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1
Formal methods
Chapter

What
is it

about?
Learning Targets of this Chapter

The introductory chapter gives some
motivational insight into the field of
“formal methods” (one cannot even
call it an overview over the field).

Contents

1.1 Introduction . . . . . . . . . . 1

1.1 Introduction

About this document

This is the “script” or “handout” version of the lecture’s material covered on the slides.

In earlier iterations of the lecture, the document basically reproduced the slides in a more
condensed way, with additional comments. On purpose, the slides used in class are kept
not too full. Additional information and explanations said in class or using the whiteboard,
without being shown on the slides, are shown here, as well as links and hints for further
readings. In particular, sources and bibliographic information is shown mostly only here.

In the meantime, however, the script has to some extent emancipated from the slides.
There is in the meantime more text and explanations. The text of the slides is often
lists of bullet points or keywords. Those are no longer reproduced here, accompagnied
by additional text. The content of the slides is turned into text (and with additional
information and explanations). Likewise, it’s no longer the case that the header of each
individual slide shows up here as sub-sub-section. Still the text here follows in structure
exactly the sequence of slides, including the sectioning structure, also the figures, formulas
etc., appear here and in the same order. So, the two variants of the material are still closely
coupled, though the script now is more like an standalone text rather than commented
slides.

It’s also best seen as “working document”, which means it will probably evolve during the
semester.

Organizational matters

The lecture typically has not too many particpants, which means it becomes a bit more
of a seminar. With a small audience, we strongly encourage active participation.
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Exam: The exam will be oral.
Plan:

• see the homepage https://www.uio.no/studier/emner/matnat/
ifi/IN5110
– check for updates
– only the master-webpages will be kept up-to date (not the PhD version)

• I might also be from time to time tangetially connected texts in the blogposts
at https://martinsteffen.github.io/programverification/.

1.1.1 Motivating example

Let’s start with a small example. It’s atypical for the lecture, in that it’s not about
specifically concurrent or distributed systems but a numerical computation. Thanks to
César Muñoz (NASA, Langley) for he example (which is taken from “Arithm’etique des
ordinateurs” by Jean Michel Muller. See http://www.mat.unb.br/ayala/EVENTS/
munoz2006.pdf or https://hal.archives-ouvertes.fr/ensl-00086707.

A simple computational problem

a0 = 11
2

a1 = 61
11

an+2 = 111− 1130− 3000
an

an+1

(1.1)

The definition or specification from equation (1.1) seems so simple that it does not even
look like a “problem”, more like a first-semester task.

Real software, obviously, is mostly (immensely) more complicated. Nonetheless, certain
kinds of software may rely on subroutines which have to calculate some easy numerical
problems like the one sketched above (like for control tasks or signal processing).

You may easily try to “implement” it yourself, in your favorite programming language. If
your are not a seasoned expert in arithmetic programming with real numbers or floats,
you will come up probably with a small piece of code very similar to the one shown below
(in Java).
public class Mya {

stat ic double a ( int n) {
i f (n==0)

return 1 1 / 2 . 0 ;
i f (n==1)

return 6 1 / 1 1 . 0 ;
return 111 − (1130 − 3000/ a (n−2))/a (n−1);

}

public stat ic void main ( S t r i n g [ ] argv ) {
for ( int i =0; i <=20; i++)

System . out . p r i n t l n ( " a ( "+i+" ) = "+a ( i ) ) ;
}

https://www.uio.no/studier/emner/matnat/ifi/IN5110
https://www.uio.no/studier/emner/matnat/ifi/IN5110
https://martinsteffen.github.io/programverification/
http://www.mat.unb.br/ayala/EVENTS/munoz2006.pdf
http://www.mat.unb.br/ayala/EVENTS/munoz2006.pdf
https://hal.archives-ouvertes.fr/ensl-00086707
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}

Listing 1.1: A straightforward implementation

The example is not meant as doing finger-pointing towards Java, so one can program the
same in other languages, for instance here in ocaml, a functional language.
(∗ The same example , in a d i f f e r e n t language ∗)

let rec a (n : i n t ) : f l o a t =
i f n = 0
then 11 .0 / . 2 . 0
else ( i f n = 1

then 61 .0 / . 11 .0
else ( 1 1 1 . 0 −. ( 1130 .0 −. 3000 .0 / . a (n−2)) / . a (n − 1 ) ) ) ; ;

Listing 1.2: A different straightforward implementation

One can easily test the program for a given input of 20. In the output shown below,
every second line is omitted for shortness. Stabilization at more or less 100 is also not a
feature of Java. For instance, a corresponding ocaml program shows “basically” the same
behavior; the exact numbers are slightly off.

The solution (?)

$ java mya
a(0) = 5.5
a(2) = 5.5901639344262435
a(4) = 5.674648620514802
a(6) = 5.74912092113604
a(8) = 5.81131466923334
a(10) = 5.861078484508624
a(12) = 5.935956716634138
a(14) = 15.413043180845833
a(16) = 97.13715118465481
a(18) = 99.98953968869486
a(20) = 99.99996275956511

Alright, that’s what the program spits out and it’s not unplausible. We may vaguely
remember that there is such a thing as a mathematical series. That’s sequences of numbers
summed up, where a number at a given position is calculated by some formula from the
value(s) of the previous one(s). Equation (1.1) is an example of (the specification of) a
series of rationals resp. reals. One may additionally remember that math concerns itself
with in particular infinite series and for those, the infinite sum may or may not stabilize or
converge to a finite number. That’s called the limit of the series. Looking at the printed
output from the implementation, it shows clear signs of convergence, stabilizing at 100,
and already being quite close to it after 20 iterations.

