
Course Script
IN 5110: Specification and
Verification of Parallel Sys-
tems
IN5110, autumn 2021

Martin Steffen

https://martinsteffen.github.io/

ii Contents

Contents

6 Partial-order reduction 1
6.1 Introduction . 1
6.2 Pruning the state space: ample sets . 9
6.3 Equivalent behavior . 11

6.3.1 Equivalent reordering of behavior: Independence 12
6.3.2 Equivalence wrt. formula(s): visibility and stuttering 14

6.4 POR for LTL−© . 16
6.4.1 Conditions on selecting ample sets 17
6.4.2 Some code snippets for the conditions 26

6 Partial-order reduction 1

6
Partial-order reduction
Chapter

What
is it

about?
Learning Targets of this Chapter

The chapter gives an introduction
to partial order reduction, an
important optimization technique to
avoid or at least mitigate the
state-space explosion problem.

Contents

6.1 Introduction 1
6.2 Pruning the state space:

ample sets 9
6.3 Equivalent behavior 11
6.4 POR for LTL−© 16

6.1 Introduction

The material here is based on Chapter 10 from the book [2] or the handbook article [5].
[1] does not cover partial-order reduction.

A fundamental limitation in model checking is the state-space explosion problem. Model
checking is basically intractable, i.e. it suffers from a combinatorial explosion which renders
the state space exponential in the problem or system size.

All analyses based on “exploration” or “searching” suffer from the fact that problems
become unmanagable when confronted with realistic problems. That’s also true for other
approaches like SAT/SMT-solving, and there is no lack of intractable problems in all kinds
of fields. If we look at (explicit-state) model checking very naively, and perhaps even focus
on only very simple problems like checking �ϕ (“always ϕ”), the model checking problem
phrased like this and as such seems not really untractable (complexity-wise). It’s nothing
else than graph search, checking “reachability” of a state that violates the property ϕ.
Searching through a graph is tractable (it has linear complexity, measured in the size of the
graph, i.e., linear in the number of nodes and edges). So that’s far from “untractable”.

In model checking, it’s the size of the graph, that causes problems. That’s typically
exponential in the description of the program. In model checking one is often interested in
temporal properties of reactive, concurrent programs, consisting of more than one process
or thread running in parallel. Typically, the size of the global transition system “explodes”
when increasing the number of processes, due to the many interleavings of the different
local process behaviours one needs to explore.

Of course, there may be other sources that make a raw state exploration unmanagable. If
the problem depends on data input (like inputting numbers), the the size of the problem
increases exponentially with the “size” of the input data. If one uses integers with only

2 6 Partial-order reduction
6.1 Introduction

one byte length, one already has to take 28 inputs into account. Normally, of course,
one has (immensly) larger data to deal with, and perhaps not just with one input, but
repeated input in a reactive system. Those kind of data dependence quickly goes out of
hand. That is also a form of “state space explosion problem”, but mostly, when talking
about the state-space explosion problem for model checking, one means the state space
explosion due to different interleavings of concurrent processes. Dealing with data is not
the strong suit of traditional model checkers, so it sometime better to deal with data with
different techniques, and/or to ignore the data This means to abstract away from data
(that’s also known as data abstraction) and let the model checker focus on the part of the
problem it is better suited, the reactive behavior and temporal properties.

Partial-order reduction is a technique to reduce the explored state space by avoiding
irrelevant interleavings

One last word about “complexity”: Before we said that model checking is linear in the
size of the transition system. That’s of course an oversimplification, insofar that the
“size” of the formula plays a role as well. For instance, in the section about the µ-
calculus it was hinted at the the alternation-depth is connected to the complexity of the
model checking problem in that contaxt. For model checking LTL, the time complexity is
actually exponential in the size of the formula. Normally, that’s not referred to as state
space explosion and also in practice, the size of the formula is not the limiting factor.
Also, if one has many properties to check, which can be seen as a big conjuction, one can
check the individual properties one by one.

Battling the state space explosion

As it’s such major road block, it’s clear that many different techniques have be proposed,
investigated, and implemented to address it. An incomplete and somewhat unordered list
symbolic techniques, BDDs, abstraction, compositional approaches, symmetry reduction,
special data representations, parallelization of model checking, the use of “compiler opti-
mizations” on the model (like slicing, live variable analysis . . .). And here we are doing
partial order reduction.

“Asynchronous” systems and interleaving Partial-order reduction is most effective in
asynchonous systems. The distinction is for systems with different parts working in par-
allel or concurrently, and one can make that distinction for hard- or software. In HW,
synchronous behavior can be achieved by a global hardware clock, that forces different
components to work in lock step. The global clock is used to synchronize the different
parts. Also in software, synchronous behavior has its place (one could have protocols
simulating or realizing a global clock) there are also so-called synchronous languages, pro-
gramming languages based on a synchronous execution model, they are often used to
model and describe HW, resp. software running on top of synchronous HW.

Concurrent software and programs, though, more typically behave asynchronously, i.e.,
without assuming a global clock. A good illustration are different independent processes

6 Partial-order reduction
6.1 Introduction 3

inside an operating system, say on a single processor. The operation system juggles the dif-
ferent processes via a scheduler. The scheduler allocates “time slices” to processes, letting
a process run for a while, until it’s the turn of another process (preemptive scheduling).
In a mono-processor, it’s one process at a time, and the scheduler interleaves the steps
of different processes. That’s a prototypical asynchronous picture.

Of course, often processes or threads etc. don’t run in a completely independent or “a-
synchronous” manner. To allow coordination and communication (and perhaps to help the
scheduler), there are different ways of synchronization and constructs for synchronization
purposes (locks, fences, semaphores, barriers, channels . . .). Very abstractly, synchro-
nization just means to restrict the completely free and independent execution. Even if
processes coordinate their actions using various means of synchronization, one still speaks
of asynchronous parallelism. If one would go so far in tie the processes together by using
a sequence of global barriers, where each processes takes part in, then that very restric-
tive mode of synchronization would effectively correspond to having a global clock and
synchronous behavior.

The two ways of compose two automata “in parallel” reflected those two ends of the
spectrum: completely asynchronous and completely synchronous. (The definition was
done for Büchi-automata, but the specifics of (Büchi-)acceptence are an orthogonal issue
that have to do with the specific “logical” needs we had for those automata (representing
LTL). The synchronous-vs.-asynchronous composition is independent from those details.

Where does the name come from? The name of the technique seems to promise reduc-
tions based on “partial order”. We’ll see about the reductions of the state space later, but
why “partial order”?

A partial order (or partial order relation) is a binary relation which is reflexive,
transitive, and anti-symmetric

What’s the connection? The short story is maybe the following: exploring the state
space involves exploring different interleavings of steps of different processes. Often that
means one can do steps either in one order in one exploration, and in reversed order
in a alternative exploration (and the whole trick will be to figure out situations when
the exploration of the alternative order is not needed). One will not figure out precisely
all situations where one can leave out alternatives, that would be too costly. So, one
conservatively overapproximate it: when in doubt with the available information, better
explore it.

It’s of course not always the case that one can reorder steps into an alternative order.
Steps within the same process might well be executed in the order written down; likewise,
synchronization and communication may enforce that steps are done in one particular
order or at least that they cannot be freely shuffled around (that’s, in a way, the whole
point of synchronization). Anyway, one may therefore see the actions or steps as partially
ordered, at least when considering the behavior of the system as a whole. Focusing on one
run or path, of course, presents one particular schedule and the steps in that run appear
in a linear or total order. In one particular run, it’s not represented, if two events are

4 6 Partial-order reduction
6.1 Introduction

ordered by necessity (one is the cause of the other for instance) or whether the order is
accidental.

