
Chapter 1
Partial-order reduction

Course “Model checking”
Martin Steffen
Autumn 2021

Section
Introduction

Chapter 1 “Partial-order reduction”
Course “Model checking”
Martin Steffen
Autumn 2021

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-3

State space explosion problem

• model checking in general “intractable”
• fundamental limitation: combinatorial explosion
• state space: exponential in problem size

• in particular in number of processes

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-4

“Asynchronous” systems and interleaving

• remember: synchronous and asynchronous product (in
connection with LTL model checking)
• asynchronous: software and asynchonous HW
• synchronous: often HW, global clock
• interleaving (of steps, actions, transitions . . .)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-5

Where does the name come from?
• partial-order semantics
• what is concurrent (or parallel) execution?
• “causal” order
• “true” concurrency vs. interleaving semantics
• “math” fact: PO equivalent set of all linearizations
• “reality” fact: POR only “approximates” that math-fact
• perhaps better name for POR: “COR”:

commutativity-based reduction

Exploiting “equivalences”
Instead if checking all “situations”,
• figure which are equivalent (also wrt. to the property)
• check only one (or at least not all) representatives per
equivalence class

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-6

(Labelled) transition systems

• basically unchanged,
• assume initial states
• states labelled with sets 2P

• state-labelling function V
• transitions are labelled as well (from L), α, β . . .

• alternatively multiple transition relations: instead of α−→,
we also see α as relation

(S, S0, L,−→, V)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-7

Determinism and enabledness

• remember: α−→ deterministic
• in that case: also write s′ = α(s) for s α−→ s′ (or
α(s, s′))

Enabledness
α−→ enabled in s, if s α−→

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-8

Concurrency in asynchronous systems
• independent transitions
• arbitrary orderings or linearizations (= interleavings)
• [actions themselves assumed atomic / indivisible]

• raw math calculation: n transition relations
• n! different orderings
• 2n states

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-9

Reducing the state space

• goal: pruning the state space

Super-unrealistic:

1. generate explititly the state space by DFS
2. then prune it (remove equivalent transitions & states)
3. then model check the property

unrealistic (but for presentation reasons)

1. generate explictly the reduced state space (using
modified DFS)

2. then model check the property

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-9

Reducing the state space

• goal: pruning the state space

Super-unrealistic:

1. generate explititly the state space by DFS
2. then prune it (remove equivalent transitions & states)
3. then model check the property

unrealistic (but for presentation reasons)

1. generate explictly the reduced state space (using
modified DFS)

2. then model check the property

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-10

Modified DFS: ample set

• standard DFS: basically recursion (probably with
explicit stack)
• exploration: explore “successor states”, i.e.,

follow all enabled transitions

• graph exploration (not tree): check for revisits

Modification/improvement

Don’t explore all enabled transitions.

follow enough enabled transition

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-10

Modified DFS: ample set

• standard DFS: basically recursion (probably with
explicit stack)
• exploration: explore “successor states”, i.e.,

follow all enabled transitions

• graph exploration (not tree): check for revisits

Modification/improvement

Don’t explore all enabled transitions.

follow enough enabled transition

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-11

Modified DFS

1 hash (s0) ;
2 s e t on_stack (s0) ;
3 expand_state (s0) ;
4
5 procedure expand_state (s) ;
6 work_set (s) := ample (s) ;
7 wh i l e work_set (s) 6= ∅
8 do
9 l e t α ∈ work_set (s) ;

10 work_set (s) := work_set (s) \{α}
11 s′ := α(s)
12 i f i s_new (s′)
13 then hash (s′)
14 s e t on_stack (s′) ;
15 expand_state (s′) ;
16 end i f
17 end wh i l e
18 s e t completed (s)
19 end procedure ;

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-12

Ample sets

General requirements on ample

1. pruning with ample does not change the outcome of the
MC run (correctness)

2. pruning should, however, cut out a significant amount
3. calculating the ample set: not too much overhead

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-13

With a little help of the programmer . . .

• for instance: Spin
• Spin: early adoptor of POR
• reduce the amount of interleavings

atomic

atomic block executed
indivisibly

D_step

deterministic code fragment
executed indivisibly.

• D_step more strict than atomic (eg. wrt. goto
statements)

http:spinroot.com/spin/Man/atomic.html
http://spinroot.com/spin/Man/d_step.html

Section
Independence and invisibility

Chapter 1 “Partial-order reduction”
Course “Model checking”
Martin Steffen
Autumn 2021

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-15

2 relations between relations

• we have labelled transitions (resp. multiple relations)
• 2 important conditions for POR

• one connects two relations
• one connects one relation with the property to verify

Independence
roughly: the order of 2
independent transitions does
not matter.

