement

Don’t explore all enabled transitions.

follow enough enabled transition

• ample: think “sufficient” or “enough”
• ample set of transitions in a state ⊆ set of enabled
transitions in a state

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-14

Modified DFS: ample set
• standard DFS: basically recursion (probably with

explicit stack)
• exploration: explore “successor states”, i.e.,

follow all enabled transitions

• graph exploration (not tree): check for revisits

Modification/improvement

Don’t explore all enabled transitions.

follow enough enabled transition

• ample: think “sufficient” or “enough”
• ample set of transitions in a state ⊆ set of enabled
transitions in a state

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-15

Modified DFS

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-16

Ample sets
General requirements on ample

1. pruning with ample does not change the outcome of the
MC run (correctness)

2. pruning should, however, cut out a significant amount
3. calculating the ample set: not too much overhead

• so far:
• quite wishy-washy, only general idea
• “unrealistic” (as mentioned)

• details also dependent on the “programming language”
• alternatives of ample sets with analogous ideas (the
names are not really indicative of how all that works):
• sleep sets
• persistent sets
• stubborn sets
• . . .

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-17

With a little help of the programmer . . .

• for instance: Spin
• Spin: early adoptor of POR
• reduce the amount of interleavings

atomic

atomic block executed
indivisibly

D_step

deterministic code fragment
executed indivisibly.

• D_step more strict than atomic (eg. wrt. goto
statements)

http:spinroot.com/spin/Man/atomic.html
http://spinroot.com/spin/Man/d_step.html

Section
Independence and invisibility

Chapter 5 “Partial-order reduction”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-19

2 relations between relations

• we have labelled transitions (resp. multiple relations)
• 2 important conditions for POR

• one connects two relations
• one connects one relation with the property to verify

Independence
roughly: the order of 2
independent transitions does
not matter.

Invisible
Taking a transition does not
change the satisfaction of
relevant formulas

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-20

Determinism, confluence, and commuting
diamond property

Determinism

a a

=

Diamond prop. Comm. d-prop.

a b

b a

“Swapping” or commuting

a b

b a

and vice versa

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-21

Independence

• assume: transition relations αi−→ deterministic
• write αi(s) for s αi−→

Definition (Independence)

An independence relation I ⊆−→ × −→ is a symmetric,
antireflexive relation such that the following holds, for all
states s ∈ S and all (α1−→, α2−→) ∈ I
Enabledness If α1, α2 ∈ enabled(s), then

α1 ∈ enabled(α2(s))
Commutativity: if α1, α2 ∈ enabled(s), then

α1(α2(s)) = α2(α1(s))

• dependence relation: D = (−→ × −→) \ I

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-22

Is that all?

2 issues

1. The checked property might be sensitive to the choice
between s1 and s2 (and not just depend on s and r

2. s1 and s2 may have other successors not shown in the
diagram.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-22

Is that all?

2 issues

1. The checked property might be sensitive to the choice
between s1 and s2 (and not just depend on s and r

2. s1 and s2 may have other successors not shown in the
diagram.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-23

Visibility

• L : S → 2AP

• α−→ is invisible wrt. to a set of AP ′ ⊆ AP if for all
s1

α−→ s2

L(s1) ∩AP ′ = L(s2) ∩AP ′

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-24

Blocks and stuttering

stuttering equivalent paths

• block: finite sequence of intentically labelled states
• stuttering (in this form): important for asynchronous
systems

Stutter invariance
An LTL formula ϕ is invariant under stuttering iff for all
pairs of paths π1 and π2 with π1 ∼st π2,

π1 |= ϕ iff π2 |= ϕ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-25

Next-free LTL

• © breaks stutter invariance
• LTL−©: “next-free” fragment of LTL (often also LTL-X)

Theorem (Stuttering)

• Any LTL−©property is invariant under stuttering
• Any LTL property which is invariant under stuttering is
expressible in LTL−©

Section
POR for LTL−©

Calculating the ample sets

Chapter 5 “Partial-order reduction”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-27

POR for LTL−©
• general useful and fuitful setting for POR
• of course: one may look more specific for specific
formulas
• in that setting:

Correctness of POR
Ample sets prune the (DFS) search. Goal:

M, s |= ϕ iff M�, s |= ϕ

• note: “iff”
• mainly a condition on paths

Path representatives
each path π1 inM starting in s is represented by an
equivalent path π2 inM�, starting in s

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-28

Conditions on selecting ample sets

4 conditions for selecting ample set

• each pruned path can be “reordered” to an which is
explored (using independence). include a condition
covering end-states
• make sure that the reordering (pre-poning) does not
change the logical status (stutting, visibility)
• “fairness”: make use not to prune “relevant” transitions
by letting the search cycle in irrelevant ones.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-29

Reordering conditions (C0, C1)

C0: stop at a dead end, only

ample(s) = ∅ iff enabled(s) = ∅

C1

Along every path inM starting at s, the following condition
holds: a transition dependent on a transition in ample(s)
cannot be executed without a transition from ample(s)
occuring first.

• easy fact: ample(s) ./ ¬ample(s)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-30

Form of paths in M�

• consequence of C1: two forms of paths

with prefix β0β1 . . . βmα

• α ∈ ample(s)
• βi ./ ample(s)

without such prefix:

• infinite β0β1β2 . . .

• βi ./ ample(s)

• assume: all βi /∈ ample(s)
• same as βi ∈ ¬ample(s)?

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-31

Commutation
path ~βα in M, starting in s

• α ∈ ample(s), βi /∈ ample(s)

• π1 = ~βα

• π2 = α~β

• π1 ∈M implies π2 ∈M (and vice versa)
• what aboutM�?: π1 /∈M� (m > 0) and π2 ∈M�

Explanations
The assumptions of independence means that, in the original
transition systemM the following holds: if (starting in s)
path π1 is possible, then so is π2, both ending in the same
end state. The reason is that part of the condition of
independence is that actions can be swapped or commuted.
So, as far as their existance inM is concerned, π1 and π2
are “equivalent” (and all the “intermediate” paths as well,
like β′αβ′′).
In the pruned systemM�, things change. In particular, the
“upper” path π1 which puts α at the end, does not exist (in
case m > 0): we assumed that in particular, β0 /∈ ample(s),
so already the first step is not possible.
Now, as said, both paths are interchangable wrt. their
existance: if one path exists, it’s guaranteed that the other
exists, and vice versa and they have the same start and end
state (s and r in the picture). But are they interchangable
also wrt. to the intermediate, visisited state, in particular,
are the two paths interchangeble wrt. the property we model
check? Well, one paths visits s0, s1, . . . sm, r the other one
s, r0, . . . , rm (with start and end states coinciding, i.e.,
s0 = s and rm = r). So the question is: does it matter if
one passes though the states ri or the states si?
Of course, it may matter if some property holds for ri but
not for si or vice versa. The ri and si states are connected
by α, i.e.

si
α−→ ri

Now, whether π1 or π2 is taken (or one of the “intermediate
mixtures) does not matter provided that same formulas hold,
comparing ri with si. That’s guaranteed if α is invisible
(with respect to the atomic propositions)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-32

Does it make a difference how to go from s
to r?

• π1 and π2 (and intermediate mixures): “interchangable”
• start and end point equal
• but: does it matter which one is taken

• wrt. the logical property, i.e.,
• does it matter which intermediate states are visited?

si
α−→ ri

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-33

Invisibility of transitions

• remember: invisibility if transitions (by sets of atomic
propositions)

C2 (invisibility)

If s is not fully expanded, then every α ∈ ample(s) is
invisible.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-34

Is that all?

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-35

Is that all?
Two concurrent procs

start start

α
β1

β2

β3

M

β1

β2

β3

β1

β2

β3

α

α
α

M�

β1

β2

β3

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-35

Is that all?
Two concurrent procs

start start

α
β1

β2

β3

M

β1

β2

β3

β1

β2

β3

α

α
α

M�

β1

β2

β3

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-35

Is that all?
Two concurrent procs

start start

α
β1

β2

β3

M

β1

β2

β3

β1

β2

β3

α

α
α

M�

β1

β2

β3

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-36

Cycle condition C3

C3

A cycle is not allowed if it contains a state in which some
transition α is enabled but never included in ample(s) for
any state s on the cycle.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-37

Remember the 2 issues

1. satisfaction depends in
chosing path via s1 or s2?