That’s the short story. Based on ideas as discussed, people proposed ways to describe
concurrent behavior different from the interleaving picture, but based on partial orders.
Those kind of styles of semantics are connected to true concurrency semantics, to
distinguish them from “interleaving semantics” (which thereby could be called a “fake
concurrency” semantics. . .). There is a point to it, though. Remember the informal
discussion of asynchronous processes and interleaving, referring to scheduling processes
on a single-core processor. There, clearly concurrency is an illusion maintained by the
operating system’s scheduler, that juggles the different processes so fast that, for the
human, they appear to be concurrent, whereas “in reality”, there is at most one process
actually executed at a time. Two things being concurrent, in that picture, is just a different
way of saying, they can occur in either order. True concurrency semantics takes a diffent
point of view, seeing concurrency as something different from just unordered.

As simple litmus test: A semantics that considers a ‖ b as equivalent to ab + ba is
an interleaving semantics, if the two “systems” are different, it’s a true concurrency
interpretation (details may apply).

For instance, Petri-nets is a quite old “true concurrency” model (they exist also in many
flavors, and there are other true concurrency models as well). True concurrency models
make use of partial orders (and perhaps other relations as well), but we don’t go into true
concurrency models.

Independent from the true-vs-“fake” concurrency question: there is a connection between
partial order semantics and semantics based on arbitrary interleavings. It’s a known
mathematical fact that every partial order can be linearized (i.e., turned into a total order),
and more generally, that a partial order is equivalent to the set of all its linearizations.
The first statement, that partial orders are linearizable, may be known from the 2000-level
course “algorithms and data structures”. In that course, a straightforward solution to the
problem is presented known as “Dijkstra’s algorithm”.

POR here takes as starting point sets of executions or runs, which are linearizations. It
does not take as a starting point a partial-order or a true concurrency semantics. While
connections between partial orders and linearizations are easy, well-known, and hold gen-
erally, i.e., for all partial orders, they are more an inspiration than a technical basis for
partial order reduction here. Nailing down a concrete partial order semantics for concrete
situations in an asynchronous setting with specific synchronization constructs is not so
easy. It’s much easier to specify what a program can do for the next step; that leads to an
operational semantics which also specifies all possible runs of a program. Implicitly, that
also contains all alternative runs, so one could say (based on the mentioned “math fact”)
that somehow indirectly one may view it as that it describes a “partial order” between
the steps of the behavior of the program. But it’s, as said “implicit” and for the behaviors
per program. But it’s far from easy to start upfront with a partial-order based semantics
for all programs.

POR therefore is not based directly on an explicit partial order semantics. It does not
even strive to reconstruct fully the underlying partial order that is hidden in the set of

6 Partial-order reduction
6.1 Introduction 5

all interleavings of one given program. It does something more modest (but also more
ambitious at the same time, as it has to be done during the model-checking run and has
to be done efficiently). Perhaps POR is inspired by the connection between partial orders
and possible linearizations and partial order semantics, but one can understand POR even
simpler:

Under some circumstances, it does not matter in which way steps are done and in
other circumstances it does. POR tries to figure out when alternative orders don’t
matter and avoids them. That needs to be done while running the “program”.

Since this is done while running the model checker, compromises need to be done how
much effort is done to estimate or predict if a step is necessary or not, as it needs to be
efficient. It also (and connected to that) needs to be “local”. One cannot first generate all
runs, then filter out duplicates, and then model check the rest. Instead, when exploring
the state space during the model checker run, a “local” decision needs to be made, like
“shall I explore the next candidate edge, or can I let it be.”

Of course, the criterion should not be trival like: I leave out an edge if I know that I
have seen the resulting state already. That’s ridiculous, as one might as well follow the
edge and then backtrack after discovering that I have seen the state already. Exploring
one more additional edge and then checking is probably easier compared to to make some
fancy overhead to avoid that very last step. One has to do better, namely: one can leave
out an edge, if all what follows is covered already or actually what will be covered later.
At any rate, one cannot expect those estimations to be precise in recovering all of the
theoretically possible reduction (if one had a full partial-order picture, which one does not
have anyway).

The contrete details when to explore and edge and when not depend also on the program-
ming language and its constructs. For instance, if one has shared variables, and the model
checker is in a state where, in a next step, process 1 can write atomically to a variable or
process 2 can write atomically to the same variable, it’s clear that one has to explore both
alternatives. Or does one? What if they write the same value? Well, perhaps checking
that particular situation is not worth in checking, and one may conservatively explore
both orderings anyway.

To postpone the details of more concrete language constructs for later, one abstracts away
from concrete types of actions first and introduces the concepts of dependence and inde-
pendence (for instance, two reads to the same variable may be independent, whereas two
writes may not). The theory justifying the POR is then based on notions of independence
and when the order of execution is irrelevant and can be commuted.

That is perhaps inspired by partial-order thinking, but can be an approximation at
best (for practical reasons), therefore a better name of partial-order reduction may be
commutativity-based reduction (see Peled [5] who makes that argument).

POR can be also understood as an example of analysis techniques that exploit equiva-
lences

6 6 Partial-order reduction
6.1 Introduction

Exploiting “equivalences” means: Instead of checking all “situations”, figure which
are equivalent. That also implies, equivalent wrt. the property being checked) and
then check only one representatives (or at least not all) per equivalence class.

There are other such techniques along those line. One is known under the name symmetry
reduction; we don’t cover that, but the underlying idea is simple. Often systems have
some symmetries, one can exploit. Not that it’s a typical model-checking problem, but
think of the 8 queens problem: is it possible to place 8 queens on chess-board without that
they can attack each other in one move? If one wants to solve that combinatorially, one
can exploit the symmetry inherent in the fact that a solution can be rotated 90 degrees
and it’s remains a solution.

Of course, in this well-known example the symmetry is obvious, and someone who want to
solve the puzzle may arrange a search algorithm (and/or the respresentation of the chess
board) so make use of that knowledge. In general, symmetries may not be so obvious and
one would like to have the model checker detect and exploit them, but that’s the general
idea. And that is quite similar in POR, where the model check tries to detect equivalent
behaviors.

(Labelled) transition systems In the lecture we have variously encountered represen-
tations based on states and transitions. Kripke structures or Kripke models, transition
systems, and also automata belong into that category. There may be minor differences in
terminology (states vs. worlds) and perpaps notation, but these representations are not
radically different. Maybe the biggest difference is that we made use of the automata as an
mechanism for accepting runs of a system, in particular the Büchi-automata used for LTL
model checking accept infinite-word languages. Transition-systems, on the other hand,
represent the system, program, or model under investigation, and do not have accepting
states. Another difference was that automata were edge-labelled with letters from some
alphabet, whereas for the transition systems we focused on information carried by the
state. For instance, one could see propositional information to be a form of labelling: each
state is “labelled” with the sets of propositional atoms that are assumed to hold in that
state. Another terminology we also used was “valuation”.

At any rate, the edges of transition systems so far did not play an important role, but
now we will be dealing with edge-labelled transition systems.1 Typically, if one talks
about labelled transition systems (LTS), one means transition systems with the edges-
labelled (independent of wether or not the states are (also) labelled with propsotional
information).

