
Course Script
IN 5110: Specification and
Verification of Parallel Sys-
tems
IN5110, autumn 2021

Martin Steffen

https://martinsteffen.github.io/

ii Contents

Contents

7 Symbolic execution 1
7.1 Introduction . 1
7.2 Symbolic execution . 8
7.3 Concolic testing . 13

7 Symbolic execution 1

7
Symbolic execution
Chapter

What
is it

about?
Learning Targets of this Chapter

The chapter gives an not too deep
introduction to symbolic execution
and concolic execution.

Contents

7.1 Introduction 1
7.2 Symbolic execution 8
7.3 Concolic testing 13

7.1 Introduction

The material here is partly based on [2] (in particular the DART part). The slides take
inspiration also from a presentation of Marco Probst, University Freiburg, see the link
here, in particular, some of the graphs are reused and adapted from that presentation.
More material may be found in the survey paper [1].

Symbolic execution is a quite “old” technique, one or the starting point for it is [3] from
1976. It’s a technique natural also in the context of testing (and in the chapter, we talk
also about some aspects of testing). We cover also the ideas behind concolic execution, a
portmanteau word meaning “concrete and symbolic”. Symbolic execution is also used in
compilers, for optimization and code generation.

1 f (int x , int y){
2 i f (x∗x∗x∗ > 0) {
3 i f (x > 0 && y == 10) {
4 f a i l () ;
5 }
6 } else {
7 i f (x > 0 && y == 20) {
8 f a i l () ;
9 }

10 }
11
12 complete () ;
13 }

Listing 7.1: Sample code

Let’s take a look at Listing 7.1. The code has no particular purpose, except that it
will be used to discuss testing, symbolic execution, and also concolic execution. The
function has two possible outcomes, namely success or failure, represented by calls to
corresponding procedures. Note that non-termination is not an issue, there is no loop
in the procedure. In general, symbolic execution works best or most straightforward on
straight-line programs and loops pose challenges for symbolic execution. The problems

http://swt.informatik.uni-freiburg.de/teaching/WS2015-16/ProgramAnalysisSoftwareTesting/Resources/Slides/dart_seminarslides_marcoprobst.pdf
http://swt.informatik.uni-freiburg.de/teaching/WS2015-16/ProgramAnalysisSoftwareTesting/Resources/Slides/dart_seminarslides_marcoprobst.pdf

2 7 Symbolic execution
7.1 Introduction

with loops are similar the challenges they pose for bounded model checking . Indeed, BMC
shares some commonalities with symbolic execution: both are making use of SAT/SMT
solving.

How to analyse a (simple) program like that?

One has different options there; and can of course pursue more than one of them. One
standard thing to do is testing. Testing is probably the most used method for ensuring
software (and system) “quality”.

Testing is a broad field and has very many aspects, and there are very different approaches
to testing and techniques and different testing goals. Those techniques are also used in
combination and in different phases of software engineering cycle.

For function bodies in isolation like the ones shown, unit testing is a way to go (perhaps
a part of a larger testing set-up for the whole product).

One could do “verification”, whatever that means. The term could include code review,
or a formal verification of the code towards a specification, perhaps with the help of a
theorem prover. Later we will disucss symbolic and concolic execution. Before we do that,
what about model-checking?

Model-checking a program like that is challenging. Model-checking methods and corre-
sponding (temporal) logics are mostly geared towards concurrent and reactive programs
anyway. In particular, standard model checking techniques are not very suitable for pro-
grams involving data calculations. The given code is a procedure with input and its
behavior is determined by the input. So, given the input, it’s a deterministic (and sequen-
tial) problem and with a concretely fixed input, there is also no “state-space explosion”.
Generally, though, the problem is infinite in size, if one assumes the mathematical integers
as input, resp., unmanagably huge, if one assumes a concrete machine-representation of
integers, i.e., for practical purposes, the state space is basically infinite, even though the
program is tiny.

Of course, common sense would tell that if the program would works for having x = 2345
and y = 6789, there is no reason to suspect it would fail for x = 2346 and y unchanged, for
example. In that particular tiny example, that is clear from the fact that those particular
numbers are never even mentioned in the code, they are nowhere near any corner case
where one would expect trouble.

This way of thinking (what are corner cases) is typical for testing, and is obvious also for
unexperienced programmers (or testers). Of course it is based on the assumption that the
code is available, as the intuitive notion of “corner case” rests on the assumption one can
analyze the code and that one sees in particular which conditionals are used. For instance,
there’s no way of knowing which corner cases the complete() might have, should it have
access to those variables x and y, except perhaps some “usual suspects” like uninitialized
value, 0, MAXINT and +/- 1 of those perhaps.

There are many forms of testing, in general, with different goals, under different assump-
tions, and different artifacts being tested. The form of (software) testing where the code

7 Symbolic execution
7.1 Introduction 3

is available is sometimes called white-box testing or structural testing (the terms white-box
and black-box testing are considered out-dated by some, but widely used anyway).