Let’s consult out knowledge or a textbook about behavior of series, and theory tells that
an for any n ≥ 0 may be computed by using the following expression.
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an = 6n+1 + 5n+1

6n + 5n .

With that alternative, non-recursive representation, it’s clear to which number the series
converges, and it’s not 100, not even close.

lim
n→∞

an = 6 . (1.2)

So, after 20 iterations, we should expect a20 ≈ 6, not what the program actually calcu-
lates.

The example should cause concern for various reasons. The obvious one is that a seemingly
correct program shows weird behavior. Of course, what is “seemingly” correct may lay in
the eyes of the beholder.

One could shrug it off, making the argument that even the not so experienced program-
mer should be aware that floats in a programming language is most often different from
“mathematical” real numbers and therefore the implementation is not to be expected to
be 100% correct anyway. Of course in this particular example, the numbers are not just a
bit off due to numerical imprecision, the implementation behaves completely different from
what one could expect, the result of the implementation for the higher numbers seems to
have nothing to do at all with the expected result.

But anyway, one conclusion to draw might be “be careful with floats” and accumulation
of rounding errors. And perhaps take an extra course or two on computer arithmetic if
you are serious about programming software that has to do with numerical calculations
(control software, etc.). That’s a valid conclusion, but this lecture will not follow the
avenue of getting a better grip on problems of floats and numerical stability, it’s a fields
of its own.

The example can also be discussed from a different angle. The slides claim that the
implementation is wrong insofar that the result should really be something like 6. One
can figure that out with university or even school level knowledge about real analysis,
series, and limits, etc. However, the problem statement is really easy. Actual problems
are mostly much more complex even if we stick to situations, when the problem can
be specified by a bunch of numerical equations, maybe modelling and representing some
physical environment that needs to be monitored and controlled. It’s unlikely to encounter
a software problem whose “correct” solution can be looked-up in a beginner’s textbook.
What’s correct anyway? In the motivational example, “math” tells us the correct answer
should be approximately 6, but what if the underlying math is too complex to have a simple
answer as to what the result is supposed to be (being unknown or even unobtainable as
closed expression).

When facing a complex numerical (or computational) problem, many people nowadays
would simply say “let’s use a computer to calculate the solution”, basically assuming “what
the computer says is the solution”. Actually, along that lines, one could even take the
standpoint that in problems like the ones from the example, the (Java) program is not the
solution but the specification of the task.
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That’s not so unrealistic: the program uses recursion and other things, which can be seen
as quite high-level. Then the task would be, to implement a piece of hardware, or firmware
or some controller, that implements the specification, given by some high-level recursive
description in some other executable format.

One can also imagine that the Java program is used for testing whether the more low-level
implementation does the right thing, like comparing results or use the Java program to
monitor the results in the spirit of run-time verification. The cautioning about “beware
of numerical calculations” still applies, but the point more relevant to our lecture would
be, that sometimes specifications are not so clear either, not even if they are “computer-
aided”. Later in the introduction, we say a program is correct only relative to a (formal)
specification, but also the specifications themselves may be problematic and that includes
the checking, even the automatic one, whether the specification is satisfied.

And we still may draw another parallel. The example shows in a way that software is
brittle, in the sense that seemingly small deviations have large effects. In the example, small
numerical approximations did not result in a small deviation of the expected outcome,
but resulted in a different outcome. There, the cause is numerical instability, which is
a complicated thing and outside the range of our lecture. But the small-cause-big-effect
property is general in software. A misplaced comma or a loop- or array index wrong +/-
one when working with a loop or an array can have drastic consequences (throwing an
exception or derailing the program). In the context of parallel and concurrent programs,
misplaced (or forgotten) locks and synchronization may have the same show-stopping
effects.

Software in general is bad in tolerating deviations. A program with the array bound or
the loop-condition one-off and thereby crashing is not more or less correct. It makes no
sense to say that 1000 times the code looped perfectly through the loop body, only the
last 1001st iteration went wrong, that’s more than 99% correct. . .

This differentiates software and systems driven by software from traditional machines and
constructions. Material constructions, like tools, houses, engines, bridges etc. are never
perfect, there are all constructed with some tolerances, and each piece has its own toler-
ance, where tolerance is the accepted deviation from a piece’s ideal and perfect measure or
shape. Different constructions and different materials and different manufacturing meth-
ods have different tolerances, and for a particular kind of product, the lower the tolerances,
the higher the quality and typically the price. The word “tolerance” says it already: real
things can never perfect, but to some extent, deviations are acceptable. Each piece may
have an individual tolerance, perhaps a cylinder in a combustion engine must be near
perfect in its surface and wrt. its diameter, the plastic sealing ring for the exaust outlet at
the same motor may have higher tolerances (already from the fact that its produced from
a different material). Altogether, engineering science and enginering experience tells us
that as long as the parts keep their (perhaps standardized) tolerances, the overall engines
will do its job reliably (within its own tolerance and given side conditions, like it should
not be used below -40 degrees and only oil or grease of some physical and chemical quality
have to be use, and changed after a while etc.). And the producer is confident enough
that it offers a couple of years guarantee on the engine or dishwasher, resp. the laws may
enforce such a guarantee, so the producer better makes products that survive at least the
guarantee period on average. Quality assurance is intended to make sure that products



6 1 Formal methods
1.1 Introduction

leaving the factory are in good shape. That will include checking said tolerances during
the process (perhaps not on every single screw but sampling) and there will perhaps a
quality end control of the finished product. If the engine shows signs of tearn and wear,
one can do some maintentance, fastening some screws, cleaning the valves, replacing the
sealing rings, and the machine is good for the next 2 years, the recommended mainte-
nance period. Often, physical constructions don’t have this “small-deviations-huge-effect”
brittleness. If one single screw is not manufactured within its tolerances, it will probably
overall be ok. Maybe even a missing screw is fine, and one beam slightly too short might
degrade perhaps a construction in terms of long-lasting-ness or robustness to some extent.
Of course, at some point too much is too much, and the whole system collapses or does not
work, but it’s typically a gradual thing. And engineers counter that with “redundancies”
like beams are designed more stongly and with more steel than would be precisely needed
not to collapse, and perhaps 10 screws are used, if 2 could do the job if guaranteed than
none is forgotten or bad.