Now, the labels in the edges become important, because we need to look into when steps
(i.e., transitions) in a system can be re-ordered resp. when some steps can be ignored in
an exploration. To do so, the steps should carry information about the action they are
representing, like: when a read from x by process P1 is followed by a read to the same
variable by process P2, then the two steps or transitions can be swapped. Or generally
α−→, β−→, α1−→, etc.
1In the context of dynamic logics and multi-modal logics, the transition systems had “multiple” transition
relations, which is the same as having labelled transitions.

http://www.nqueens.de/sub/SearchAlgoUseSymm.en.html

6 Partial-order reduction
6.1 Introduction 7

Apart from that now we consider transition-labels, the definition of transition system or
Kripke-structure is basically unchanged.

Definition 6.1.1 (Labelled transition system). A lablled transition system T over
a set of labels L (also called alphabet) is a tuple (S,−→, L, S0, V) where

• S is a set of states.
• −→⊆ S×L×S is the L-labelled relation between states, the transition relation.
• S0 ⊆ S is the set of starting states
• V : S → 2P is a map labeling each state with a set of propositional variables.

Determinism and enabledness

In the context of automata (Büchi or otherwise), we have introduced the concept of de-
terminism. We use the same definition here for labelled transition systems.

Determinism, generally, applies to situations where the result, the outcome, the nexts
state etc. is fixed, as opposed to when more than one result is possible. That would be
non-deterministic. Functions are deterministic: the output is determined by the input.

For transition systems (and automata), the conventional definion of determinism is that
in a state, the successor state determined, for a given label. So it’s not as strict as the
the successor is fixed independent from the action label; that would make the transition
system a linear structure.

The action labels, abstractly seen, are elements from some alphabet, but in concrete
representations, labels may also be “structured” for instance W1(x, 1) could represent
that process P1 does some write instruction to variable x, writing value 1, or similar. The
label may or may not be seen as input

Definition 6.1.2 (Deterministic). A labelled transition system is deterministic if
s1

a−→ s1 and s s2−→ implies s1 = s2 (for all states s0, s1, and s2).

See also the depiction in Figure 6.2a later.

In that case (and since we are focusing on deterministic systems): we also write s′ = α(s)
for s α−→ s′ (or α(s, s′)).

The definition here in the introductory section is not the last word about determinism and
related issues in this chapter. Section 6.3.1, there will be variations on the topic.

A subtle point in that context will be the question whether there is a next state doing a
particular step. If, in a state one can do and α−→-transition, one says α is enabled in that
state. Otherwise, a is disabled there.

Definition 6.1.3 (Enabled). α−→ enabled in s, if s α−→. Otherwise α−→ disabled in s.

8 6 Partial-order reduction
6.1 Introduction

As a side remark: we will talk about paths π

s0
α0−→ s1

α1−→ s2
α2−→ . . .

but the paths now are not necessarily infinite. For technical reasons, we focused on infinite
paths in LTL (which was not a real restriction, as finite ones could be artificially made
infinite by stuttering after reaching the official end).

Concurrency in asynchronous systems

In loosely coupled concurrent systems or asynchronous systems, the actions of different
processes running in parallel in an asynchronous fashion are largely independent. In an
interleaving model, a concrete run or execution (or path) is an arbitrary linearization.
In a single-processor setting it’s the scheduler’s task to pick at each point one possible
next step, i.e., make a choice between the different processes who’s next. In a practical
schedular, of course it will not make a new pick at each clock tick, but let one picked
process run its course until its time slice is up one something else triggers the schedular
to give another processs its turn. But in the most extreme case, the scheduler may in
principle reconsider the options after each tick. That’s often assumed in model checking:
one is given the system, but one does not know the scheduler, resp. one wants to verify the
system for any possible scheduler (and in isolation, i.e., ignoring other unrelated processes
running under the same scheduler.

In a situation where the processes are completelety independent, that leads to a behavior
sketched in Figure 6.1 (for actions of three processes, each doing just one step). The
actions themselves are assumed atomic.

Figure 6.1: Interleaving of three actions / steps

If we have n transition relations (corresponding to n different independent processes, that
gives rise to n! different orderings and 2n states.

Of course that’s a very simple case, complete intependence of the relations (and processes).
In more realistic situations, some actions or transitions are independent, and some not.

We talked about independence here informally, with an intutive understanding of what it
means that processes run indepdently, i.e., have nothing to do with each other. Later we

6 Partial-order reduction
6.2 Pruning the state space: ample sets 9

present a definition of independence abstractly in terms of labelled transition relations,
and not necessarily for actions of parallel processes.

Still, the picture of parallel processes doing steps is useful and gives intuition behind the
definitions later.

There will be two aspects of when we call processes (resp. their steps) independent, resp.
when they are not independent.

One is that the order of steps does not matter, for instance, if two processes write to
the same variable at the same time, the outcome will be different depending who comes
first. In this situation, both actions or steps can swap their place, i.e., a scheduler can
execute them in either order, but the outcome is different. Then the systems would not
be considered independent.

But is another aspect: it’s still a situation of “who is first” or “whom the scheduler chooses
first”. However, there is no “second step”. So at one point two processes can do a next step,
but the one not chosen has lost it’s chance. The step that had been enabled before the
competing situation has been resolved becomes disabled by making the decision (that’s
why we introduced the notion of enabledness for labelled transitions already). At any
rate, if the action of one process disables the possible next action of another process, also
that breaks independence of course. In terms of concurrent processes, the latter type of
non-independence is typical for synchronization actions (think lock-taking).

We come back to it in Section 6.3.1

6.2 Pruning the state space: ample sets

Partial order reduction is about reducing the state-space. This section does not provide
a concrete solution (for a combination of a concrete programming language and concrete
temporal logics). It sketches an skeleton of an idea how achieve the state space reduc-
tions.

For the setting, however, we assume a explicit state approach, based on depths-first search
(DFS).

A super-unrealstic approach would be the following

1. generate explicitly the state space (by DFS for example),
2. then prune it and remove equivalent transitions & states, and finally
3. model-check the property on the smaller space.

Of course it makes no sense to first generate the all of the state space, the trick must be
to avoid doing that. So a slightly more realistic approach is

1. generate explictly the reduced state space (using a modified DFS) and then
2. model-check the property.

10 6 Partial-order reduction
6.2 Pruning the state space: ample sets

That’s still not realistic; a more practical way will be to both stages at the same time, but
for presentational reasons, we focus on generating resp. exploring a reduced state-space.
That will be done by modifying a standard depth-first exploration procedure.

Actually, this section here will not provide much more than setting the stage. Let’s first
recall standard DFS, i.e., the problem to explore or traverse a given graph via a tryically
recursive procedure.

We should perhaps be careful when talking about traversing a “given” graph or transition
sytem. We do not want to imply that the transitition system is stored (via some standard
graph representation) in the memory ready to be explored. That would imply the super-
unrealistic setting where the whole state space is generated up-front.

Instead, the state-space is explored which being generated (hopefully only partially). In
model-checking terms and independent from partial-order reduction, that is known as
on-the-fly model-checking.

Depth-first search does some recursive state exploration: exploring one given means visit-
ing all its neighbors or successors, and doing the same for each of them, remembering
which states one has seen already, so that one can stop and backtrack, if one sees a state
for the second time, otherwise woul would run into an infitely exploration loop.

One realization of depth-first seach in pseudo-code is shown in Listing 6.1. It’s not based
on recursive calls of a procedure, but making use of a explicit stack. Furthermore it
sketches some way to maintain the states in in some hashed form and organizes the search
making use of a work-list. For instance, the basic exploration steps adds successor-steps
to the work-list and remove the current action.

Those organasational things are not central for depth-first exploration. The code from
Listing 6.1, while still a depth-first strategy however, deviates crucially from plain depth-
first search. But instead of exploring posible next steps (i.e., all neighbors), the approach
realizes the following improvement:

Don’t explore all enabled transitions, follow enough enabled transi-
tions.