Coverage

The intuitive thinking about “corner cases” basically is motivated by making sure that
all possible “ways” of executing the code or actually done. In testing that’s connected to
the notion of coverage. In the context of white-box testing, one want to cover “all the
code”. What that exactly means depends on the chosen coverage criterion or criteria. The
crudest one (which therefore is not really used) would be line coverage that every line
must be executed and covered by a test case. It’s not a useful concept: it would allow the
tester to claim 100% line coverage if the program would be formatted in a single line. . .
That’s of course silly, so typically, criteria are based on covering elements of the programs
represented by a control-flow graph (CFG, see the pictures later), and then one speaks
about node coverage, or edge coverage, or further refinements, depending on the set-up.
For instance, if one had a language that supports composed boolean conditions, and if
one had a CFG representation that puts such composite conditions into one node of the
CFG, then covering only that node, or covering both true and false branch of that node
will not test all the individual contributions of the parts of the formular to that true-or-
false condition. If want wants more ambitious coverage criteria, one may that those into
account as well, which would be better than simple edge coverage.

So, there are very many coverage criteria. Known ones include
• node coverage
• edges coverage, condition coverage
• combinations thereof, and
• path coverage

They are defined to answer the question

When have I tested “enough”?

Agreeing on some coverage criterion then measuring how much coverage a test gives is
one thing. Another important and more complex thing is to figure out what test cases are
needed to achieve good coverage, and then arrange for that automatically. In the given
example, that may be simple. The example is tiny, one can see a few boolean conditions
and easily figure out inputs that cover each decision as being both true (for one test case)
and false (for another). Practically, one may choose the exact corner-cases and then one
off, since one should not forget that the real goal is not “coverage”, the real goes is to
make sure that a piece of code has no errors, or rather more realistically: testing should
have a better than random chance to detect errors, should there be some. As a matter of
fact, one common source of errors is getting the corner cases wrong (like writing < in a
conditional instead of ≤ or the other way around, especially in loops), which is sometimes
called off-by-one error. So, if the code contains a simple, non-compound condition x > 0,
choosing as input x = 700 and x = −700 may cover both cases (= 100% edge coverage for
that conditional), but practically, choosing x = 1 and x = 0 may be better.

4 7 Symbolic execution
7.1 Introduction

But anyway, to achieve good “coverage” and/or good testing of corner cases, the real
question is:

How to do that systematically and automatically? How to generate nec-
essary input for the test-cases to achieve or approximate the chosen cov-
erage criteria?

That in a way a the starting point of symbolic execution, which has its origin in testing.
As coverage, it’s based typically on something more ambitious than edge coverage or some
of the refinements of that. It’s based on path coverage. Path coverage requires that each
path from the beginning of the procedure till the end is covered. If there are loops, there
are infinitely many paths, which explains the mentioned fact, that loops are problematic.
The method is called “symbolic” as it’s not about concrete values to cover all paths (if
possible). So, if one has a condition x > 0 as before, it’s not about choosing x = 700
and x = −700 (or maybe better x = 1 and x = 0). Symbolically, one has two situations:
simply x > 0 and it’s negation ¬(x > 0) (which corresponds to x ≤ 0), i.e., the two possible
outcomes of a condition with that conditions corresponds to two constraints. It should
be noted: even if, in the presence of loops, there are infinitely many paths 100% path
coverage does not cover all reachable states, as different values can lead to the same path.
That means full path coverage is not the same as full verification or model checking.

Programs typically contain more control structure than just one or two conditions. So,
symbolic execution just takes all paths, each path involves taking a number of decisions
along its way, every one either positively or negatively, and collects all constraints in a big
conjuction.

There is more to say about symbolic execution as a field, but that’s one core idea in a
nutshell.

Path coverage is often considered as too ambitious as coverage criterion. Of course, some-
times tests cannot cover 100% of the simpler critera as well. Nodes that belong to dead
code cannot be covered. In a unit with dead code, one cannot achieve 100% coverage. But
perhaps one should, since indirectly, dead code may be a sign of a problem as well (only
one cannot test dead code in a conventional way, and in a way, there may be no point to
test it either). In the presence of loops, there are typically infinitely many paths. That
means, no matter how many test cases one comes up with, the coverage is always 0%, so
in this plain form, one cannot use path coverage to measure if one has tested “enough”.
Note also: the fact that there are infinitely many paths is not the same as saying that the
program itself is non-terminating (for some input). The notion of paths (in the context
of path coverage) refer to paths through the control flow graph (CFG), which is an ab-
straction. The paths may or may not correspond to paths through the graph done when
executing the actual program. That also means, there may be paths in the CFG that are
unrealizable, and in particular, all loops in the progam may actually terminate, but that’s
something one cannot see in the CFG, where one can see just a cycle in the graph.