2. forgotten successors?

• assume: s1 is omitted (β ∈ ample(s), but not α)

issue 2

the conditions imply

1. ss2r ∼st ss1r

2. ss1s
′
1 ∼st ss2rr

′

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-37

Remember the 2 issues

1. satisfaction depends in
chosing path via s1 or s2?

2. forgotten successors?

• assume: s1 is omitted (β ∈ ample(s), but not α)

issue 2

the conditions imply

1. ss2r ∼st ss1r

2. ss1s
′
1 ∼st ss2rr

′

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-38

Complexity

• checking conditions on-the-fly
• C0: easy
• C1: tricky

• refers toM, notM�

• checking C1: equivalent to reachability checking
• strengthen C3:

sufficient for C3

• at least one state along each cycle must be fully
expanded

• since we do DFS: watch out for “back edges”: C′3: If s
is not fully expanded, then no transition in ample(s)
may reach a state that is on the search stack

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-39

General remarks on heuristics

• dependence and independence ./ “theoretical” relation
between (deterministic) relations
• “use case”: capturing steps of concurrent programs

• processes with program counter (control points)
• different ways of

• synchronization
• sharing memory
• communication

• calculating (approx. of) ample sets: dependent on the
programming model

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-40

Notions, notations, definitions

• we write now α for α−→
• fixed, finite set of procecesses i (called Pi)
• Ti: those transitions that “belong to” Pi
• some more easy definitions

• pci(s): value of program counter of i in state s
• pre(α):

• transition whose execution may enable α
• can be over-approximative

• dep(α): transitions interdependent with α
• currenti(s)
• Ti(s)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-41

When are transitions (inter)dependent
• note: dependence is symmtetric! (good terminology?)

Shared variables
pairs of transitions, that share a variables which is changed
(or written?) by at least one of them

Same process
pairs of transitions belonging to the same process are
interdependent. In particular currenti(s)

Message passing

• 2 sends to the same channel or message queue
• 2 receives from the same channel
• Note send and receive indepenent (also on the same
channel).
• side remark: rendezvouz is seen/ can be seen a joint
step of 2 processes

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-42

Transitions that may enable α (preα)

pre(α) ⊇ {β | α /∈ enabled(s), β ∈ enabled(s), α ∈ enabled(β(s))}

• assume α is an action from Pi
• pre(α) includes

• “local predecessor” of i (“program order”)
• shared variables: if enabling conditions of α involves

shared variables: the set contains all other transitions
that can change these shared variables

• message passing: if α is a send (reps. receive), the
pre(α) contains transitions of other processes that
receive (resp. send) on the channel

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-43

Ample

1 f u n c t i o n ample (s) =
2 f o r a l l Pi such t h a t Ti(s) 6= ∅ // t r y to f o c u s on one Pi

3 i f
4 check_C1 (s, P1) ∧
5 check_C2 (Ti(s)) ∧
6 check_C3 ' (s,Ti(s))
7 then
8 r e t u r n Ti(s)
9 i f

10 end f o r a l l // too bad , cannot f o c u s on any but
11 r e t u r n enabled(s) // f u l l y expanded can ' t be wrong
12 end

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-44

Check C2

1 f u n c t i o n check_C2 (X) =
2 f o r a l l α ∈ X
3 do i f v i s i b l e (α)
4 then f a l s e
5 e l s e t rue

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-45

Check C′3

1 f u n c t i o n check_C3 ' (s,X) =
2 f o r a l l α ∈ X
3 do
4 i f on_stack (α(s))
5 then f a l s e
6 e l s e t rue

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-46

Check C1

1 f u n c t i o n check_C1 (s, Pi) =
2 f o r a l l Pj 6= Pi

3 do
4 i f dep(Ti(s)) ∩ Tj 6= ∅
5 ∨
6 pre(currenti(s) \ Ti(s)) ∩ Tj 6= ∅
7 then r e tu rn f a l s e
8 end f o r a l l ;
9 r e t u r n t rue

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

5-47

References I

Bibliography

	Partial-order reduction
	Targets & Outline
	Introduction
	Independence and invisibility
	POR for LTL-
	Calculating the ample sets