For software, the situation is rather different. There’s no concept of tolerances, the “parts”
like routines, libraries, modules or subcomponents are perfect replica from each other
(ignoring the issue of deviations of versions and upgrades). There is never something
like “yesterday I bought a piece of software, but it was not really good, one if the parts,
the multiplication they used, was carelessly done, I brought it back and they fixed it
and exchanged the rotten multiplication routine be a new one, and now it works”. Sure,
software can be and routinely is patched. . .

There’s also typically no tear and wear in the material sense or maintenance intervals
(again, the evolving software enviroment, upgrades of routines and libraries used by a
piece of software may make it feels is if a piece if software “degrades”, since this or that
feature suddenly does not work any more as it used to).

And as far as producer guarantees are concerned, they often read like that:

<ACME> LICENSES THE LICENSED SOFTWARE "AS IS," AND MAKES NO EXPRESS OR
IMPLIED WARRANTY OF ANY KIND. <ACME> SPECIFICALLY DISCLAIMS ALL INDIRECT
OR IMPLIED WARRANTIES TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW,
INCLUDING WITHOUT LIMITATION ALL IMPLIED WARRANTIES OF, NON-INFRINGEMENT,
MERCHANTABILITY, TITLE OR FITNESS FOR ANY PARTICULAR PURPOSE. NO ORAL OR
WRITTEN INFORMATION OR ADVICE GIVEN BY <ACME>, ITS AGENTS OR EMPLOYEES
SHALL CREATE A WARRANTY.

It’s not really warranty, it’s a legal formulation to assure as much as possible the absence
of warranty, a disclaimer.

1.1.2 How to guarantee correctness?

Formal methods is about to establish and assure that software works properly with math-
ematical rigor, resp. using tools baseed mathematical and logical principles. And the
lecture will look at some of those principles and logics and, to some extent, a few tools.
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Working “properly” can mean many things. It can include that it meets user expectations,
that it’s user-friendly (which is difficult to achieve and difficult to determine), that it
does the job efficiently etc. Often, one differentiates between validation and verification.
Verification means to establish that a program or system does what is expected from
it. The expectations are layed down as specification. The specification as well as the
notion of conformance to the specification and process of establishing conformance are
formal, i.e., based on mathematical principles, in particular logics. A program that meets
its requirements or satisfies a the given specification is said to be correct (wrt. to that
specification).

So correctness in that sense is on the one hand rather strict and precise: a formal con-
nection between a specification and a system, carried out with mathematical rigor, ideally
with the help of a tool. On the other hand, it’s also restricted. Correctness for instance
is not absolute, it’s correct relative to a specification. Things not mentioned in the speci-
fication are not covered, and if the specification is “wrong” or ill-considered, same for the
implementation.

Another thing to keep in mind is the following. We stated that formal verification is
about a mathematical argument of logical proof that the specification is satisfied. A
mathematical proof operates on “mathematical objects”

Correctness

• A system is correct if it meets its “requirements” (or specification)

Examples:

• System: The previous program computing an Requirement: For any n ≥ 0, the
program should conform with the previous equation

(incl. limn→∞ an ≈ 6)

• System: A telephone system
• Requirement: If user A wants to call user B (and has credit), then eventually A

will manage to establish a connection
• System: An operating system Requirement: A deadly embrace (nowaday’s aka

deadlock) will never happen

The “specifications” here are obviously anything else but formal. A “deadly embrace” is
the original term for something that is now commonly called deadlock. It’s a classical
error condition in concurrent programs. In particular something that cannot occur in a
sequential program or a sequential algorithm. It occurs when two processes try to gain
access to two mutually dependent shared resources and each decide to wait indefinitely
for the other. A classical illustration is the “dining philosophers”.

The requirements, apart from the first one and except that they are unreasonable small or
simple, are characteristic for “concurrent” or “reactive” system . As such, they are typical
also for the kind of requirements we will encounter often in the lecture. The second one
uses the word “eventually” which obtains a precise meaning in temporal logics. More
accurately, it depends even on what kind of temporal logic one chooses and also how the
system is modelled. Similarly for the last requirement, using the word “never”.
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Remarks The examples are taken from Holzmann’s Ch. 1. See also Cousot’s slides; K.
Schneider’s, Peled’s, Clarke’s and Holzmann’s Chapter 1.

How to guarantee correctness?

• not enough to show that it can meet its requirements
• show that a system cannot fail to meet its requirements

Dijkstra’s dictum “Program testing can be used to show the presence of bugs, but never
to show their absence”

A lesser known dictum from Dijktra (1965) On proving programs correct: “One can
never guarantee that a proof is correct, the best one can say is: ’I have not discovered any
mistakes’. ”

• automatic proofs? (Halting problem, Rice’s theorem)
• any hope?