Let’s revisit the small progrom from earlier, from Listing 7.1. Figure 7.1 shows the cor-
responding control-flow graph. The graphical “design” used in that figure is sometimes
called flow-graph, using some conventions. For instance that the condinals are repre-
sented by diamond- or rhombus-shaped nodes, the input-nodes by rhomboid etc. For us,

7 Symbolic execution
7.1 Introduction 5

those conventions don’t matter much (and they may also vary from presentation to pre-
sentation). But maybe they help to visualize the notion of control flow graph. Indeed,
control-flow graphs are not primarily a visialization, the are often concrete data structures
inside a compiler or model checker, and important intermediate representation, serving
various analysis, optimization, and code generation purposes.

Here, coverage is defined in terms of paths through the control-flow graph, and thus also
(an implementation of) symbolic execution is based on some form of control-flow graph.

f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 10 x > 0 ∧ y = 20

complete()

x > 0 ∨ y 6= 10 x ≤ 0 ∨ y 6= 20

Figure 7.1: Control-flow graph/flow chart

The boolean conditions on the edges correspond to the the condition in case the if- resp.
the else-case is taken of the corresponding if-statement. The two branches are mutually
explusive (in conventional, deterministic programs), the false-branch is the negation of
the true-branch. It should be noted that we assume that there the conditions are are
side-effect free. That’s generally good programming style, even in case the programming
language would support it. Besides, it’s of course not real restriction. It’s easy to transform
“dirty” programs with side-effects in conditions into one that is more disciplined that way.
An actually, should the programmer turn a deaf ear on advice like “boolean conditions
are better side-effect free”, the compiler (or model-checker or analysis tool) will take
care of it. Normally, control-flow graphs are not meant for human consumption (unless
one uses a graphical programming notation, UML etc), it’s an internal representation
of the tool, for the purpose of analysis. The flow graph may not even be to represent
the control-flow in source code syntax, but perhaps for a lower level intermediate code
representation. Keeping that clean helps with whatever one intends to use the CFG for,
like code generation, analysis, optimization, etc. Or in our case, symbolic execution,
which is a form of analysis anyway. Thus, we it’s perfectly fine and realistic to assume the
conditions are side-effect free.

The control-flow graph of the program is very simple and there are only 4 different paths
from the initial node to one of the terminal nodes. Those four path are shown in Figure
7.2.

Following a path accumulates the conditions as they appear on the positive, resp. the
negative edge on the decisions being taken, depending on which decision is assumed the
particular path take. If one follows a path from the beginning to the end, one has a boolean

6 7 Symbolic execution
7.1 Introduction

f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 10 x > 0 ∧ y = 20

complete()

x > 0 ∨ y 6= 10 x ≤ 0 ∨ y 6= 20

(a) Path 1

f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 20x > 0 ∧ y = 10

complete()

x ≤ 0 ∨ y 6= 20x > 0 ∨ y 6= 10

(b) Path 2

f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 20x > 0 ∧ y = 10

complete()

x ≤ 0 ∨ y 6= 20x > 0 ∨ y 6= 10

(c) Path 3

f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 10 x > 0 ∧ y = 20

complete()

x ≤ 0 ∨ y 6= 20x > 0 ∨ y 6= 10

(d) Path 4

Figure 7.2: Four different paths through the control-flow graph

constraint which consists of the conjunction of all the indidual boolean constraints. One
such constraint is also called the path constraint or path condition for that particular
path.

For instance, the first path, as marked in Figure 7.2a, has the path condition

(x3 > 0) ∧ (x > 0 ∧ y 6= 10) (7.1)

and the last path from Figure 7.2d, has the path condition.

(x3 ≤ 0) ∧ (x > 0 ∧ y = 20) . (7.2)

Obviously, the condition for the first path can be simplified, plausibly to x > 0 ∧ y 6= 10.
The one from equation (7.2) has no solution (in the assumed conventional interpretation on
“numbers”). It corrsponds to the constraint “false”. As for terminology: the corresponding
path is unrealizable.

Figure 7.3 contains all three realizable paths, marked in red. It’s not the same as dead
code, but of course one cannot find input that covers that path, as the path condition is
contradictory.

f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 20x > 0 ∧ y = 10

complete()

x ≤ 0 ∨ y 6= 20x > 0 ∨ y 6= 10

Figure 7.3: All realizable paths

Now the goal is: find a set of inputs to run program so that all realizable
paths are covered, resp. find a method that automatically does so.

7 Symbolic execution
7.1 Introduction 7

Random testing

Let’s start with perhaps the most “naive” way of testing, namely to run the program
repeatedly with randomly generated inputs. “Naive” is perhaps an exaggeration, random
testing has and is being used, (and studied evaluated and compared to other forms, it has
been refined etc.) So it has its place, at least including randomized aspects into testing.
We ignore in the discussion here is that in testing one needs among other things, also
a way to judge the outcome of the tests. I.e., one needs a specification of the expected
outcomes, or at least of the expectation what should or should not happen (like that one
does not want to see certain general errors). In the small program from Listing 7.1 that’s
assumed given by the two possible termination outcomes, either properly completed or
failed.

For us important is that testing, randomized or otherwise works with concrete input
values, and does a dynamic execution of programs, observing its actual behavior and
compare it against expected behavior.

