
Rewriting Logic

Specification and Verification of Programs

Fredrik Rømming

IN5110/9110, Fall 2021

1/31



Overview

• For deeper insight: IN2100, IN5100/9100 (Peter Ölveczky)

• Rewriting logic
• Can naturally express both non-deterministic computation and

logical deduction with great generality.

• Maude: language and system for rewriting logic

2/31



Equational Logic

Syntax: first-order terms + equality

Equational specification (Σ,E ):

• Σ: Algebraic signature (functions, variables, constants)

• E : Set of equations of terms

3/31



Equational Logic

E ⊢ s = t if (s = t) ∈ E or can be deduced by:

Reflexivity
t = t

Symmetry
t = t′

t′ = t

Transitivity
t1 = t2 t2 = t3

t1 = t3

Congruence
ti = t′i , i = 1 . . . n

f (t1, . . . , tn) = f
(
t′1, . . . , t

′
n

)
Substitutivity. For each substitution σ

t = t′

σ(t) = σ (t′)

4/31



Rewriting Logic

Equational Logic + Rewrite rules

Rewriting Logic specification R = (Σ,E , L,R):

• Σ,E : Equational specification

• L: Set of labels

• R : Set of rewrite rules l : t −→ t ′, where l ∈ L, and t, t ′ are
terms

5/31



Rewriting Logic

R ⊢ s −→ t if (s −→ t) ∈ R or can be deduced by:

Reflexivity
t −→ t

Equality
u −→ u′

t −→ t′
if E ⊢ t = u and E ⊢ t′ = u′

Transitivity
t1 −→ t2 t2 −→ t3

t1 −→ t3

Congruence
ti −→ t′i , i = 1 . . . n

f (t1, . . . , tn) −→ f
(
t′1, . . . , t

′
n

)
Substitutivity. For each substitution σ

t −→ t′

σ(t) −→ σ (t′)

6/31



Metalogical notes

t
∗
⇝E u iff (Σ, ∅, {l}, rules(E )) ⊢ t −→ u

where:

• t
∗
⇝E u means that t can be reduced to u by 0 or more

applications of the equations in E to t.

• rules(E ): transforms each equation t1 = t2 in E to a rewrite
rule l : t1 −→ t2.

Heavily related to Universal algebra and Category theory

7/31



Why Rewriting Logic?

Software modules have algebraic structure

• Data form sets

• Operations on data ≃ functions on sets

Intuitive formal system specification:

• Data types modeled by equational specifications

• Dynamic behaviors modeled by rewrite rules

8/31



Data Types

Elements Functions

N +, <, ∗, . . .
Z +,−, . . .
lists of numbers add, first, concat, remove element, sort, ...
stacks pop, push, top, empty?, ..
multisets add, remove, in?, ...
strings substring, concat, ..
binary trees size, inorder, preorder, isSearchTree, ..
graphs hasCycle?, newEdge, ..
. . . . . .

9/31



Maude syntax example

The data type (N,+):

fmod NAT-ADD is
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op _+_ : Nat Nat -> Nat .

vars M N : Nat .

eq 0 + M = M .
eq s(M) + N = s(M + N) .

endfm

• elements (ground terms) defined by
constructor functions

• other functions defined (recursively)
by equations

• equations applied from left to right
to simplify expressions

• equations must be (ground)
confluent (Church-Rosser) and
terminating

• Maude computes normal form of
expressions

10/31



Reduction in Maude

Elements of sort Nat are s(0), s(s(0)), s(s(s(0))),...

1. Start Maude

2. Read file into Maude:
Maude> in nat-add.maude

3. Execute Maude:
Maude> red s(0) + s(0) .
result Nat: s(s(0))

4. End session with q (or quit)

11/31



Dynamic systems

states that change

• States modeled by (E -equivalence classes of) terms

• State change modeled by labeled rewrite rules:
rl [l]: t => t ′ .
crl [l]: t => t ′ if cond .

• Dynamic systems may not be terminating or deterministic

12/31



Example: Token Ring distributed mutual exclusion

13/31



Maude rewriting example I

mod TOKEN-RING-MUTEX is
sorts Name Node MutexState .
op node:_state:_next:_ : Name MutexState Name -> Node [ctor] .
ops outsideCS waitCS insideCS : -> MutexState [ctor] .

sorts Msg MsgContent .
op msg_from_to_ : MsgContent Name Name -> Msg [ctor] .
op token : -> MsgContent [ctor] .

sort State . subsort Node Msg < State .
op none : -> State [ctor] .
op __ : State State -> State [ctor assoc comm id: none] .