That’s done in line 6, adding a set of actions to the work-list called ample. The word
“ample” means, especially in this context, something like “enough” or “sufficiently many”.
In general, ample set of transitions in a state ⊆ set of enabled transitions in a state

1 hash (s0) ;
2 s e t on_stack (s0) ;
3 expand_state (s0) ;
4
5 procedure expand_state (s) ;
6 work_set (s) := ample (s) ;
7 while work_set (s) 6= ∅
8 do
9 let α ∈ work_set (s) ;

10 work_set (s) := work_set (s) \{α}
11 s′ := α(s)
12 i f is_new (s′)
13 then hash (s′)
14 s e t on_stack (s′) ;
15 expand_state (s′) ;

6 Partial-order reduction
6.3 Equivalent behavior 11

16 end i f
17 end while
18 s e t completed (s)
19 end procedure ;

Listing 6.1: Modified DFS (ample sets)

Requirements on ample sets Of course, on that level, it’s not a solution to any problem.
We have so far not done more than expressing the wish to achieve our goal of pruning the
explored state space by a small modification the standard DFS algorithm (and we use the
terminology of ample sets to talk about that modification).

The only thing we know is that for each state, the state’s ample set of actions is, by
definition, a subset of the actions enabled in that state. So the question is: how to restrict
the set of enabled transitions (with this restriction called “ample”). There are some general
requirements on the restriction:

1. pruning with ample does not change the outcome of the model checking run
(correctness)

2. pruning should, however, cut out a significant amount
3. calculating the ample set: not too much overhead

The first is a condition sine-qua-non: correctness must not be compromised. How well
the remaining to criteria are fulfilled decides on how much the pruning improves the
performance. The last 2, however, are somehow in conflict with each other. Investing too
much effort in calculating the smallest possible (and still correct) subset may be counter-
productive.

The details of a concrete correct and efficient realization of the ample-set idea also depend
on the programming or modelling language.

The general idea of ample sets has been explored in the literature in many variations. The
names the papers used for their respective proposal are mostly not very indicative of how
a particular solution works; names of concepts in well-known approaches include “sleep
sets”, “persistent sets”, “stubborn sets” . . .

6.3 Equivalent behavior

Before looking an algorithmic approach, we loop a bit deeper into indepence of systems.
We touched upon that already in the introductory remarks of Section 6.1, namely when
we consider (the actions of) two or more processes as independen. Here we define more
formally the notion of independence of labelled transitions or relations. That can be
somehow related also to the question of systems being deterministic, at least deterministic
as far as the result is concerned in that the outcome may not depend on the schedule.
Therefore we discuss also that. Especially the definition of independence is important for
partial-order reduction.

12 6 Partial-order reduction
6.3 Equivalent behavior

Later a further aspect needs to be taken into account and that has to do with the fact
that we are doing verification of a specification (here an LTL formula). Even if the order
of actions don’t matter with respect to the outcome, still we have to be careful if the order
matters wrt. formula, i.e. whether the answer to the model checking question depends on
the order. That will be captured by the notion of visibility resp. invisibility.

6.3.1 Equivalent reordering of behavior: Independence

Determinism, confluence, and commuting diamond property

Partial-order reduction works best for asynchronous, loosely coupled systems, as we said,
when different parts of the system run independently and without interfering with each
other. Of course, the situation where processes run completely and always indepdent are
seldom. Resp. they are uninteresting. If parts of the system are truly independent, there
is no need to jointly model them and jointly verify them.

In some way, such a setting with, say two completely independent processes, would be
ideal for partial-order reduction. A really optimal reduction could reduce the system to
doing the steps of one process first, and then doing the other afterward. If each process
is in itself deterministic, the reduced system doing first P1 and then P2, would show a
linear, deterministic behavor, and no combinatorial state explosion due to unterleaving
the steps of the processes when exploring P1 ‖ P2 (‖ here for the asynchronous parallel
composition).

But of course, it’s a stupid idea to try to jointly analyse P1 ‖ P2 and hope some mystical
POR-model-checker will comes up with an ideal reduction (which is unrealistic) if one
already knows that P1 and P2 are independent.

More interesting are processes that interact from time to time, working on shared variables,
exchanging messages etc, but also work independently for large stretches of time. Doing
independent actions means that the outcome does not depend on the order of the actions.

Assume that processes are internally deterministic, i.e., there are no internal sources of
non-determinism. That means, the “outcome” can only be influenced by the way the
actions of different processes are interleaved. In case of independent, actions, the outcome
remains the same, as there order can be inverted. In the (unintesting) case of completely
independent processes, also the outcome is the same, whether we do P1;P2 or P2;P1: every
(deterministic) process calculates its own result, it’s only a question who comes first.

This is to say the notions of determinism and independence are closely connected. They
are not the same though (and we have not formally defined what independence actually
means). For a transition system to be deterministic, remember see Definition 6.1.2.

The version of POR and the notion of ample sets will be based on a so-called independence
relation (see Definition 6.3.1). Like ample-sets it will be rather non-concrete. I.e., it will
not specify what concrete actions (reading, writing, synchronizations etc.) in some setting
are independent. It spells out more general conditions as to when a relationship between
actions or transitions qualifies to be called an independence relation.

6 Partial-order reduction
6.3 Equivalent behavior 13

Before doing that, let’s at least have a short look at aspects relating “independence” of
actions and determinism, because the notions are in spirit similar, but technically not the
same.

We will discuss it mostly abstractly, i.e., as a property of relations or pairs of relations.
Assume we are dealing with a labelled transition system.

a a

=

(a) Determinism (b) Diamond property

a b

b a

(c) comm. d-property

a b

b a

(d) swap./commuting

Figure 6.2: Different flavors of determinism and “order does not matter”

and vice versa. We assume that the transition relations αi−→ are deterministic, and we
write αi(s) for s αi−→.

Definition 6.3.1 (Independence). An independence relation I ⊆−→ × −→ is a sym-
metric, antireflexive relation such that the following holds, for all states s ∈ S and
all (α1−→, α2−→) ∈ I

Enabledness If α1, α2 ∈ enabled(s), then α1 ∈ enabled(α2(s))

Commutativity: if α1, α2 ∈ enabled(s), then

α1(α2(s)) = α2(α1(s))

The complement of a independence relation is called, not surprisingly, a dependence re-
lation. I.e., given some independence relation I then D = (−→ × −→) \ I is a dependence
relation.

Is that all?

Let’s look at the commuting diamond diagram again, from Figure 6.2c, resp. repeated in
Figure 6.3. We made arguments that situations of that form have the potential for saving
since the order of the two steps does not matter, since each order, they reach the same
state, r in Figure 6.3.

There are, however, two issues or complications to take into account

1. The checked property might be sensitive to the choice between s1 and s2
(and not just depend on s and r)

2. s1 and s2 may have other successors not shown in the diagram.

14 6 Partial-order reduction
6.3 Equivalent behavior

Figure 6.3: Commuting diamond

6.3.2 Equivalence wrt. formula(s): visibility and stuttering

The first point is an aspect we have ignored in the discussion so far, namely the influence
of the property or the class of properties to check. However, in a situation like the
communting diamond, of one wants to explore the path via s1 only, ignoring the one
over s2, it must be sure that satisfaction of the property to check does not depend on
visiting those states. For instance, if there is a proposition that holds in s1 but not in
s2 or vice versa, then one has to explore both alternatives. If propositions can make
differentiate between two states, one says, the formula can “see” the difference or that the
two states resp. their difference is observable or visible by the formula. The picture behind
that terminology is that checking for a formula is a way to observe a system. Behavior that
cannot make a difference whether the formula holds or not is not observable or invisible.
That terminology is often used for classes of formulas or whole logics. More expressive
logics can observe more behavior, resp. differentiate between more systems that weaker
ones. Weaker ones, in that sense, have more potential for reductions, here partial-order
reduction.