Example 7.1.1 (Random testing). Let’s use the program from Listing 7.1 resp. its control-
flow graph for illustration. Testing means providing different inputs that lead to different
outcomes, following potentially different paths, and let’s assume the input is generated
randomly. For instance, one could use (x, y) = (700, 500), and (x, y) = (−700, 500) . . . The
first pair of values results in the path of Figure 7.2a, the second pair in the path of Figure
7.2c, both ending in the non-erroneous end-state, i.e., the two test cases are passed.

The path from Figure 7.2d is unrealizable. But with the two inputs so far, the realizable
from Figure 7.2b has so far been missed.

We shouldn’t count the unrealizable 4th path one among the ones we missed. But the
realizable path shown should be covered. In particular, it’s one that would point to an
error in the program, the other two so far found no bug.

The problem with this is: to randomly hit that particular path has an astronomically
low probability (hitting y = 10 by chance is very unlikely, indeed). Actually, this way
of testing, at least the way of selecting input, may even not even be called white box, as
it ignores information inside the body of the function, for instance that y = 10 seem a
profitable corner case.

In defense of random testing one may say: it may be easy in this particular case, to pick
more reasonable or promising input like y = 10. That’s not just because the program
is small. Note in particular, that x and y are also not updated in fancy ways (maybe
conditionally updated, maybe even using pointers and other complications). One may
have to invest heavily in complex theories that may be time-consuming to run before
one can get a decent grip on improving on the randomness of the input. And, in a way,
symbolic execution is an investment in theory (SMT solving) to find an alternative way
of testing, thereby also going from a black-box approach for selecting the inputs to a
white-box view.

To avoid a mis-conception: random testing is not synonymous with white-box testing. If
one does random input testing the way described, and then used path coverage to measure
how good the test suites have been, that’s white-box testing: to rate the path coverage, one

8 7 Symbolic execution
7.2 Symbolic execution

needs access to the code. It’s only that the available white-box information is not taken
into account for shaping the test cases in a meaningful way (except for perhaps stop test-
ing, when one feels the random input has achieved sufficient node/edge/path/whatever-
coverage).

So, how to get to the missing path from Figure 7.2b? One input that would do the job is,
for instance (x, y) = (145, 10), but hitting the concrete value y = 10 by chance, as said, as
a very low probability.

But that’s where working with symbolic representations can do better, where it’s not about
individual, concrete values, but sets of values, resp. symbolic or formulaic representations
of sets of values. In symbolic executions, one works with path constraints or path con-
ditions. The path condition corresponding to the so far missing path from Figure 7.2b,
after simplification, is

x > 0 ∧ y = 10 .

7.2 Symbolic execution

We have essentially introduced the core idea of symbolic execution in the previous section,
focusing on path constraints.

Perhaps it’s worth iterating that, like in BMC, it’s about SMT-solving (not just SAT
solving), sat-solving modulo theories. That’s about

boolean combinations of constraints over specific domains with specific theories

The theory or theories allows to express properties of values like integers or arrays, etc.,
that corresponds to data types used in the programming language used for the programs
we are analyzing.

One should be aware, that theories may easily lead to undecidability of constraint solving.
Integers with addition only have a decidable theory.1 Add multiplication, and decidability
of the theory goes out the window.

Undecidability is a real issue: how many programs use only integers and addition? One
could claim that the programs mostly never use real mathematic integers, but just a
finite portion of them (up-to MAX-INT) so one is dealing with a finite memory, so that
makes properties decidable. That’s correct, and when dealing with integers and actual
programs, one can make the argument, one should deal with the machine integers anyway
to make it more realististic. Indeed, one can work with a theory capturing those “realistic”
integers or “IEEE floating points”, etc. But all those theories are non-trivial. So even if
technically decidable (by being finite), it may be computationally too expensive to wait for
an answer when doing SMT solving. And there are more data types than just numbers:
there are dynamic data structures (linked lists, trees, etc.), and they are conceptually
unbounded, as well. Again, one may posit that, in the real world, there is always some
upper bound (out-of-heap-space, stack-overflow), but it’s unrealistic to capture

1This specific theory is known as Presburger arithmetic.

http://www.lsv.fr/~haase/documents/h18.pdf

7 Symbolic execution
7.2 Symbolic execution 9

those limitations in a decidable theory and hope the constraint solver will handle it thereby.
It would even make no sense conceptually, if one is doing “unit testing”: the procedure
under test may or may not have out-of-memory problems depending on factors outside the
unit. For instance on how much heap space is already taken away by other data structure
in the program.

Anyway, one has to face the sad fact that one will encounter constraints that are either
formally undecidable or untractable; in some way, there’s not much practical difference
either way. In some not too far-fetched situations, constraint solving may simply not
work.