14/31



Maude rewriting example II

vars N N2 N3 : Name .

rl [needCS] :
node: N state: outsideCS next: N2

=>
node: N state: waitCS next: N2 .

rl [receiveAndPassOnToken] :
(msg token from N3 to N)
node: N state: outsideCS next: N2

=>
(node: N state: outsideCS next: N2)
(msg token from N to N2) .

15/31



Maude rewriting example III

rl [receiveAndKeepToken] :
(msg token from N3 to N)
node: N state: waitCS next: N2

=>
node: N state: insideCS next: N2 .

rl [exitCS] :
node: N state: insideCS next: N2

=>
(node: N state: outsideCS next: N2)
(msg token from N to N2) .

endm

16/31



Maude rewriting example IV

mod TEST-MUTEX is including TOKEN-RING-MUTEX .
ops a b c d e : -> Name [ctor] .

op init : -> State .
eq init =

(msg token from d to a)
(node: a state: outsideCS next: b)
(node: b state: outsideCS next: c)
(node: c state: outsideCS next: d)
(node: d state: outsideCS next: e)
(node: e state: outsideCS next: a) .

endm

17/31



Simulation

Maude> frew [30] init .

result (sort not calculated):
(node: a state: waitCS next: b)
(node: b state: waitCS next: c)
(node: c state: waitCS next: d)
(node: d state: insideCS next: e)
node: e state: waitCS next: a

18/31



Search

=>* (reachable in 0 or more steps)
=>! ("final/deadlocked state

Maude> search [1] init =>*
REST:State
(node: N:Name state: insideCS next: N2:Name)
(node: N3:Name state: insideCS next: N4:Name) .

No solution.

Maude> search [1] init =>! STATE:State .

No solution.

19/31



Beyond reachability

X must happen in all behaviors (from initial state), e.g.:

• Node n must have executed in CS

More complex path behaviors, e.g.:

• Each node must execute in CS infinitely often

• Fairness: a node cannot execute forever outside CS without
entering the wait state

Transition systems ≃ abstract rewriting systems

20/31



Beyond reachability

X must happen in all behaviors (from initial state), e.g.:

• Node n must have executed in CS

More complex path behaviors, e.g.:

• Each node must execute in CS infinitely often

• Fairness: a node cannot execute forever outside CS without
entering the wait state

Transition systems ≃ abstract rewriting systems

20/31



Rewrite Theory ←→ Kripke Structure

Definition (Kripke Structure) Given a set AP of atomic propositions, a Kripke
structure is a triple (S,→, L) s.t.:

• S is a set (of states)

• → ⊆ S × S is a left-total binary relation (the transition relation)

• L is a labeling function L : S → 2AP assigning to each state the atomic
propositions holding in that state.

A rewrite theory R = (Σ,E ,R) with designated state sort State and labeling function
L defines a Kripke structure

(
TΣ,EState ,−→•, L

)
, where:

• TΣ,EState is the set of (E -equivalence classes of) ground terms of sort State

• −→• is the one-step sequential rewrite relation on the states extended with
transitions t −→• t for deadlocked states

• L is the labeling function (in Maude: op _|=_ : State -> Prop)

21/31



Rewrite Theory ←→ Kripke Structure

Definition (Kripke Structure) Given a set AP of atomic propositions, a Kripke
structure is a triple (S,→, L) s.t.:

• S is a set (of states)

• → ⊆ S × S is a left-total binary relation (the transition relation)

• L is a labeling function L : S → 2AP assigning to each state the atomic
propositions holding in that state.

A rewrite theory R = (Σ,E ,R) with designated state sort State and labeling function
L defines a Kripke structure

(
TΣ,EState ,−→•, L

)
, where:

• TΣ,EState is the set of (E -equivalence classes of) ground terms of sort State

• −→• is the one-step sequential rewrite relation on the states extended with
transitions t −→• t for deadlocked states

• L is the labeling function (in Maude: op _|=_ : State -> Prop)

21/31



LTL Model checking in Maude

• is including MODEL-CHECKER

• sort State

• States must have sort State

• sort Prop

• (Parametric) atomic propositions are terms of sort Prop

• op _|=_ : State -> Prop

• Define |= so t |= p is true when p holds in state t
• No need to define false cases