Invisible
Taking a transition does not
change the satisfaction of
relevant formulas

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-16

Determinism, confluence, and commuting
diamond property

Determinism

a a

=

Diamond prop. Comm. d-prop.

a b

b a

“Swapping” or commuting

a b

b a

and vice versa

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-17

Independence

• assume: transition relations αi−→ deterministic
• write αi(s) for s αi−→

Definition (Independence)

An independence relation I ⊆−→ × −→ is a symmetric,
antireflexive relation such that the following holds, for all
states s ∈ S and all (α1−→, α2−→) ∈ I
Enabledness If α1, α2 ∈ enabled(s), then

α1 ∈ enabled(α2(s))
Commutativity: if α1, α2 ∈ enabled(s), then

α1(α2(s)) = α2(α1(s))

• dependence relation: D = (−→ × −→) \ I

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-18

Is that all?

2 issues

1. The checked property might be sensitive to the choice
between s1 and s2 (and not just depend on s and r

2. s1 and s2 may have other successors not shown in the
diagram.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-18

Is that all?

2 issues

1. The checked property might be sensitive to the choice
between s1 and s2 (and not just depend on s and r

2. s1 and s2 may have other successors not shown in the
diagram.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-19

Visibility

• V : S → 2P

• α−→ is invisible wrt. to a set of P ′ ⊆ P if for all s1
α−→ s2

and all p′ ∈ P ′

s1 |= p iff s2 |= p

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-20

Blocks and stuttering

stuttering equivalent paths

• block: finite sequence of intentically labelled states
• stuttering (in this form): important for asynchronous
systems

Stutter invariance
An LTL formula ϕ is invariant under stuttering iff for all
pairs of paths π1 and π2 with π1 ∼st π2,

π1 |= ϕ iff π2 |= ϕ

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-21

Next-free LTL

• © breaks stutter invariance
• LTL−©: “next-free” fragment of LTL (often also LTL-X)

Theorem (Stuttering)

• Any LTL−©property is invariant under stuttering
• Any LTL property which is invariant under stuttering is
expressible in LTL−©

Section
POR for LTL−©

Chapter 1 “Partial-order reduction”
Course “Model checking”
Martin Steffen
Autumn 2021

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-23

POR for LTL−©

• general useful and fuitful setting for POR
• of course: one may look more specific for specific
formulas
• in that setting:

Correctness of POR
Ample sets prune the (DFS) search. Goal:

T, s |= ϕ iff T�, s |= ϕ

Path representatives
each path π1 in T starting in s is represented by an
equivalent path π2 in T�, starting in s

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-24

Conditions on selecting ample sets

4 conditions for selecting ample set

• each pruned path can be “reordered” to an which is
explored (using independence). Includes a condition
covering end-states
• make sure that the reordering (pre-poning) does not
change the logical status (stutting, visibility)
• “fairness”: make use not to prune “relevant” transitions
by letting the search cycle in irrelevant ones.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-25

Reordering conditions (C0, C1)

C0: stop at a dead end, only

ample(s) = ∅ iff enabled(s) = ∅

C1

Along every path in T starting at s, the following condition
holds: a transition dependent on a transition in ample(s)
cannot be executed without a transition from ample(s)
occuring first.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-26

Form of paths

• consequence of C1: two forms of paths

with prefix β0β1 . . . βmα

• α ∈ ample(s)
• βi ./ ample(s)

without such prefix:

• infinite β0β1β2 . . .

• βi ./ ample(s)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-27

Commutation

path ~βα in T , starting in s

• α ∈ ample(s), βi /∈ ample(s)

• π1 = ~βα

• π2 = α~β

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-28

Does it make a difference how to go from s
to r?

• π1 and π2 (and intermediate mixures): “interchangable”
• start and end point equal
• but: does it matter which one is taken

• wrt. the logical property, i.e.,
• does it matter which intermediate states are visited?

si
α−→ ri

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-29

Invisibility of transitions

• remember: invisibility of transitions (by sets of atomic
propositions)

C2 (invisibility)

If s is not fully expanded, then every α ∈ ample(s) is
invisible.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-30

Is that all?

start start

α
β1

β2

β3

β1

β2

β3

β1

β2

β3

α

α
α

β1

β2

β3

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-31

Is that all?

T�

β1

β2

β3

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-31

Is that all?

T�

β1

β2

β3

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-31

Is that all?

T�

β1

β2

β3

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-32

Cycle condition C3

C3

A cycle is not allowed if it contains a state in which some
transition α is enabled but never included in ample(s) for
any state s on the cycle.

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-33

Remember the 2 issues

1. satisfaction depends in
chosing path via s1 or s2?

2. forgotten successors?