We come back to that later: concolic execution is an extension of symbolic execution
that addresses exactly that problem: what can I do if my constraint problem exceeds the
capabilities of the used SMT solver. But first we finish up with symbolic execution by
looking at a super-simple example, but without adding much new technical content to the
material, it’s more like rubbing it in a bit more. One difference to the previous example,
though, is that now a variable involved in the program is assigned to, i.e., changes its
value on the path(s) through the execution

Let’s have a look at the code from Listing 7.2 resp. the CFG from Figure 7.4

1 y = read () ;
2 y = 2 ∗ y ;
3
4 i f (y==12) {
5 f a i l () ;
6 }
7
8 complete () ;

Listing 7.2: Sample code

read()

y = 2*y

if

fail()

y = 12

complete()

y 6= 12

Figure 7.4: CFG

In the C-style code, the “equation” sign of course represents assignments, and the == is a
comparison. In the constraints and the annotation on the edges, we use = for comparison,
and in the text here, for clarity, we use := for assignments. The difference between
assignments and equations should be clear. If not, looking at line 2 of the code snippet: y
:= 2 * y is definitely not the same as the equation y = 2y). The latter is unsatisfiable
using standard numerical theories.

10 7 Symbolic execution
7.2 Symbolic execution

Let’s also introduce the variable s for containing the result of the read()-operation.
The code contains two asignments, y := read() and y := 2*y. That leads to two
constraints,

y = s and y = 2s

at the corresponding points in the program. The branching point in line 4, leads to the
two conditions 2s = 12 and 2s 6= 12.

As a side remark: we came to the constraint like y = 2s that holds after line 2 by looking
at the very simple example. Nore systematic would be to work with different instances or
incarnation of the variables. Here with different versions of y, as this is the only variable
being asigned to. Actually there are two versions of y, say y0 after the first assignment and
y1 after the second. I.e., the constraint solver would have to deal with the two constraints

y0 = s y1 = 2y0 (7.3)

which is equivalent as far the purpose of the symbolic execution is concerned.

We have seen the same treatment of using different “versions” to represent mutable pro-
gram variables also in the context of symbolic model checking (where we used unprimed
and primed version to capture the pre- and the post-situation in representing the successor
states (for the representation of the pre- or post-sets). And the “versioning” treatment
was analogously done for bounded model checking, which also needed to capture paths.

Back to the program. To find, for instance, the erroneous outcome, the onstraint solver
needs to solve the path constraint 2s = 12 (or the slighly longer one from equation (7.3).

That’s (in this case) child’s play: the solution is s = 6.

However, the constraint containts multiplication. We shortly mentioned it before: the
theory of natural numbers with addition and multiplication is undecidable.

In this particular example, the constraint is trivially solved by humans, and would pose
not problem for constraint solvers. Indeed, the constraint 2s = 12 is covered by a de-
cidable theory, namely a restriction of the general case of addition and multiplication,
where multiplication is restricted to involve only one variable multiplied with constants
(so constraints like xy > 0 and also x× x = 23 would violate that restriction).

A constraint like 2x + 17y < z, using an inequation instead of equality, would still be
ok: there are 2 variables but they are not multiplied with each other. Such restricted
forms can be covered by linear arithmetic, which has a decidable theory. It’s an important
class of constraints. For strange historical reason, the field dealing with such (in)equations
(and generalizing the question of satisfiability to the question of finding an optimal solu-
tion) is called linear programming. It’s also know under the less strange name of linear
optimization.

Here is a short (intermediate) summary of what’s been said, symbolic execution for dum-
mies. It works like this: take the code (resp. the CFG of the code), collect all paths into
path conditions. A path condition is a big conjunctions of all conditions along each the
path. Each single condition b will have one positive mention b in one continuation of the
path, one negated mention ¬b in the other continuation.

7 Symbolic execution
7.2 Symbolic execution 11

Then feed the contraints to an appropriate SMT constraint solver, in particular solve
the constraints for paths leading to errors. The whole approach works best for loop-free
programs (and we will not cover what could be done for loops).

Even if one leaves out loops, which are problematic and focuses on straight-line code, the
path constraint themselves may not easily solvable.

Looking again at the code from Listing 7.1 and the paths through the CFG, the path
constraints mention x3 as part of their path constraints. In particular also for the realizable
path from Figure 7.2b and the unrealizable one from Figure 7.2d.

With the numerical constraints non-linear, we are definitely leaving the safe ground of
decidable theories. Many contstraint solvers would throw the towel when facing those, for
instance by only accept linear constraints in numerical domains, or under other restriction.
Most solvers would not be ready to deal with random math constraints.

What can one do?

What can one do, beyond throwing the towel and accept that SE won’t cover all paths or
won’t work on many programs? Later we will cover so-called concolic testing, but that is
only one possible way to address the limitations of constraint solvers.

First make some remarks on other ways, as well, even if we don’t cover then. One thing one
could do is involve humans in some way, in the spirit of theorem proving. Theorem provers
typically can do a lot more than guiding a human through manual proof activities. There
is a good deal of automation under the hood, including constraint solving and verification
in many domains. And even if undecidable, one could give it a shot, maybe relying on
heuristics that in practice can handle many situations. But still, any method that involves
human assistance in logical argumentation in formal theories is probably hard to sell in
most areas and unappealing for large programs. For most areas a technique is either
automatic, or unused . . .