Here, for our purposes, we define when to call a transition as being (in-)visible for a set
of propositional atoms.

Definition 6.3.2 (Propositional vsibility). Assume a valuation V : S → 2P . The tran-
sition relation α−→ is invisible wrt. a set of P ′ ⊆ P if for all s1

α−→ s2 and all p ∈ P ′, the
following holds

s1 |= p iff s2 |= p (6.1)

The definition means, that no α-transition changes the truth-status of an of the proposi-
tional variables in P ′.

So, state changes which don’t change the truth status of any propositional variable (in P ′)
is invisible (wrt. P ′). It’s a step that does not matter concerning the question whether
the transition system satisfies the specification or not. Steps that don’t matter are also
called stutter steps and the phenomenon stuttering.

We have encountered stuttering already in connection with LTL and the definition of
π. Paths, in that context, were defined as being necessarily infinite. To accomodate
terminating behavior of a system, we extended an terminating behavior by an infinite
sequence of stuttering steps at the end, to obtain an infinite path.

6 Partial-order reduction
6.3 Equivalent behavior 15

Of course, it is possible that the system does some “actual” stuttering while still running,
doing stretches of invible steps. Those stretches of stuttering steps, resp. maximal such
stretches, are sometimes called blocks. Note in passing: terminating behavior, which
stuttering at the end, consists of a finite number of blocks, since the stuttering extension
after termination is represented by one infinitely long block.

Two paths that consist of the “same” sequence of blocks are called stuttering-equivalent.
When saying the “same” sequence of block, we mean that each block of π is represented
by a corresponding block in π′ with the same propositional valuation, but the size of the
block, i.e., the number of stuttering steps inside the block may different. This is shown in
Figure 6.4. We write ∼st for stutter-equivalence for paths.

Figure 6.4: Stuttering-equivalent path

The different states in a block have the same status as far as the satisfaction of propo-
sitional variables is concerned. That carries over to general propositional formulas, of
course. But what about temporal properties of LTL? Does an LTL formula that holds for
some path also hold for a stutter-equivalent one, does π |= ϕ and π ∼st π

′ imply π′ |= ϕ.
To say it differently: can the addition or removal of stutter steps in a π change the truth
status of the path with respect to a temporal property.

Before we closer at that, let’s first give a name to LTL formulas whose truth-status is
untouched by adding or removing stuttering steps.

Definition 6.3.3 (Stutter invariance). An LTL formula ϕ is invariant under stut-
tering iff for all pairs of paths π1 and π2 with π1 ∼st π2,

π1 |= ϕ iff π2 |= ϕ

Using the observability-terminology, one could say that for those formulas stuttering-steps
are invisible. Technically, we have introduced the notion of invisibility for propositional
proporties only (and we defined it for transitions α−→ in a transition system) in Definition
6.3.2, but conceptually it’s analogous.

Back to the question: can additional stutter steps in a π change the truth status of the
path with respect to a temporal property, i.e., are LTL formulas stutter invariant (or at
least some). We clarified already that for propositions are stutter invariant, but that’s not
very interesting and helpful.

However, adding (or removing) a stutter steps may change satisfaction of ©-formulas!.
That’s because blocks are finite. Assume that some ©p us be true at last position of
a block and whether it’s true or not depends on the situation in the subsequent block.

16 6 Partial-order reduction
6.4 POR for LTL−©

Therefore, extending the block longer by adding a stutter step may change the truth status
in the considered position. Similar for removing stutter steps.

It turns out, if we banish © from LTL, formulas become stutter invariant. The truth
status of ♦ and � (and for the more complex binary operators) does not depend on the
length of the stutter blocks. For example ♦ refers to some finite point in the future, and
adding or removing stutter steps does not change that. Note that stuttering means adding
or removing only finitely many steps. That means, stuttering cannot turn a finite block
into an infinite one.

The restricted form of LTL is known as next-free LTL, and abbreviated as LTL−©(or also
LTL-X).

LTL−© is stuttering invariant. That’s good for reducing the state space, because it gives
hope to ignore states, ideally to take only one representative in each block. And the more
stuttering and the larger the blocks, the more potential for space reduction.

We defined the concepts like visibility and stutteing on transition systems and paths.
Those stem of course from the description of a concurrent system, consisting of processes
or threads running in parallel. As a general observation: the more loosely coupled or more
asychronous a system is, the more one can expect to see stuttering. That’s probably not
self-evident, it’s also not a mathematical fact. It’s also not just a consequence on the loose
coupling of the system, but also based on how one typically specifies properties for such
loosely coupled system.

Of course the logic because less expressive that way. That’s in a way the point, making it
less expressive makes stutter steps unobservable.

stuttering (in this form): important for asynchronous systems . . .

6.4 POR for LTL−©

LTL−© is is one useful and fuitful general setting for POR (especially for asynchronous
systems), so let’s look at that. Partial-order reduction and related ideas have also been
studied from different angels and settings and logics. One may also try to achieve reduc-
tions for, say, safety-properties, only„ or even try with reductions per formula. But we
do it for LTL−©, and we want to do that in terms of the ample-set variant of depth-first
search.

Given a transition system T , let’s refer to the reduced or pruned version as T�, reduced
in the sense containing only the part of the state space explored via the neighbors in the
ample-sets.

T, s |= ϕ iff T�, s |= ϕ

Since we a doing a form of LTL, the correctness is mainly a condition on paths, i.e., all
the path in T starting from s. So the correctness is assured if each path in the original
system is equivalently represented after pruning, at least once.

6 Partial-order reduction
6.4 POR for LTL−© 17

each path π1 in T starting in s is represented by an equivalent path π2 in T�,
starting in s

6.4.1 Conditions on selecting ample sets

The correctness condition spell out for path is straightforward and should be obvious.
Far less obvious is how to achieve that by doing a proper definition of the ample set. Of
course, if correctness were the only goal, that could be trivially achieved by setting the
ample set to be the equal to the set of enabled transition in each state. Then there would
be no reduction whatsoever, and that is of course correct. The trick must be to make the
ample set as small as (reasoably) possible, without compromising correctness.

In the design of the algorithm, it’s about making a selection of enabled steps and following
those, leaving out others., local decisions, paths . . .

reorderings of

• each pruned path can be “reordered” to an which is explored (using indepen-
dence). It also includes a condition covering end-states. See Section 6.3.1.

• make sure that the reordering (pre-poning) does not change the logical status,
based on the notions of stuttering and visibility. See Section 6.3.2.

• “fairness”: make use not to prune “relevant” transitions by letting the search
cycle in irrelevant ones.

We will later show code snippets covering those conditions.

Reordering conditions (C0, C1)

This section is making sure that, when cutting out a path or rather a whole set of paths
by not exploring some neighbors, the omitted paths are covered equivalently otherwise.

This requirement is split into to conditions. The first one, let’s call it C0 is very trivial.
We know that ample(s) ⊆ enableds and thus if enabled(s) = ∅, also the ample set is of
course empty: if there are no neighbors, one can not continue exploring anyway and the
depth-first seach backtracks. Note that it’s not about that there are no more unexplored
neighbors; also in this case the exploration backtracks. It’s about having reached a dead
end.