Dijksta’s well-known dictum comes from [13]. The statements of Dijkstra can, of course,
be debated, and have been debated. What about automatic proofs? It is impossible to
construct a general proof procedure for arbitrary programs. It’s a well-known fact that
only programs in the most trivial “programming languages” can be automatically analysed
(i.e., programming without general loops or recursion or if one assumes bounded memory).
For clarity, one should perhaps be more precise, what can’t be analysed. First of all, the
undecidability of proplems refers to properties concerning the behavior or semantics of
programs. Syntactic properties or similar may well be analyzed. Questions referring to
the program text are typically decidable. A parser decides whether the source code is
syntactically correct, for instance, i.e., adheres to a given (context-free) grammar. In
most programming languages, type correctness is decidable (and the part of the compiler
that decides on that is the type checker). What is not decidable are semantics properties
of what happens when running the code. The most famous of such properties is the
question whether the program terminates or not; that’s known as the halting problem.
The halting problem (due to Alan Turing) is only one undecidable property, in fact,
all semantical questions are undecidable: every single semantical property is undecidable,
with the exception of only two which are decidable. Those 2 decidable one are the 2 trivial
ones, known as true and false, which hold for all programs resp. for none. The general
undecidability of all non-trivial semantical properties is known as Rice’s theorem.

As second elaboration: undecidability refers to analysis programs generally. Specific pro-
grams may well be analysed, of course. For instance, one may well establish for a particular
program, that it terminates. It may even be quite easy, if one has only for-loops or perhaps
no loops at all. After all, verification is about establishing properties about programs. It’s
only that one cannot make an algorithmic analysis for all programs.

The third point is on the nature of what decidability means. A decision procedure is a
algorithm which makes a decision in a binary manner: yes or no. And that implies that
the decision procedure terminates. There is no “maybe”, and there is no non-termination
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in which case one would not know either. A procedure that can diverge in some cases is
not a decision-procedure by a semi-decision procedure and the corresponding problem is
only semi-decidable (or partially recursive).

Validation & verification

• In general, validation is the process of checking if something satisfies a certain
criterion

• Do not confuse validation with verification

Validation "Are we building the right product?", i.e., does the product do what the user
requires

Verification: "Are we building the product right?", i.e., does the product conform to the
specification

The terminology and the suggested distinction is not uncommon, especially in the for-
mal methods community. It’s not, however, a universal consensus. Some authors define
verification as a validation technique, others talk about validation & verification as be-
ing complementary techniques. However, it’s a working definition in the context of this
lecture, and we are concerned with verification in that sense.

Approaches for validation

testing • check the actual system rather than a model
• focused on sampling executions according to some coverage criteria
• not exhaustive (“coverage”)
• often informal, formal approaches exist (MBT)

simulation • A model of the system is written in a PL, which is run with different
inputs

• not exhaustive

verification “[T]he process of applying a manual or automatic technique for establishing
whether a given system satisfies a given property or behaves in accordance to some
abstract description (specification) of the system” [27].

1.1.3 Software bugs

Sources of errors

Errors may arise at different stages of the software/hardware development:

• specification errors (incomplete or wrong specification)
• transcription from the informal to the formal specification
• modeling errors (abstraction, incompleteness, etc.)
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• translation from the specification to the actual code
• handwritten proof errors
• programming errors
• errors in the implementation of (semi-)automatic tools/compilers
• wrong use of tools/programs
• . . .

The list of errors is clearly not complete, sometimes a “system” is unusable, even if it’s hard
to point with the finger to an error or a bug (is it “a bug or a feature”?). Different kinds
of validation and verification techniques address different kinds of errors. Also testing as
one (huge) subfield is divided in many different forms of testing, trying to address different
kinds of errors.

Errors in the SE process

The picture borrowed from G. Holzmann’s slides. Most software is developed according to
some process with different phases or activities (and by different teams and with specific
tools); often, the institution of even the legal regulators insist on some procedures etc.
Many of such software engineering practices have more or less pronounced “top-down”
aspects (most pronounced in a rigid waterfall development, which, however, is more an
academic abstraction, less pronouced in agile processes). No matter how one organizes the
development process, “most” errors are detected quite late on the development process,
at least that’s what common wisdom, experience, and empirical results show. The figure
(perhaps unrealistically simplifying) shows a top-down process and illustrates that certain
kinds of errors (like design errors) are often detected only later. It should be clear (at
least for such kind of errors), that the later the errors are detected, the more costly they
are to repair.

http://spinroot.com/spin/Doc/course/index.html
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Costs of fixing defects

The book the figures are taken from is [26] (a quite well-known source). The book itself
attributes the shown figures to different other sources.

Hall of shame

• July 28, 1962: Mariner I space probe
• 1985–1987: Therac-25 medical accelerator
• 1988: Buffer overflow in Berkeley Unix finger daemon
• 1993: Intel Pentium floating point divide
• June 4, 1996: Ariane 5 Flight 501
• November 2000: National Cancer Institute, Panama City
• 2016: Schiaparelli crash on Mars

The information is taken from [15]. See also the link to that article.

July 28, 1962: Mariner I space probe The Mariner I rocket diverts from its intended
course and was destroyed by mission control. A software error caused the miscalcula-
tion of the rocket’s trajectory. Source of error : wrong transcription of a handwritten
formula into the implementation code.

1985-1987: Therac-25 medical accelerator A radiation therapy device delivers high ra-
diation doses. At least 5 patients died and many were injured. Under certain cir-
cumstances it was possible to configure the Therac-25, so the electron beam would
fire in high-power mode but with the metal X-ray target out of position. Source of
error: a race condition.

1988: Buffer overflow in the Berkeley Unix finger daemon An Internet worm infected
more than 6000 computers in a day. The use of a C routine gets() had no limits on
its input. A large input allows the worm to take over any connected machine. Kind
of error : Language design error (Buffer overflow).

https://www.wired.com/2005/11/historys-worst-software-bugs/
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1993: Intel Pentium floating point divide A Pentium chip made mistakes when dividing
floating point numbers (errors of 0.006%). Between 3 and 5 million chips of the unit
have to be replaced (estimated cost: 475 million dollars). Kind of error: Hardware
error.