One can also give up on the goal of full path coverage. Most testing approaches don’t do try
that anyway. Random testing that we touched upon makes not attempt in the direction of
any guaranteed coverage, path coverage or otherwise. The problem is, if one is after some
form of path coverage, in the face of astrononomically many path (or infinitely many),
one in practice covers approximately 0% of all paths, even if one invests is a huge amount
of test cases. Zero percent sounds worse than it maybe is; after all, it’s not coverage one
is after, it’s about getting the software right, resp. spotting errors or faults (and then
repairing them). A particular defect or its symptom may well not be reached by exactly
one path, which one hits or misses, but by very many. Besides, there are heuristics one
could use, one could check standard corner cases inherent in the input data or, if one has
that, corner cases in the specification of the unit one tests. That then goes in the direction
of white box testing, since the test selection is done on the input-output data, and that
can be done without having access to the internals of the code or the CFG.

There is another, standard thing one can do, namely working with abstractions.

12 7 Symbolic execution
7.2 Symbolic execution

Abstraction and “static analysis” Abstracting away from details (in a systematic way)
allows to cover all possible behaviors. The price of that is that one looses precision.

The presentation here presented SE as a way to systematically represent possible paths via
path conditions. The representation of the paths is assumed precise but collecting exactly
the boolean conditions along the way. It’s only we run into trouble when solving them.
Static analysis characteristically works with techniques like data flow analysis (or more
generally abstract interpretation or type system in way that systematicall approximates
the concrete behavior. One (typically) does not attempt to capture precisely which choices
of values lead to which paths. Instead, one works with approximations (of the values) but
does not attempt to tailor-make the abstractions such that they fit exactly the paths.

In a way, the treatment in symbolic execution works on abstractions, as well. The values
of the input space are carved up. As far as the values for y are concerned, they are grouped
into two classes: all the values where y = 10 and all the values y 6= 10. One can see that
as having two abstract values for y, one consisting of {10} and one of the set N \ {10}.
That they are represented “symbolically” with “formulas” or constraints is more a matter
of perspective. But SE is based on the idea that the abstraction is sculpted by the need to
“steer” the abstract execution along all possible paths (at least those which are realizable),
and that works fine as long as there are only finitely many such path.

What an approximating analysis on the other hand does is to assume that it can go either
way, but without remembering which way it goes, just running the analysis approximately
(the technical terms is that the analysis is “path insensitive”). There is more that dis-
tinguishes data flow analysis from SE. One is that often the purpose is different. In data
flow analysis, the purpose is often not to split up the input of a procedure to get good
coverage for testing (though it’s a legitimite goal as well). Instead, one analyses (often in
the context of a compiler) other aspects of the code. Therefore, even if one is as radical
as representing variables like x and y just by the knowledge that they are integers, one
typically adds additional information related to what one is interested in (for live vari-
able analysis, some information about when the variables is assigned to, for analysis of
nil-pointer problems, when pointer variables get a proper value etc). And typically that is
done also not just for input variables of a procedure, but for all variables or other entities
one is interested to analyze. In any case, static analysis like data flow analyses are typ-
ically not path-sensitive (as explained). Path sensitivity is not fundamentally forbidden,
it’s just too expensive to do in many applications. As a consequence, such analyses are less
precise, i.e., more approximative. In doing so, problems with undecidablity may disappear
thanks to working with abstractions, and loops no longer pose a problem, at least not as
serious as for SE.

One way to see analyses like data flow analysis is not to work with abstractions that exactly
cover all combinations of “true” and “false” for all encountered conditions. The abstraction
is done independent from that. In the simplest case (with the most radical abstraction),
one could completely ignore the concrete value (perhaps just abstracting it into its type,
like int). Obviously, when encountering a condition mentioning the comparison y = 10,
the analyser would not know if the run goes left or right in that case. One might also split
into 3 different abstract values, maybe {negative, 0, positive}, hoping that this is a good
choice, but the choice is independent from the conditions in the program.

7 Symbolic execution
7.3 Concolic testing 13

The borderline between SE and static analysis is, however, not clear cut. For instance, one
could do the following: one can replace constraints beyond the capabilities of the chosen
SMT solver (like the one involving x3) by a constraints in linear arithmic. Sometimes
one can approximate non-linear constraints by linear one. That way, one can no longer
have the exact correspondance between the paths and solutions of the path constraints,
therfore it becomes a but like (other) static analyses.

So, isn’t SE not a static analysis, as well? It sure is, in that it analyses statically the code.
Why it’s presented here as being slightly different is its motivation: it’s part of a more
advanced testing approach, which is not a static analysis. Testing is run-time or dynamic
analasys. But it’s fair to see SE in the presentation here as a static analysis technique
used to improve the run-time technique of testing.

7.3 Concolic testing

“Concolic” is a portmanteau work, mixing together the words “concrete” and “symbolic”.
Another name for the technique is also DSE, dynamic symbolic execution. The pre-
sentation here covers the approach as realized by the Dart-tool, which introduced the idea
[2]. Since it’s introcution, the tool and technique evolved further, as well as the acronyms
of the tool(s).