• assume: s1 is omitted (β ∈ ample(s), but not α)

issue 2

the conditions imply

1. ss2r ∼st ss1r

2. ss1s
′
1 ∼st ss2rr

′

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-33

Remember the 2 issues

1. satisfaction depends in
chosing path via s1 or s2?

2. forgotten successors?

• assume: s1 is omitted (β ∈ ample(s), but not α)

issue 2

the conditions imply

1. ss2r ∼st ss1r

2. ss1s
′
1 ∼st ss2rr

′

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-34

Complexity

• checking conditions on-the-fly
• C0: easy
• C1: tricky

• refers to T , not T�
• checking C1: equivalent to reachability checking

• strengthen C3:

sufficient for C3

• at least one state along each cycle must be fully
expanded

• since we do DFS: watch out for “back edges”: C′3: If s
is not fully expanded, then no transition in ample(s)
may reach a state that is on the search stack

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-35

General remarks on heuristics

• dependence and independence ./ “theoretical” relation
between (deterministic) relations
• “use case”: capturing steps of concurrent programs

• processes with program counter (control points)
• different ways of

• synchronization
• sharing memory
• communication

• calculating (approx. of) ample sets: dependent on the
programming model

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-36

Notions, notations, definitions

• we write now α for α−→
• fixed, finite set of procecesses i (called Pi)
• Ti: those transitions that “belong to” Pi
• some more easy definitions

• pci(s): value of program counter of i in state s
• pre(α):

• transition whose execution may enable α
• can be over-approximative

• dep(α): transitions interdependent with α
• currenti(s)
• Ti(s)

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-37

When are transitions (inter)dependent
• note: dependence is symmtetric! (good terminology?)

Shared variables
pairs of transitions, that share a variables which is changed
(or written?) by at least one of them

Same process
pairs of transitions belonging to the same process are
interdependent. In particular currenti(s)

Message passing

• 2 sends to the same channel or message queue
• 2 receives from the same channel
• Note send and receive indepenent (also on the same
channel).
• side remark: rendezvouz is seen/ can be seen a joint
step of 2 processes

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-38

Transitions that may enable α (preα)

pre(α) ⊇ {β | α /∈ enabled(s), β ∈ enabled(s), α ∈ enabled(β(s))}

• assume α is an action from Pi
• pre(α) includes

• “local predecessor” of i (“program order”)
• shared variables: if enabling conditions of α involves

shared variables: the set contains all other transitions
that can change these shared variables

• message passing: if α is a send (reps. receive), the
pre(α) contains transitions of other processes that
receive (resp. send) on the channel

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-39

Ample

1 f u n c t i o n ample (s) =
2 f o r a l l Pi such tha t Ti(s) 6= ∅ // t r y to f o c u s on one Pi

3 i f
4 check_C1 (s, P1) ∧
5 check_C2 (Ti(s)) ∧
6 check_C3 ' (s,Ti(s))
7 then
8 r e t u r n Ti(s)
9 i f

10 end f o r a l l // too bad , cannot f o cu s on any but
11 r e t u r n enabled(s) // f u l l y expanded can ' t be wrong
12 end

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-40

Check C2

1 f u n c t i o n check_C2 (X) =
2 f o r a l l α ∈ X
3 do i f v i s i b l e (α)
4 then f a l s e
5 e l s e t rue

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

Introduction

Independence and
invisibility

POR for LTL−©
Calculating the ample sets

1-41

Check C′3

1 f u n c t i o n check_C3 ' (s,X) =
2 f o r a l l α ∈ X
3 do
4 i f on_stack (α(s))
5 then f a l s e
6 e l s e t rue

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

5-42

Check C1

1 f u n c t i o n check_C1 (s, Pi) =
2 f o r a l l Pj 6= Pi

3 do
4 i f dep(Ti(s)) ∩ Tj 6= ∅
5 ∨
6 pre(currenti(s) \ Ti(s)) ∩ Tj 6= ∅
7 then r e tu rn f a l s e
8 end f o r a l l ;
9 r e t u r n t rue

IN5110 –
Verification and
specification of
parallel systems

Martin Steffen

5-43

References I

Bibliography

[1] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. (1992). Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2):142–170.

[2] Clarke, E. M. and Emerson, E. A. (1982). Design and synthesis of synchronisation skeletons using
branching time temporal logic specifications. In Kozen, D., editor, Proceedings of the Workshop on
Logic of Programs 1981, volume 131 of Lecture Notes in Computer Science, pages 244–263. Springer
Verlag.

[3] Queille, J. P. and Sifakis, J. (1982). Specification and verification of concurrent systems in CESAR.
In Dezani-Ciancaglini, M. and Montanari, U., editors, Proceedings of the 5th International
Symposium on Programming 1981, volume 137 of Lecture Notes in Computer Science, pages
337–351. Springer Verlag.

	Partial-order reduction