June 4, 1996: Ariane 5 Flight 501 Error in a code converting 64-bit floating-point num-
bers into 16-bit signed integer. It triggered an overflow condition which made the
rocket to disintegrate 40 seconds after launch. Error: exception handling error.

November 2000: National Cancer Institute, Panama City A therapy planning software
allowed doctors to draw some “holes” for specifying the placement of metal shields to
protect healthy tissue from radiation. The software interpreted the “hole” in different
ways depending on how it was drawn, exposing the patient to twice the necessary
radiation. 8 patients died; 20 received overdoses. Error: Incomplete specification /
wrong use.

2016: Schiaparelli crash on Mars “[..] the GNC Software [..] deduced a negative altitude
[..]. There was no check on board of the plausibility of this altitude calculation”

The errors on that list are quite known in the literature (and have been analyzed and
re-analyzed and discussed). Note, however, that in some cases, the cause of the error is
controversial, despite of lengthy (internal) investigations and sometimes even hearings in
the US congress or other external or political institutions. The list is from 2005, other
(and newer) lists certainly exists. A well-known collection of computer-related problems,
especially those which imply societal risks and often based on insider information is Peter
Neumann’s Risk forum (now hosted by ACM), which is moderated and contains reliable
information (in particular speculations are called speculations when the issues and causes
are unclear). Not all one finds on the internet is reliable, there are many folk tales on
“funny” software glitches.

Many errors may never see the public light or are openly analyzed, especially when they
touch security related issues, or military or financial institutions. Of course, when a space
craft explodes moments after lift-off or crash-lands on Mars on live transmission from
ground control, it’s difficult to swipe it under the rug. But not even then, it’s easy to
nail it down to the (or a) causing factor not to mention when it comes to put the blame
somewhere or find ways to avoid it the next time. For instance, if it’s determined that the
ultimate cause was a missing semicolon (as some say was the case for the failure of the
Mariner mission, but see below), then what does that mean and how to react? Tell all
NASA programmers to double-check semicolons next time, and that’s it? Actually, looking
more closely, one should not think of the bug as a “syntactic error” and it’s short-sighted
to think of it as a typo.

Indeed, in the Mariner I case, the error is often attributed to a “hyphen”, sometimes a
semicolon. Other sources (who seem well-informed) speak of an overbar, see the IT world
article, which refers to a post in the risk forum. Ultimately, the statement that it was a
“false transcription” is confirmed by those sources. It should be noted that “transcription”
means that someone had to punch in patterns with a type-writer like machine into punch
cards. The source code (in the form of punch cards) was, obviously, hard to “read” by
humans, so code inspection or code reviews were hard to do at that level. To mitigate the
problem of erronous transcription, machines called card verifiers where used. Bascially,

https://www.acm.org/about-acm/risks-forum
https://www.acm.org/about-acm/risks-forum
https://www.itworld.com/article/2717299/mariner-1-s--135-million-software-bug.html
https://www.itworld.com/article/2717299/mariner-1-s--135-million-software-bug.html
http://catless.ncl.ac.uk/Risks/8.75.html#subj1
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it meant that two people punched in the same program and verification meant that the
result was automatically compared by the verifier.

1.1.4 On formal methods

Sources

The slides are inspired by introductory material of the books by K. Schneider and the one
by D. Peled ([30, Section 1.1] and [27, Chapter 1]).

What are formal methods?

FM “Formal methods are a collection of notations and techniques for describing and
analyzing systems” [27]

• Formal: based on “math” (logic, automata, graphs, type theory, set theory . . . )
• formal specification techniques: to unambiguously describe the system itself and/or

its properties
• formal analysis/verification: techniques serve to verify that a system satisfies its

specification (or to help finding out why it is not the case)

Terminology: Verification

The term verification: used in different ways

• Sometimes used only to refer the process of obtaining the formal correctness proof
of a system (deductive verification)

• In other cases, used to describe any action taken for finding errors in a program
(including model checking and maybe testing)

Formal verification (reminder) Formal verification is the process of applying a manual
or automatic formal technique for establishing whether a given system satisfies a given
property or behaves in accordance to some abstract description (formal specification) of
the system

Saying ’a program is correct’ is only meaningful w.r.t. a given spec.!

The term “verification” is used (by different people, in different communities) in different
ways, as we hinted at already earlier. Sometimes, for example, testing is not considered
to be a verification technique.
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Limitations

• Software verification methods do not guarantee, in general, the correctness of the
code itself but rather of an abstract model of it

• It cannot identify fabrication faults (e.g. in digital circuits)
• If the specification is incomplete or wrong, the verification result will also be wrong
• The implementation of verification tools may be faulty
• The bigger the system (number of possible states) more difficult is to analyze it (state

space explosion problem)

For a discussion of issues like these, one may see the papers “Seven myths of formal
methods” and “Seven more myths of formal methods” ([18] [5]).

Any advantage?

be modest Formal methods are not intended to guarantee absolute reliability but to
increase the confidence on system reliability. They help minimizing the number of errors
and in many cases allow to find errors impossible to find manually.

• remember the VIPER chip

Parnas has a more dim view on formal methods. Basically he says, no one in industry is
using them and the reason for that is that they are (basically) useless (and an academic
folly). Parnas is a big name, so he’s not nobody, and his view is probably shared explicitly
by some. And implicitly perhaps shared by many, insofar that formal methods has a niche
existance in real production software.

However, the view is also a bit silly. The argument that no one uses it is certainly an
exaggeration. There are areas where formal methods are at least encouraged by regulatory
documents, for instance in the avionics industry. One could make the argument that high-
security applications (like avionics software) is a small niche, therefore formal method
efforts in that direction are a folly for most progammers. Maybe, but that does not
discount efforts in areas where one thinks it’s worth it (or is forced by regulators to do
it).