It rests combination of two techniques: a) Random testing, which works with dynamic
executions involving concrete values and b) symbolic execution, which works statically
and with symbolic constraints and formulas. The slogan of the approach is:

Execute dynamically & explore symbolically

In the following we show in a series of figures, how Dart combines random testing and sym-
bolic execution into a concolic execution framework. In the slide versions, the exploration
of the different path is shown stepwise, in overlays, which illustrate the interplay between
the dynamic execution and the symbolic exploration of alternatives . The overlays are not
reproduced here.

The example is taken from Section 2.5 from Godefroid et al. [2] and shows how to handle
the program from before (Listing 7.1), which involves non-linear constraints. The non-
linear constraint there is meant as an example of a constraint that can’t be handled by the
chosen SMT solver. Often those focus on decidable theories (like linear constraints).

Also standard over-approximation techniques (“predicate abstraction”) may not be able to
precisely analyze a program like that. They would be unable to figure out that a fail state
is unreachable taking the path “via the right-hand side” from Figure 7.2d), i.e., unable to
pinpoint unrealizable path. The best they would do is that it “may be reachable”, thus
reporting an error that is actually not possible. The overapprixmation thus leads to false
alarms. False alarms are problematic if the user drowns in them. The “tester” may have
no patience to inspect thousands of warnings, most of which are just false alarms. So,
the tool may become unhelpful if the approximation is too coarse. Complex programming
structures, especially wild pointer manipulations and spaghetti code, but also dynamic
aspects such as higher-order functions, dynamic or late binding etc. confuses not just the

14 7 Symbolic execution
7.3 Concolic testing

programmer but also lead to wildely approximative (= unusable) results. Things get worse
when adding concurrency to the mix . . .

For the example. Figure 7.5 shows a possible first run of the Dart tool. It starts like
random testing, picking an random input, say

(x, y) = (700, 500) . (7.4)

This input leads to the path marked in red in Figure 7.5. Of course, picking exactly
those two numbers is highly improbable, but picking an x larger than 0 and y 6= 10 has a
probability of almost 50%. Of course since it’s random, Dart may alternatively start off
by choosing the input that leads to the path to completions on the right-hand side, which
has a probability of likewise 50%. Only the third possible path, stumbling directly across
the error by picking x > 0 and y = 10 is highly unlikely. Anyway, we start as shown in
Figure 7.5.

f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 10 x > 0 ∧ y = 20

complete()

x > 0 ∨ y 6= 10 x ≤ 0 ∨ y 6= 20

Figure 7.5: Dart (1) (same as Figure 7.2a)

While doing the concrete test run with that input, two boolean conditions have been
evaluated to true: x3 > 0 and y 6= 10. Those are the path conditions corresponding the
path randomly picked. Now, with the goal of path coverage in mind: one should continue
with exploring alternatives, i.e., explore paths behind the negation of those conditions.
The negation of the first one is x3 ≤ 0. That’s a non-linear constraint, i.e., one where a
typical SMT solver may chicken out.

So assume Dart does not attempt to do any constraint solving here. Remember the goal:
we want to find more or less systematically all paths, but we don’t want to overapproxi-
mate; we don’t want to include unrealizable paths as the might result in false alarms. As
we cannot find the alternative route at this point in the chosen path by solving x3 ≤ 0.
the only thing we can do at this point is to use the path we know that exists as fall-back.
That’s the path we are currently pursuing, which “solves” the constraint x3 > 0 in having
the concrete 700 as one solution.

So we use the concrete execution as witness to find one witness solving a constraint we
cannot otherwise solve via SMT (more precisely, when we cannot solve its negation, but
that amounts generally to the same). In that particular example, we add x1 = 700 as
constraint (let’s write x1 when referring to the x in the first run). Now we continue the
run with the next conditional. With y picked as 50, the condition y¬ = 10 is true. In this

7 Symbolic execution
7.3 Concolic testing 15

f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 20x > 0 ∧ y = 10

complete()

x ≤ 0 ∨ y 6= 20x > 0 ∨ y 6= 10

Figure 7.6: Dart (2) (same as Figure 7.2b)

case, the the negation is y = 10 which is perfectly solvable (actually: a constraint of that
form, equating a variable with a concrete, constant value is a constraint in solved form).
That’s good, so constraint “solving” gave us that y = 10 would lead to a different path.

So sum up the first run: the randomly generated input from equation (7.4) led to the
concrete execution from Figure 7.5, and a constraint system of the form

(x1, y1) = (700, 10)

The x1 is the concrete value in this run, the constraint for y1 comes from symbolically
representing the corresponding alternative in that run (it so happens in the example that
the constraint is already in a form (y1 = 10) that has only one solution.

This is the starting point for the second run of the method, which is shown in Figure
7.6.

Applying the same method as in the first run, x has the same problem as before, which
means we need to use the concrete value 700 as fall-back. That leads to the constraint

(x1 = 700) ∧ (y2 6= 10) .

However, that corresponds to a path already explored. Consequently, after the second run
(in this example), no new inputs are generated.