But if there are enabled steps, i.e. enabled(s) 6= ∅, then it’s clear that we cannot set the
ample-set to ∅ as well. Without at least following one of the possible neighbors, there’s no
way to know what would have happened if we followed at least one. So we have to require
the following:

18 6 Partial-order reduction
6.4 POR for LTL−©

C0: stop at dead ends, only.

ample(s) = ∅ iff enabled(s) = ∅ (6.2)

The next condition is a bit more tricky. It’s also not formulated in an actionable or readily
implementable form. It spell out just a condition on the ample sets in a state connection
with paths that start in that state.

C1 Along every path in T starting at s, the following condition holds: a transition
dependent on a transition in ample(s) cannot be executed without a transition
from ample(s) occuring first.

Observation 6.4.1. Under condition C1, we have:

ample(s) ./ ¬ample(s) . (6.3)

As a consequence of the definition: in a state, all enabled ones but not ample are indepen-
dent from the ample ones. If a transition (assuming otherwise) that is dependent on one
in ample would both be enabled but not covered by the ample set, then one could simply
start a path using that transition, contradicting the condition.

Another way of saying the same is

The set ample(s) is closed under #

As a consequence of C1, one can distinnguish two forms of paths, with respect of which
actions from within and outside the ample-set they contain. These two forms are

β0β1 . . . βmα or β0β1β2 . . . with α ∈ ample(s) and βi ./ ample(s) . (6.4)

In the first case, the path has a finite prefix β0β1 . . . βmα, i.e., after a few βi independent
from all actions in the ample set, at some point a member of the ample set (of s) is taken.
In the second case, there is an infinite sequence β0β1β2 . . . where also βi ./ ample(s).

Note that the two case are not mutually exclusive. Remember that the ample sets are
closed under #, thanks to C1, but the condition is a loose one. It states that if a action
is outside in the ample set, it has to be independent from it. However, it does not forbid
to put independent actions inside.

However, without loss of generality, we can focus on the case that all βi /∈ ample(s), in
which case the two conditions from equation (6.4) are mutually exclusive. Either there is
eventually an α from the ample set of s preceded by β’s outside that ample set. Or there
are infinitely many such β’s. As a side remark, in that form, it is a form of weak-until
property of the paths.

6 Partial-order reduction
6.4 POR for LTL−© 19

Figure 6.5: C1 (reorder) and C2 (invisibility)

We can now make an argument that we can reorder paths appropriately, using commuta-
tion. Consider the situation in Figure 6.5, which corresponds to the first case of equation
(6.4). The assumptions are, as agreed, that α ∈ ample(s), that βi /∈ ample(s),

Consider further the two paths starting in s,

π1 = ~βα and π2 = α~β .

As far as the unreduced transition system is concerned, we have that π1 ∈ T, s implies
π2 ∈ T, s (and vice versa). That’s a direct consequence from the fact that α and the β’s
are independent (see Definition 6.3.1).

Concerning T�, we have under the given assumptions,

π1 /∈ T� and π2 ∈ T� ,

at least if we assume m > 0, excluding the uninteresting and trivial corner case that there
are no β’s at all. So it’s an example of an actual reduction, the pruned system leaves out
π2 but explores the reordered one

Invisibility (C2)

So, as far as their existance in T is concerned, π1 and π2 are “equivalent” (and all the
“intermediate” paths as well, like β′αβ′′). If one path exists, it’s guaranteed that the
other exists, and vice versa and they have the same start and end state (s and r in the
picture).

But are they interchangable also wrt. the intermediate, visisited states, in particular, are
the two paths interchangeble wrt. the property we model check? Well, one paths visits
s0, s1, . . . sm, r the other one s, r0, . . . , rm (with start and end states coinciding, i.e., s0 = s
and rm = r). So the question is:

does it matter if one passes though the state ri or the state si?

20 6 Partial-order reduction
6.4 POR for LTL−©

Of course, it may matter if some property holds for ri but not for si or vice versa. The ri
and si states are connected by α, i.e.

si
α−→ ri

Now, whether π1 or π2 is taken (or one of the “intermediate mixtures) does not matter
provided that same formulas hold, comparing ri with si. That’s guaranteed if α is invisible
(with respect to the atomic propositions)

The answer is clearly no, it does not matter provided that the satifaction or “dissatis-
faction” of the property does not depend on whether one is in si or ri. That form of
“invariance” has been called “invisibility”.

The perspective is that the a formula observes the transition system, it can “see” if a truth
status changes (from true to false or the other way around). Observing changes means
being able to observe transitions. And, in this picture, a transition is invisible or not
observable, if taking said transition doe not lead to change of any truth values. Actually,
visibility has been defined with resp. to atomic propositions only, more complex formulas
don’t need to be considered, resp. their non-observability follow as a consequence.

C2 (invisibility):

If s is not fully expanded, then every α ∈ ample(s) is invisible.

A state s is fully expanded if ample(s) = enabled(s). That’s a situation where all enabled
transitions are explored anyway, so in that case, the ample-set at s is certainly ok, without
need to require invisibility of any transitions.

If we ignore transitions, the non-ignored transitions must all be invisible.

C3 (cycle condition)

The previous condition C2 insisted on invisiblity of an action α, in case one omits alterna-
tives. The transition system from Figure 6.5 shown previously illustrated that, that if α
is invisble, the uncovered path (in the picture) with α at the end can be reordered with α
at the beginning without omitting intermediate states with different logical status. That
last condition about invisibility took care about one form of paths from equation (6.4)
that follow as consequence of condition C1, namely the one with finitely many βi’s (not
in the ample set of a state s) followed by one α from the ample set of s.

The final condition C3 is about the second form of paths from equation (6.4), namely the
ones with infinitely many βi, and never any α from the ample set.

Based on the intution of the ample sets we can already intuitively see that one has to be
careful there. The ample set in a state represent the transitions that should be explored,
and the rest from ¬ample(s) are the one that are intended to be ignored (because one
can argue that they are equivalently covered otherwise during the exploration). Now, a
transition in the ample set of a state marks it as “this transition needs to be explored”.
Postponing it forever is not the way to go.

6 Partial-order reduction
6.4 POR for LTL−© 21

Like the other conditions as well, condition C3, is not a condition on the behavor or the
form of paths (like “don’t look at paths where transitions α ∈ ample(s) are postponed
forever”), it’s a condition on the forms of the ample set in the state that must be de-
signed in such a way that, when running the system, all paths have the desired properties
(in particular guaranteeing correctness, or avoiding infinite postponements of the form
sketched).

Let’s look at Figure 6.6 The three figures serve to illustrate the previously discussed
problem of “infinite postponement”. To complete the example, we need to add one piece
of information, namely the “logical part”, i.e., at which states satisfy which propositions.

start start

α
β1

β2

β3

(a) Two processes

β1

β2

β3

β1

β2

β3

α

α
α

(b) Parallel composition T

β1

β2

β3

(c) T�

Figure 6.6: Illustration of the cycle condition

Figure 6.6a contains two separate processes and Figure 6.6b their (asynchronous) parallel
composition. In the example, assume that α is visible, the βis are invisible. We also assume
that the α is independent from all the β’s. With all its transitions invisible, the second
process is stuttering. That means also, that, as far as the property to be model-checked
is concerned, the focus is on the first process, the second one is irrelevant as far as the
property is concerned.

Since the actions of the two processes are also indepdent, the two processes are completely
independent. There is no synchronization between them (independence) and they are not
“secretly” couple via the property (invisibility). The example is this pretty trivial, but it’s
used to illustrated the need for the last condition.