Secondly, even if really no one in industry would use such methods, that would not discount
a research effort, including academic research. The standpoint that the task of academic
research is to write papers about what practices are currently profitably employed in
mainstream industry is a folly as well.

Maybe formal methods also suffer a bit from similar bad reputation as (sometimes) ar-
tificial intelligence has (or had). Techniques as investigated by the formal method com-
munity are opposed, ridiculed and discounted as impractical until they “disappear” and
then become “common practice”. So, as long as the standard practicioner does not use
something, it’s “useless formal methods”, once incorporated in daily use it’s part of the
software process and quality assurance. Artificial intelligence perhaps suffered from a
similar phenomenon. At the very beginning of the digital age, when people talked about
“electronic brains” (which had, compared to today, ridiculously small speed and capacity),
they trumpeted that the electronic brains can “think rationally” etcetc., and the promised
that soon they would beat humans in games that require strategic thinking like tic-tac-toe.

http://www.cs.rug.nl/~roe/courses/OriInf/Parnas-Formal-Methods.pdf
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The computers very soon did just that, with “fancy artifical intelligence” techniques like
back-tracking, branch-and-bound or what not (branch-and-bound comes from operations
research). Of course the audience then said: Oh, that’s not intelligence, that’s just brute
force and depth-first search, and nowadays, depth-first seach is taught in first semester or
even school. And Tic-tac-toe is too simple, anyway, the audience said, but to play chess,
you will need “real” intelligence, so if you can come up with a computer that beats chess
champions, ok, then we could call it intelligent. So then the AI came up with much more
fancy stuff, heuristics, statistics, bigger memory, larger state spaces, used faster comput-
ers, but people would still state: well, actually a chess playing computer is not intelligent,
it’s “just” a complex search. So, the “intelligence” those guys aim at is always the stuff
that is not yet solved. Maybe the situation is similar for formal methods.

Perhaps another parallel which has led to negative opinions like the one of Parnas is that
the community sometimes is too big-mouthed. Like promising an “intelligent electronic
brain” and what comes out is a tic-tac-toe playing back-tracker. . . For the formal methods,
it’s perhaps the promise to “guarantee 100% correctness” (done based on “math”) or at
least perceived as to promise that. For instance, the famous dictum of Disjktra that
testing cannot guarantee correctness in all cases is of course in a way a triviality (and
should be uncontroversial), but it’s perhaps perceived to mean (or used by some to mean)
that “unlike testing, the (formal) method can guarantee that”. Remember the Viper chip
(a “verified” chip used in the military, in the UK). See [29] for a short historical account
of the rise and the fall of the Viper chip and the (legal) battles around it. Interestingly
an important part of the battle was about the question, discussed in course “what is a
mathematical proof”. Also the book [24] discusses that.

Another netfind: “bitcoin” and formal methods :-)

Cardano seems to be one of quite many bitcoin-style proposals based on block-chain,
marketed under the mysterious slogan “Making the world a work better for all”. . . As far
a cryptocurrencies goes, it’s not too esotheric. According to a current ranking of market
capitalization of different “coins”, it’s ranked number 5.

provably correct

Using formal methods

Used in different stages of the development process, giving a classification of formal meth-
ods

1. We describe the system giving a formal specification
2. We can then prove some properties about the specification
3. We can proceed by:

• Deriving a program from its specification (formal synthesis)
• Verifying the specification wrt. implementation

https://coinmarketcap.com/all/views/all/
https://coinmarketcap.com/all/views/all/
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Formal specification

• A specification formalism must be unambiguous: it should have a precise syntax and
semantics
– Natural languages are not suitable

• A trade-off must be found between expressiveness and analysis feasibility
– More expressive the specification formalism more difficult its analysis

Do not confuse the specification of the system itself with the specification of some of its
properties

• Both kinds of specifications may use the same formalism but not necessarily. For
example:
– the system specification can be given as a program or as a state machine
– system properties can be formalized using some logic

Proving properties about the specification

To gain confidence about the correctness of a specification it is useful to:

• Prove some properties of the specification to check that it really means what it is
supposed to

• Prove the equivalence of different specifications

Example a should be true for the first two points of time, and then oscillate. The example
is taken from [30]

• some attempt:

a(0) ∧ a(1) ∧ ∀t. a(t+ 1) = ¬a(t)

One could say the specification is INCORRECT! and/or incomplete. The error may
be found when trying to prove some properties. Implicitly (even if not stated), is the
assumption that t is a natural number. If that is assumed, then the last conjuct should
apply also for t = 0, but that contradicts the first two conjucts.

So perhaps a correct (?) specification might be

a(0) ∧ a(1) ∧ ∀t ≥ 0.a(t+ 2) = ¬a(t+ 1)

Formal synthesis

• it would be helpful to automatically obtain an implementation from the specification
of a system

• difficult since most specifications are declarative and not constructive
– They usually describe what the system should do; not how it can be achieved
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Example: program extraction

• specify the operational semantics of a programming language in a constructive logic
(calculus of constructions)

• prove the correctness of a given property wrt. the operational semantics (e.g. in
Coq)

• extract (ocaml) code from the correctness proof (using Coq’s extraction mechanism)

Verifying specifications w.r.t. implementations

Mainly two approaches:

• Deductive approach ((automated) theorem proving)
– Describe the specification ϕspec in a formal model (logic)
– Describe the system’s model ϕimp in the same formal model
– Prove that ϕimp =⇒ ϕspec

• Algorithmic approach
– Describe the specification ϕspec as a formula of a logic
– Describe the system as an interpretation Mimp of the given logic (e.g. as a finite

automaton)
– Prove that Mimp is a “model” (in the logical sense) of ϕspec

A few success stories

• Esterel Technologies (synchronous languages – Airbus, Avionics, Semiconductor &
Telecom, . . . )
– Scade/Lustre
– Esterel

• Astrée (Abstract interpretation – used in Airbus)
• Java PathFinder (model checking – find deadlocks on multi-threaded Java programs)
• verification of circuits design (model checking)
• verification of different protocols (model checking and verification of infinite-state

systems)
• Z3 (and other) constraint solver

. . .