If we don’t have clear direction (in the form of constraints) what input to take next, we
can of course generate a new one randomly. That obviously may result in path already
explored. However, in the example, the portion of the graph not yet explored so far is
the right-hand side. Sooner or later, the random input generation will pick an input with
x ≤ 0, which explores that part. And actually, it will happen rather sooner than later,
let’s assume, at iteration n. For concreteness, let’s assume the concrete input is

(x, y) = (−700, 500) .

That leads to an execution covering the path from Figure 7.7. The symbolic part chickens
out on the first constraint which involves x3 (besides that the left-hand alternative x3

n > 0
is already explored), so we have the concrete value xn = −700.

16 7 Symbolic execution
7.3 Concolic testing

f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 20x > 0 ∧ y = 10

complete()

x ≤ 0 ∨ y 6= 20x > 0 ∨ y 6= 10

Figure 7.7: Dart (n) (same as Figure 7.2c)

The conditional leads to the additional constraint xn > 0 ∧ y = 20, but that means we
have

xn = −700 ∧ xn > 0 ∧ y = 20 (7.5)

which is unsatisfiable. By general reasoning involving the non-linear term x3, we were
aware that this path is unrealizable for any choice of x. The SMT solver may be too
weak to draw that conclusion, but at least it will never explore that path, since when the
symbolic execution does not work, it relies on concrete executions, and those never take
that path. So: no false alarms!

At that point, we cannot generate new paths any more, all 3 possible paths are covered
and the one unrealizable was “covered” insofar that it has been half-symbolically and half-
concretely evaluated (see equation (7.5)). So, when figuring out that, the method stops
generating new tests, having achieved (in this example) the best possible path coverage
without generating false alarms.

One can convince oneself, that even with alternative random picks, for instance starting
to explore the right-hand side instead of the left hand side as in this illustation, the result
would be the same. So with very high probablity (and in short time), the method will
achieve that coverage.

Side remark 7.3.1. The example, taken from [2], serves to illustrate in which way the
combination of symbolic and concrete execution improved on both plain random testing,
symbolic execution, and on approximative methods: it is highly improbably that random
testing find the bug, symbolic execution cannot handle the example, and overapproxima-
tion give false alarms. Hurrah for concolic execution!

But, on second thought, the example is hand-crafted with the intention to “prove” the
superiority of that methods over some competitors. But is it wholly convincing? Well, it
worked convincingly enough in the example, in particular stressing the high probablity of
covering all realizable paths in a short amount of time.

But that may depend on the (perhaps too cleverly) constructed example. There are two
integer input domains: the one for x and the one for y. The one for x is divided 50-50,
namely for x ≤ 0 and x > 0. The other domain is split in an extremely uneven way: y = 10

7 Symbolic execution
7.3 Concolic testing 17

vs. y 6= 10. In both cases the split of the domains correspond to different paths that need
to be covered. The SMT solver cannot tackle the even split domain for x, as it is written
in the form x3 ≤ 0 and x3 > 0. The uneven split for y, luckily, can be represented by
linear constraint and the symbolic treatment can therefore cover the two choices very fast.
The even coverage can, with high probability, be covered quite fast by random generation.

If we would have written y2 6= 100 ∧ x > 0 instead of y = 10, the DART method would
struggle as well.

So, the example should be read as illustration, in aspects one can hope to improve of
the other approaches. Whether it in practice is a step forward can be judged only by
applying a corresponding tool to real example programs. Besides that, it also depends on
practical issued (which kind of theories should be reasonably covered by the SMT, what
data structures does the programming language support, what about external variables
and external procedure call etc). The paper [2] reports on experimental evaluation of their
approach, providing evidence that the method gives quite added value compared to pure
random testing, but they also point out problems of the method in practice

It should also be said, that DART is not the only attempt to improve “stupid random
testing” by similar ideas (also before that particular paper).

18 Bibliography
Bibliography

Bibliography

[1] Baldoni, R., Coppa, E., D’Ella, D. C., Demetrescu, C., and Finocchi, I. (2018). A
survey of symbolic execution techniques. ACM Computing Survey, 51(3).

[2] Godefroid, P., Klarlund, N., and Sen, K. (2005). Dart: Directed automated runtime
testing. In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), pages 213–223. ACM.

[3] King, J. C. (1976). Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394.

Index
Index 19

Index

abstraction, 12
assignment, 9

BMC, 1
bounded model checking, 1

concolic testing, 13
control-flow graph, 3, 4
coverage, 3

path, 3, 4

DSE, 13
dynamic symbolic execution, 13

flow chart, 4

model checking
bounded, 1

path
realizable, 6

path condition, 6
path constraint, 6
path coverage, 3, 4
Presburger arithmetic, 9

random testing, 7

SAT-solving, 8
SMT-solving, 8
static analysis, 12
structural testing, 3

testing, 2
concolic, 13
random, 7
structural, 3
unit, 2
white-box, 3, 7

UML, 5
unit testing, 2

white-box testing, 3, 7

	Contents
	Symbolic execution
	Introduction
	Symbolic execution
	Concolic testing