More concretely, the picture may repesent a situation, where there is one boolean variable,
initially say “false”, and the process to the left sets it to “true” via it’s transition α−→, i.e.,
the label α may represent the assignment p := true. The other process does not do
anything (except spinning around, cycling through its three states), resp. does nothing
interesting as far as the property to be checked is concerned. For instance, the property
could be ♦(p = true), and the second process only operates on variables other than p

Figure 6.6b shows the two processes running in parallel in an asynchronous fashion, i.e.,
interleaving their steps. The overall combined behavior is given by the transition system
T , with 6 states. In that T with its 6 states and if we assume one propositional atom p,
then p is false in all 3 states on the top of the picture, and true in the three states on the
bottom.

22 6 Partial-order reduction
6.4 POR for LTL−©

For this system, we can find ample sets that satisfy all the three conditions so far,
but still fail to achieve correctness. That’s easily doable by systematically ignoring
α, i.e., not including this transition in any of the ample sets.

I.e., each state has an one element ample set ample(s) = {βi}, and α is not included
anywhere.

It’s easy to check that this choice satisfies C0 (trivally, since no ample set or enabled set
is empty), C1 (since α is assumed to be independent from the βis; remember that C1
speaks about paths in T , not in T�). And finally C2 is satisfied as well, as the example
is constructed in such a way that the αi are all invisible, as required by C2.

In contrast to the β’s, transition α is visible, it does not stutter, so taking it matters wrt.
the verification problem. However, the ample sets chosen as given, leads to explorations
in T� ignoring α.

The last condition C3 excludes such infinite avoidance. Seen as condition one the graph
itself, it’s a condition on a cycle, not a condition on infinite paths resp. only indirectly so,
since in finite-state systems, infinite paths must come from running through at least one
cycle. What needs to be ensured is that a situation as in the example cannot occur. That
a−→ is not included in some of the 3 states of the last picture is fine. What is not fine is
that it’s left out in all of them in the cycle. If left out completely would allow, as in the
example, to construct a path running through this cycle where the transition is constantly
enabled but always in ¬ample(si), so no state “takes responsiblity” to at least one time,
explore that edge.

In the example, the neglegted edge α is a visible one. But the requirement stating “do not
systematically neglect an edge” also applies to invisible ones, as well. Even if some edge
itself is invisible, one may reach behavior after taking it that is visible and needs to be
checked. The example is also specific insofar in that α−→ is continuously enabled (but not
taken). Condition C3 is more stringent: don’t neglect a transition α−→ that is somewhere
enabled in a cycle.

This condition is connected with the notion of fairness. It’s a notion that is relevant in
concurrent systems. In practical systems (like operating systems), it also can be under-
stood as a property of a scheduler. In our example, with two processes, a behavior that
constantly schedules the second process, with systematically ignoring the first one (despite
the fact that it could do a step, namely α−→), that’s a non-fair behair. Of course, after the
first process has done α−→, it cannot do any further (no transition is enabled, and that
will remain so as well, as the process is terminated). If, in that situation, the scheduler
“choses” only βi−→ steps from the second process, but no steps from the first, that does not
count as being unfair.

There are, though, two variations of the concept of fairness, namely strong fairness and
weak fairness. The illustrating example corresponds to the weak variant (resp. it illustrates
behavior which not weakly fear). Since it’s not even weakly fair, it also fails to be strongly
fair, though. It illustrates a situation, where α−→ is neglected despite being constantly
enable. The chose infiniten path β1β2β3β1 . . . has an inifinite sequence of points where

6 Partial-order reduction
6.4 POR for LTL−© 23

α is constantly enabled. Weak fairness requires that one cannot have an action (like α)
enabled infinitely long without also taking it. fairness

Strong fairness say: of an action is enabled infinitely often (but can be disabled in between
the places when it’s enabled again), then, for fairness sake, it must be taken: strong fairness
means, if an action is enabled infinitely often in an execution, it needs also to be taken
infinitely often.

Condition C3 coming up next corresponds to the strong variant of fairness.

Side remark 6.4.2 (Zeno). A final side remark (not too relevant perhaps for POR): as
part of the illustration example, the chosen βi transitions are all invisible. The resulting
behavior (without imposing C3) is not just unfair in the described sense, neglecting α−→, the
behavior is also doing an infinite amout of do-nothing steps (here formulated by having the
αi−→ as invisible). The have no influence on the satisfaction of formulas. More practically,
one can see then as no-operation or skip steps (sometimes executing NOP steps, eating
up processor cycles without doing anything) or do-nothing “stutter” steps added to the
model (like we did in LTL).

Either way: infinitely many do-nothing or skip or stutter steps is seen as a simple and
discrete form of so called Zeno-behavior. That’s in honor of an old Greek philosopher Zeno
of Elea, who is remembered for some speculative paradoxes (retold by Aristotle), often
concerning infitely many (smaller and smaller time) steps. The most well-known of those
is probably the tale of Achilles and the tartoise, racing against each other.

Now, without furter ado, here’s the condition

C3 (cycle condition):

A cycle is not allowed if it contains a state in which some transition α is
enabled but never included in ample(s) for any state s on the cycle.

With all the conditions nailed now, let’s go back to the two issues we sketched in connection
with the commuting diamond Figure 6.3. As a recap: the two issues mentioned where:

1. Does the satisfaction depends on chosing the path via s1 or via s2?
2. When following only one path, do we forget to check successors?

Let’s focus on the second issue and let’s look at Figure 6.7, where s1 had successor(s)
reachable via transition γ. Assume the state s1 is omitted, i.e., β ∈ ample(s), but not
α.

So, by omitting s1, do we forget to check parts of the system?

the conditions imply

ss2r ∼st ss1r
ss1s′1 ∼st ss2rr′

24 6 Partial-order reduction
6.4 POR for LTL−©

Figure 6.7: Forgotten successors?

Calculating the ample sets

We don’t go much into details here, but looking at the different conditions, it’s clear
that they quite different in complexity. The conditions need to be checked on-the-flow
during the depth-first exploration. Therefore checking the condition can prefably be done
efficiently.

C0 and C2 are easy. More tricky is C1. Note that the condition refers to T , to to T�. It
is equivalent to reachability checking. As for C3, also that is tricky. One can replace the
condition by a modified one, that is easier to establish namely

at least one state along each cycle must be fully expanded

Since we do DFS: watch out for “back edges”: C′3: If s is not fully expanded, then no
transition in ample(s) may reach a state that is on the search stack

Applying the ample-set theory of POR

The whole presentation of partial-order reduction based on ample-sets is rather abstrac-
tion. It speaks about multiple relations, i.e., the labelled transitions and conditions on
them, like being independent resp. when they are inter-dependent.

In practice actions correspond to atomic steps in a (concurrent) program or a model
thereof. It’s also important that those steps are also deterministic, since one general
assumption underlying the whole setting is that the labelled transition system is deter-
ministic. If that’s not the case, the framework does not work in the presented form, resp.
need to be refined.

That’s typically not big restriction, atomic individualy steps are deterministic. A source of
non-determinism, however, could be is abstraction, for instance in that the model abstracts
away from details of a concrete programs. Also that actually is not really problematic for
the POR framework.