Classification of systems

Before discussing how to choose an appropriate formal method we need a classification of
systems

• Different kindd of systems and not all methodologies/techniques may be applied to
all kind of systems

• Systems may be classified depending on
– architecture
– type of interaction
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The classification here follows Klaus Schneider’s book “Verification of reactive systems”
[30]. Obviously, one can classify “systems” in many other ways, as well.

Classification of systems: architecture

• Asynchronous vs. synchronous hardware
• Analog vs. digital hardware
• Mono- vs. multi-processor systems
• Imperative vs. functional vs. logical vs. object-oriented software
• Concurrent vs. sequential software
• Conventional vs. real-time operating systems
• Embedded vs. local vs. distributed systems

Classification of systems: type of interaction

• Transformational systems: Read inputs and produce outputs – These systems
should always terminate

• Interactive systems: Idem previous, but they are not assumed to terminate (unless
explicitly required) – Environment has to wait till the system is ready

• Reactive systems: Non-terminating systems. The environment decides when to
interact with the system – These systems must be fast enough to react to an envi-
ronment action (real-time systems)

Taxonomy of properties

Text Many specification formalisms can be classified depending on the kind of properties
they are able to express/verify. Properties may be organized in the following categories

Functional correctness The program for computing the square root really computes it

Temporal behavior The answer arrives in less than 40 seconds

Safety properties (“something bad never happens”): Traffic lights of crossing streets are
never green simultaneously

Liveness properties (“something good eventually happens”): process A will eventually be
executed

Persistence properties (stabilization): For all computations there is a point where process
A is always enabled

Fairness properties (some property will hold infinitely often): No process is ignored in-
finitely often by an OS/scheduler

Remarks K. Schneider does not mention “Functional correctness” nor “temporal behav-
ior”. I think I took them from Peled’s book (?)
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When and which formal method to use?

Examples:

• Digital circuits . . . (BDDs, model checking)
• Communication protocol with unbounded number of processes. . . . (verification of

infinite-state systems)
• Overflow in programs (static analysis and abstract interpretation)
• . . .

Open distributed, concurrent systems ⇒ Very difficult!

Need the combination of different techniques

It should be clear that the choice of method depends on the nature of the system and what
kind of properties one needs to establish. The above lists basically states the (obvious) fact
that the more complex (and unstructured) systems get, the more complex the application
of formal method becomes (hand in hand with the fact that the development becomes
more complex). The most restricted form perhaps is digital circuits and hardware. The
initial successes for model checking were on the area of hardware verification. Ultimately,
one can even say: at a certain level of abstraction, hardware is (or is supposed to be) a
finite-state problem: the piece of hardware represents a finite-state machine built up of
gates etc, which work like boolean functions. It should be noted, though, that this in itself
is an abstraction: the physical reality is not binary or digital and it’s a hard engineering
problem to make physical entities (like silicon, or earlier tubes or magnetic metals) to
actually behave as if they were digital (and to keep it stable like that, so that it still
works reliably in a binary or finite-state fashion after trillions of operations. . . ) In a way,
the binary (or finite-state) abstraction of hardware is a model of the reality, one one can
check whether this model has the intended properties. Especially useful for hardware and
“finite state” situations are BDDs (binary decision diagrams) which were very successful
for certain kinds of model checkers.

1.1.5 Formalisms for specification and verification

Some formalisms for specification

• Logic-based formalisms
– Modal and temporal logics (E.g. LTL, CTL)
– Real-time temporal logics (E.g. Duration calculus, TCTL)
– Rewriting logic

• Automata-based formalisms
– Finite-state automata
– Timed and hybrid automata

• Process algebra/process calculi
– CCS (LOTOS, CSP, ..)
– π-calculus . . .

• Visual formalisms
– MSC (Message Sequence Chart)
– Statecharts (e.g. in UML)
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– Petri nets

It should go without saying that the list is rather incomplete list. The formalisms here,
whether they are “logical” or “automata-like” are used for specification of more reactive
or communicative behavior (as opposed to specifying purely functional or input-output
behavior of sequential algorithms). By such behavior, we mean describing a step-wise or
temporal behavior of a system (“first this, then that. . . .”). Automata with their notions
of states and labelled transitions embody that idea. Process algebras are similar. On
a very high-level, they can partly be understood as some notation describing automata;
that’s not all to it, as they are often tailor-made to capture specific forms of interaction
or composition, but their behavior is best understood as having states and transitions, as
automata. The mentioned logics are likewise concerned with logically describing reactive
systems. Beyond purely logical constructs (and, or), they have operators to speak about
steps being done (next, in the future . . . ). Typical are temporal logics, where “temporal”
does not directly mean refering to clocks, real-time clocks or otherwise. It’s about specify-
ing steps that occur one after the other in a system. There are then real-time extensions of
such logics (in the same way that there are real-time extensions of programming language
as well as real-time extensions of those mentioned process calculi).

Whether one should place the mentioned “visual” formalisms in a separate category may be
debated. Being visual refers just to a way of representation (after all also automata can be
(and are) visualized, resp. “visual” formalisms have often also “textual” representations.

