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State space explosion problem

• model checking in general “intractable”
• fundamental limitation: combinatorial explosion
• state space: exponential in problem size

• in particular in number of processes



IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-4

“Asynchronous” systems and interleaving

• remember: synchronous and asynchronous product (in
connection with LTL model checking)
• asynchronous: software and asynchonous HW
• synchronous: often HW, global clock
• interleaving (of steps, actions, transitions . . . )
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Where does the name come from?
• partial-order semantics
• what is concurrent (or parallel) execution?
• “causal” order
• “true” concurrency vs. interleaving semantics
• “math” fact: PO equivalent set of all linearizations
• “reality” fact: POR only “approximates” that math-fact
• perhaps better name for POR: “COR”:

commutativity-based reduction

Exploiting “equivalences”
Instead if checking all “situations”,
• figure which are equivalent (also wrt. to the property)
• check only one (or at least not all) representatives per
equivalence class
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(Labelled) transition systems

• basically unchanged,
• assume initial states
• states labelled with sets 2P

• state-labelling function V
• transitions are labelled as well (from L), α, β . . .

• alternatively multiple transition relations: instead of α−→,
we also see α as relation

(S, S0, L,−→, V )
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Determinism and enabledness

• remember: α−→ deterministic
• in that case: also write s′ = α(s) for s α−→ s′ (or
α(s, s′))

Enabledness
α−→ enabled in s, if s α−→
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Concurrency in asynchronous systems
• independent transitions
• arbitrary orderings or linearizations (= interleavings)
• [actions themselves assumed atomic / indivisible]

• raw math calculation: n transition relations
• n! different orderings
• 2n states



IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-9

Reducing the state space

• goal: pruning the state space

Super-unrealistic:

1. generate explititly the state space by DFS
2. then prune it (remove equivalent transitions & states)
3. then model check the property

unrealistic (but for presentation reasons)

1. generate explictly the reduced state space (using
modified DFS)

2. then model check the property
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Modified DFS: ample set

• standard DFS: basically recursion (probably with
explicit stack)
• exploration: explore “successor states”, i.e.,

follow all enabled transitions

• graph exploration (not tree): check for revisits

Modification/improvement

Don’t explore all enabled transitions.

follow enough enabled transition
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Modified DFS

1 hash (s0 ) ;
2 s e t on_stack (s0 ) ;
3 expand_state (s0 ) ;
4
5 procedure expand_state (s ) ;
6 work_set (s) := ample (s ) ;
7 wh i l e work_set (s) 6= ∅
8 do
9 l e t α ∈ work_set (s ) ;

10 work_set (s) := work_set (s) \{α}
11 s′ := α(s)
12 i f i s_new (s′ )
13 then hash (s′ )
14 s e t on_stack (s′ ) ;
15 expand_state (s′ ) ;
16 end i f
17 end wh i l e
18 s e t completed (s)
19 end procedure ;
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Ample sets

General requirements on ample

1. pruning with ample does not change the outcome of the
MC run (correctness)

2. pruning should, however, cut out a significant amount
3. calculating the ample set: not too much overhead
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With a little help of the programmer . . .

• for instance: Spin
• Spin: early adoptor of POR
• reduce the amount of interleavings

atomic

atomic block executed
indivisibly

D_step

deterministic code fragment
executed indivisibly.

• D_step more strict than atomic (eg. wrt. goto
statements)

http:spinroot.com/spin/Man/atomic.html
http://spinroot.com/spin/Man/d_step.html
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2 relations between relations

• we have labelled transitions (resp. multiple relations)
• 2 important conditions for POR

• one connects two relations
• one connects one relation with the property to verify

Independence
roughly: the order of 2
independent transitions does
not matter.

Invisible
Taking a transition does not
change the satisfaction of
relevant formulas
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Determinism, confluence, and commuting
diamond property

Determinism

a a

=

Diamond prop. Comm. d-prop.

a b

b a

“Swapping” or commuting

a b

b a

and vice versa
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Independence

• assume: transition relations αi−→ deterministic
• write αi(s) for s αi−→

Definition (Independence)

An independence relation I ⊆−→ × −→ is a symmetric,
antireflexive relation such that the following holds, for all
states s ∈ S and all ( α1−→, α2−→) ∈ I
Enabledness If α1, α2 ∈ enabled(s), then

α1 ∈ enabled(α2(s))
Commutativity: if α1, α2 ∈ enabled(s), then

α1(α2(s)) = α2(α1(s))

• dependence relation: D = (−→ × −→) \ I
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Is that all?

2 issues

1. The checked property might be sensitive to the choice
between s1 and s2 (and not just depend on s and r

2. s1 and s2 may have other successors not shown in the
diagram.
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Visibility

• V : S → 2P

• α−→ is invisible wrt. to a set of P ′ ⊆ P if for all s1
α−→ s2

and all p′ ∈ P ′

s1 |= p iff s2 |= p
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Blocks and stuttering

stuttering equivalent paths

• block: finite sequence of intentically labelled states
• stuttering (in this form): important for asynchronous
systems

Stutter invariance
An LTL formula ϕ is invariant under stuttering iff for all
pairs of paths π1 and π2 with π1 ∼st π2,

π1 |= ϕ iff π2 |= ϕ
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Next-free LTL

• © breaks stutter invariance
• LTL−©: “next-free” fragment of LTL (often also LTL-X)

Theorem (Stuttering)

• Any LTL−©property is invariant under stuttering
• Any LTL property which is invariant under stuttering is
expressible in LTL−©
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POR for LTL−©

• general useful and fuitful setting for POR
• of course: one may look more specific for specific
formulas
• in that setting:

Correctness of POR
Ample sets prune the (DFS) search. Goal:

T, s |= ϕ iff T�, s |= ϕ

Path representatives
each path π1 in T starting in s is represented by an
equivalent path π2 in T�, starting in s
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Conditions on selecting ample sets

4 conditions for selecting ample set

• each pruned path can be “reordered” to an which is
explored (using independence). Includes a condition
covering end-states
• make sure that the reordering (pre-poning) does not
change the logical status (stutting, visibility)
• “fairness”: make use not to prune “relevant” transitions
by letting the search cycle in irrelevant ones.
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Reordering conditions (C0, C1)

C0: stop at a dead end, only

ample(s) = ∅ iff enabled(s) = ∅

C1

Along every path in T starting at s, the following condition
holds: a transition dependent on a transition in ample(s)
cannot be executed without a transition from ample(s)
occuring first.
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Form of paths

• consequence of C1: two forms of paths

with prefix β0β1 . . . βmα

• α ∈ ample(s)
• βi ./ ample(s)

without such prefix:

• infinite β0β1β2 . . .

• βi ./ ample(s)
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Commutation

path ~βα in T , starting in s

• α ∈ ample(s), βi /∈ ample(s)

• π1 = ~βα

• π2 = α~β
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Does it make a difference how to go from s
to r?

• π1 and π2 (and intermediate mixures): “interchangable”
• start and end point equal
• but: does it matter which one is taken

• wrt. the logical property, i.e.,
• does it matter which intermediate states are visited?

si
α−→ ri
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Invisibility of transitions

• remember: invisibility of transitions (by sets of atomic
propositions)

C2 (invisibility)

If s is not fully expanded, then every α ∈ ample(s) is
invisible.
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Is that all?

start start

α
β1

β2

β3

β1

β2

β3

β1

β2

β3

α

α
α

β1

β2

β3
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Is that all?

T�

β1

β2

β3
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Cycle condition C3

C3

A cycle is not allowed if it contains a state in which some
transition α is enabled but never included in ample(s) for
any state s on the cycle.



IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-33

Remember the 2 issues

1. satisfaction depends in
chosing path via s1 or s2?

2. forgotten successors?

• assume: s1 is omitted (β ∈ ample(s), but not α)

issue 2

the conditions imply

1. ss2r ∼st ss1r

2. ss1s
′
1 ∼st ss2rr

′
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Complexity

• checking conditions on-the-fly
• C0: easy
• C1: tricky

• refers to T , not T�
• checking C1: equivalent to reachability checking

• strengthen C3:

sufficient for C3

• at least one state along each cycle must be fully
expanded

• since we do DFS: watch out for “back edges”: C′3: If s
is not fully expanded, then no transition in ample(s)
may reach a state that is on the search stack
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General remarks on heuristics

• dependence and independence ./ “theoretical” relation
between (deterministic) relations
• “use case”: capturing steps of concurrent programs

• processes with program counter (control points)
• different ways of

• synchronization
• sharing memory
• communication

• calculating (approx. of) ample sets: dependent on the
programming model
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Notions, notations, definitions

• we write now α for α−→
• fixed, finite set of procecesses i (called Pi)
• Ti: those transitions that “belong to” Pi
• some more easy definitions

• pci(s): value of program counter of i in state s
• pre(α):

• transition whose execution may enable α
• can be over-approximative

• dep(α): transitions interdependent with α
• currenti(s)
• Ti(s)
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When are transitions (inter)dependent
• note: dependence is symmtetric! (good terminology?)

Shared variables
pairs of transitions, that share a variables which is changed
(or written?) by at least one of them

Same process
pairs of transitions belonging to the same process are
interdependent. In particular currenti(s)

Message passing

• 2 sends to the same channel or message queue
• 2 receives from the same channel
• Note send and receive indepenent (also on the same
channel).
• side remark: rendezvouz is seen/ can be seen a joint
step of 2 processes
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Transitions that may enable α (preα)

pre(α) ⊇ {β | α /∈ enabled(s), β ∈ enabled(s), α ∈ enabled(β(s))}

• assume α is an action from Pi
• pre(α) includes

• “local predecessor” of i (“program order”)
• shared variables: if enabling conditions of α involves

shared variables: the set contains all other transitions
that can change these shared variables

• message passing: if α is a send (reps. receive), the
pre(α) contains transitions of other processes that
receive (resp. send) on the channel
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Ample

1 f u n c t i o n ample (s) =
2 f o r a l l Pi such tha t Ti(s) 6= ∅ // t r y to f o c u s on one Pi

3 i f
4 check_C1 (s, P1 ) ∧
5 check_C2 (Ti(s)) ∧
6 check_C3 ' ( s,Ti(s))
7 then
8 r e t u r n Ti(s)
9 i f

10 end f o r a l l // too bad , cannot f o cu s on any but
11 r e t u r n enabled(s) // f u l l y expanded can ' t be wrong
12 end
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Check C2

1 f u n c t i o n check_C2 (X ) =
2 f o r a l l α ∈ X
3 do i f v i s i b l e (α)
4 then f a l s e
5 e l s e t rue
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Check C′3

1 f u n c t i o n check_C3 ' (s,X ) =
2 f o r a l l α ∈ X
3 do
4 i f on_stack (α(s))
5 then f a l s e
6 e l s e t rue
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Check C1

1 f u n c t i o n check_C1 (s, Pi ) =
2 f o r a l l Pj 6= Pi

3 do
4 i f dep(Ti(s)) ∩ Tj 6= ∅
5 ∨
6 pre(currenti(s) \ Ti(s)) ∩ Tj 6= ∅
7 then r e tu rn f a l s e
8 end f o r a l l ;
9 r e t u r n t rue
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