Anyway, we

6 Partial-order reduction
6.4 POR for LTL−© 25

General remarks on heuristics

• dependence and independence ./ “theoretical” relation between (deterministic) rela-
tions

• “use case”: capturing steps of concurrent programs
– processes with program counter (control points)
– different ways of

∗ synchronization
∗ sharing memory
∗ communication

• calculating (approx. of) ample sets: dependent on the programming model

Let’s fix some notations and definitions. We write now α for α−→. We assume a fixed, finite
set of processes Pi or just i for short. We also write Ti: those transitions that “belong to”
Pi

In the abstract discussions we referred to states of a transition system by s or simulir.
Now, the states are assumed to have more internal structure. Since the program is seen
as the parallel consposition of a number of processes. The overall state contains then the
tuple of the states of the individual processes. Each process is a particular location, or
control-flow point in its own execution. If the control-flow is depicted as some transition
system (or control-flow graph), that control-flow point corresponds to one node in that
transition system. We can also see it as the current value of the program counter. For
notation, given a global

Definition 6.4.3 (Referring to parts of a global state). Let pci(s) be the value of the
program counter of process i in state s. We refer by Ti(s) to the set of enabled transitions
in state s enable in process Pi

Definition 6.4.4 (Relationships between actions). dep(α): transitions interdependent
with α pre(α): transitions whose execution may enable α

can be over-approximative

When are transitions (inter)dependent The definition of independence has two aspects,
commutativity is one. The other one concerns enabledness. Basically, it’s about preserving
enabledness, resp. to forbid an action to disable the other. Since the definition of inde-
pendence is symmetric, this condition works both ways. For α1 and α2 being independent
means that for all states where both are enabled, taking α1 must not disable α2, and vice
versa.

Being inter-dependent means that communtativity or the enableness condition breaks,
at least in one state. For the condition that independence breaks in a least one state,
it’s however likely that if two enabled actions don’t commute on one state, the don’t
commute in a different states where they happen to be also enabled. Same for breaking
the preseving-enabledness condition. After all, actions like reading from or writing to
memory or other forms of interactions, work uniformely.

26 6 Partial-order reduction
6.4 POR for LTL−©

We said that α1#α2 mean violating commutativity or disabling the competitor. Actually,
it’s unlikely or unrealistic to find examples of actions which violate both. The reason is
simple: assume that taking α1 disables α2. Then j α1−→ α2−→ does not occur, with α2 disabled
after taking α1. That means, α2(α1(s)) does not exists or is undefined. Then one could
make the argument, that breaks the second requirement for indepedence

α2(α1(s)) = α2(α2(s)) (6.5)

becaise the left-hand side is undefined and the right-hand side may still be ok. To break
independence, it’s enough that α1 disables α2, it’s not needed that α2 also does the same
with α1. In practice, when an action disables another, the situation is symmtetric. It
describes a choice point in a program where one of two (or more) actions is taken and the
others disabled. Choice-point not in the sense of a case-construct of a sequential program.
Typically would be lock-taking actions. The hole purpose of a lock is to do exactly that
(to ensure mutex): let at most one action succeed, and disabling competitors, at least for
some time, until the lock becomes free again.

But the behavior of the lock-taking actins is symmetric, if process P1 takes the lock at a
place where P2 could also take it, P2 is disabled, and vice versa. That means, both sides
of equation 6.5 don’t exists or are undefined.

Assuming that in practice such disabling actions are symmetric, there could be another
reason why in a situaton α1#α2, both swapping and the enabledness condition are violated.
That has to do with the fact that one needs to find only one state where the conditions
for α1 ./ α2 don’t hold. And it could be that in one state, commutativity is violated, and
in another one the enabledness part. So that would be another situation when both fail,
namely at different states. But again, that unplausible in practice. Actions typically act
uniform in states.

Transitions that may enable α (pre(α)) Assume α is an action from one specific process
Pi

pre(α) ⊇ {β | α /∈ enabled(s), β ∈ enabled(s), α ∈ enabled(β(s))} (6.6)

• pre(α) includes
– “local predecessor” of i (“program order”)
– shared variables: if enabling conditions of α involves shared variables: the set

contains all other transitions that can change these shared variables
– message passing: if α is a send (reps. receive), the pre(α) contains transitions

of other processes that receive (resp. send) on the channel

6.4.2 Some code snippets for the conditions

We have discussed the different conditions in some detail and mentioned a bit how they
can be checked. Here, for completeness, some pseudo-code that sketch how to algorith-
mically determine the conditions. For the third condition, the code shows the variant C′3
mentioned shortly earlier which is easier to check than the more precise one C3.

6 Partial-order reduction
6.4 POR for LTL−© 27

1 function ample (s) =
2 for a l l Pi such that Ti(s) 6= ∅ // try to f o c u s on one Pi

3 i f
4 check_C1 (s, P1) ∧
5 check_C2 (Ti(s)) ∧
6 check_C3 ' (s,Ti(s))
7 then
8 return Ti(s)
9 i f

10 end for a l l // too bad , cannot f o c u s on any but
11 return enabled(s) // f u l l y expanded can ' t be wrong
12 end

Listing 6.2: ample

1 function check_C2 (X) =
2 for a l l α ∈ X
3 do i f v i s i b l e (α)
4 then fa lse
5 else true

Listing 6.3: Check C2

1 function check_C3 ' (s,X) =
2 for a l l α ∈ X
3 do
4 i f on_stack (α(s))
5 then fa lse
6 else true

Listing 6.4: Check C′3

1 function check_C1 (s, Pi) =
2 for a l l Pj 6= Pi

3 do
4 i f dep(Ti(s)) ∩ Tj 6= ∅
5 ∨
6 pre(currenti(s) \ Ti(s)) ∩ Tj 6= ∅
7 then return fa l se
8 end f o r a l l ;
9 return true

Listing 6.5: Check C1

28 Bibliography
Bibliography

Bibliography

[1] Baier, C. and Katoen, J.-P. (2008). Principles of Model Checking. MIT Press.

[2] Clarke, E. M., Grumberg, O., and Peled, D. (1999). Model Checking. MIT Press.

[3] Diekert, V. and Muscholl, A. (2011). Trace theory. Available on the internet.

[4] Peled, D. (1994). Combining partial-order reduction with on-the-fly model-checking.
In Dill, D., editor, Proceedings of CAV ’94, volume 818 of Lecture Notes in Computer
Science, pages 377–390. Springer Verlag.

[5] Peled, D. (2018). Partial-order reduction. In Clarke, E. C., Henzinger, T. A., Veith,
H., and Bloem, R., editors, Handbook of Model Checking. Springer Verlag.

[6] Willems, B. and Wolper, P. (1996). Partial-order methods for model checking: From
linear time to branching time. In Proceedings of LICS ’96, pages 294–303. IEEE, Com-
puter Society Press.

Index
Index 29

Index

∼st (stutter equivalence), 15

abstraction, 2
ample set, 10, 11
asychronous vs. synchronous, 2

BDD, 2

complexity, 1, 2
compositionality, 2
confluence, 7

data abstraction, 2
dependence, 5
depth-first search, 9
deterministic relation, 7
Dijkstra’s algorithm, 4

enabledness, 7

independence, 5
interleaving, 2
interleaving concurrency, 4
interleaving semantics, 4

labelled transition system, 6

partial order, 3
partial-order reduction, 2

SAT-solving, 1
shared variable, 5
SMT-solving, 1
state-space explosion problem, 1, 2
stutter equivalence, 15
stutter invariance, 15
stuttering, 15
symbolic model checking, 2
symmetry reduction, 2

total order, 4
tractable problem, 1
true concurrency, 4

visibility, 14

	Contents
	Partial-order reduction
	Introduction
	Pruning the state space: ample sets
	Equivalent behavior
	Equivalent reordering of behavior: Independence
	Equivalence wrt. formula(s): visibility and stuttering

	POR for LTL-
	Conditions on selecting ample sets
	Some code snippets for the conditions