• sort Formula

• LTL formula is a term of sort Formula
• Atomic propositions
• Booleans True, False, ∼, /\, \/, ->, ...
• Temporal operators [], <>, O, U

22/31



Model checking example I

load model-checker

mod MODEL-CHECK-MUTEX is including MODEL-CHECKER .
protecting TEST-MUTEX .
ops exInCS outside waiting : Name -> Prop [ctor] .
var MS : MutexState . var REST : State . vars N N2 : Name .

eq REST (node: N state: insideCS next: N2) |= exInCS(N) = true .
eq REST (node: N state: outsideCS next: N2) |= outside(N) = true .
eq REST (node: N state: MS next: N2) |= waiting(N) = MS == waitCS .

op fair : Name -> Formula .
eq fair(N) = (<> [] outside(N)) -> ([] <> waiting(N)) .
op allFair : -> Formula .
eq allFair = fair(a) /\ fair(b) /\ fair(c) /\ fair(d) /\ fair(e) .

endm

23/31



Maude LTL example

Maude> red modelCheck(initState, formula) .

Examples:

Maude> red modelCheck(init, <> exInCS(b)) .

result ModelCheckResult: counterexample(...)

Maude> red modelCheck(init,
allFair -> (([] <> exInCS(c)) /\ ([] <> exInCS(e)))) .

result Bool: true

24/31



Benefits of this approach to LTL

Consequences of elegant syntax and expressive formalization:

• Can define temporal logic formulas recursively

• State space collapsed by equations, equational equivalence
classes

25/31



Maude LTL implementation overview

model-checker.maude

Maude Manual:

• "Maude uses an on-the-fly LTL model-checking procedure of the
style described in [24]... reduce the satisfaction problem to the
emptiness problem of the language accepted by the synchronous
product of two Büchi automata..."

• "For efficiency purposes we need to make B¬ϕ as small as possible,

26/31



Beyond LTL: TLR and LTLR

Sometimes hard to express desired properties using only a state-based logic.

E.g. fairness requirements combine state-based properties (the enabledness of
an action) with action-based properties (an action is “taken”).

Action pattern: a rule label l with a partial substitution σ of the variables in
the rule, and optionally a context (“position” or “part of the state”).

Temporal Logic of Rewriting (TLR): extends state-based atomic propositions
with action patterns.

Linear Temporal Logic of Rewriting (LTLR): LTL where the atomic
propositions can be both state propositions and action patterns.

♢□ "message m from o is in the state"
→ □♢ ("apply rule l1 with ◦ 7→ o” ∨ . . .∨ "apply rule lk with ◦ 7→ o ").

27/31



Beyond Maude: K

K: Framework for defining PL syntax and semantics as Rewrite
theory to automatically generate PL tools.

(Taken from Grigore Rosu’s slides for invited talk at ICTAC’21)

28/31



Beyond Maude: K

K: Framework for defining PL syntax and semantics as Rewrite
theory to automatically generate PL tools.

(Taken from Grigore Rosu’s slides for invited talk at ICTAC’21)
28/31



Beyond Maude: K

K: Framework for defining PL syntax and semantics as Rewrite
theory to automatically generate PL tools.

(Taken from Grigore Rosu’s slides for invited talk at ICTAC’21)
28/31



Beyond Maude: K

K: Framework for defining PL syntax and semantics as Rewrite
theory to automatically generate PL tools.

(Taken from Grigore Rosu’s slides for invited talk at ICTAC’21) 28/31



Beyond Maude: K

https://kframework.org/

28/31

https://kframework.org/


Conclusion

Rewriting Logic:

• Intuitive and expressive language to model distributed systems

• State space collapsed by equations (equational equivalence
classes)

• Easy to define complex temporal logic formulae (recursively),
including parametrized formulae

• Introduces TLR and LTLR state and action base temporal
logic.

• Expressivity enables K (Turing completeness)

29/31



More?

• IN2100 and IN5100/9100

• Maude Manual:
http://maude.lcc.uma.es/maude31-manual-html/maude-manual.html

• Webpage:
http://maude.cs.illinois.edu/w/index.php/The_Maude_System

• Our upcoming shiny new paper in LNCS

30/31

http://maude.lcc.uma.es/maude31-manual-html/maude-manual.html
http://maude.cs.illinois.edu/w/index.php/The_Maude_System


31/31