Some techniques and methodologies for verification

• algorithmic verification
– Finite-state systems (model checking)
– Infinite-state systems
– Hybrid systems
– Real-time systems

• deductive verification (theorem proving)
• abstract interpretation
• formal testing (black box, white box, structural, . . . )
• static analysis
• constraint solving

1.1.6 Summary

Summary

• Formal methods are useful and needed
• which FM to use depends on the problem, the underlying system and the property

we want to prove
• for real complex systems, only part of the system may be formally proved and no

single FM can do the task
• our course will concentrate on

– temporal logics as a specification formalism
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– safety, liveness and (maybe) fairness properties
– Spin (LTL model checking)
– few other techniques from student presentation (e.g., abstract interpretation,

CTL model checking, timed automata)

Ten Commandments of formal methods

From “Ten commandments revisited” [6]

1. Choose an appropriate notation
2. Formalize but not over-formalize
3. Estimate costs
4. Have a formal method guru on call
5. Do not abandon your traditional methods
6. Document sufficiently
7. Do not compromise your quality standards
8. Do not be dogmatic
9. Test, test, and test again

10. Do reuse

Further reading

Especially this part is based on many different sources. The following references have been
consulted:

• Klaus Schneider: Verification of reactive systems, 2003. Springer. Chap. 1 [30]
• G. Andrews: Foundations of Multithreaded, Parallel, and Distributed Programming,

2000. Addison Wesley. Chap. 2 [1]
• Z. Manna and A. Pnueli: Temporal Verification of Reactive Systems: Safety, Chap.

0 This chapter is also the base of lectures 3 and 4. [25]
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2.1 Introduction

What’s logic?

As discussed in the introductory part, we are concerned with formal methods, verification
and analysis of systems etc., and that is done relative to a specification of a system. The
specification lays down (the) desired properties of a system and can be used to judge
whether a system is correct or not. The requirements or properties can be given in
many different forms, including informal ones. We are dealing with formal specifications.
Formal for us means, it has not just a precise meaning, that meaning is also fixed in a
mathematical form for instance, in the form of a “model”1 We will mostly not deal with
informal specifications nor with formal specifications that are unrelated to the behavior in
a broad sense of a system.

For example, a specification like

the system should cost 100 000$ or less, incl. VAT

could be seens as being formal and precise. In practice, such a statement is probably not
precise enough for a legally binding contract (what’s the exchange rate, if it’s for Norwegian
usage? Which date is taken to fix the exchange rate, the date of signing the contract, the
scheduled delivery date, or the actual delivery date? What’s the “system” anyway, the
installation? The binary? Training? Warranty, etc.) All of that would be “formalized”

1The notion of model will be variously discussed later resp. given a more precise meaning in the lecture.
Actually, it will be given a precise mathematical meaning in different technical ways, depending on
which framework, logics, etc. we are dealing with; the rough idea remains the “same”, though.
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in a legal contract not even readable for mathematicians, but only for lawyers, but that’s
not the kind of formalization we are dealing with.

For us, properties are expressed in “logics”. That is a very broad term, as well, and we
will encounter various different logics and “classes” of logics.

This course is not about fundamentals of logics or philosophical questions, like “is logic
as discipline a subfield of math, or is it the other way around”. We are also mostly not
much concerned with fundamental questions of logical meta-theory. If one has agreed on
a logic (including notation and meaning), one can use that to fix some “theory” which is
expressed inside the logic. For example, if one is interested in formally deriving things
about natural numbers, one could first choose first-order logic as general framework, then
select symbols proper for the task at hand (getting some grip on the natural numbers),
and then try to axiomatize them and formally derive theorems inside the chosen logical
system. As the name implies meta-theory is not about things like that, it’s about what
can be said about the chosen logic itself: Is my logic decidable? How efficient can it be
used for making arguments? How does its expressivity compares to that of other logics?
. . . Such questions will pop up from time to time, but are not at the center of the course.
For us, logic is more of a tool for validating programs, and for different kind of properties
or systemd, we will see what kind of logics fits.

Still, we will introduce basic vocabulary and terminology needed when talking about a
logic (on the meta-level, so to say). That will include notions like formulas, satisfaction,
validity, correctness, completeness, consistency, substitution . . . , or at least a subset of
those notions.

When talking about “math” and “logics” and what their relationship is: some may have
the impression that math as discipline is a formal enterprise and formal methods is kind
of like an invasion of math into computer science or programming. It’s probably fair to
say, however, that for the working mathematician, math is not a formal discipline in the
sense the formal methods people or computer scientists do their business. Sure, math is
about drawing conclusions and doing proofs. But most mathematicians would balk at the
question “what’s the logical axioms you use in your arguments?” or “can go give me the
grammar of the syntax you use in your reasoning?”. That only bothers mathematicans (to
some extent) who prove things about logical systems, i.e., who take logics as object of their
study. But even those will probably not write their arguments about a formally defined
logic inside a(nother?) logical system. That formal-method people are more obsessed
with such nit-picking questions has perhaps two reasons. For one is that they want not
just clear, elegant and convincing arguments, they want that the computer makes the
argument or at least assist in making the argument. To have a computer program do
that, one needs to be 100% explicit what the syntax of a formal system is and what it
means, how to draw arguments or check satisfaction of a formula etc.

Another reason is that they are often not dealing with clear and elegant things, the objects
of study for formal-method people are, mathematically seen, often “dirty stuff”. One tries
to argue for the corrrectness of a program, an algorithm, maybe even an implementation.
That often means one does not deal with an elegant mathematical structure but some
specific artifact. It’s not about “in principle, the idea of the algorithm is correct” (although
that is also important); whether the code is correct or not not depends also on special
corner cases, uncovered conditions, or other circumstances. There is no such argument
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like “the remaining cases work analogously. . . ”: A mathematician might get away with
that, but a computer program would not.

Additionally, when making proofs about software, it’s often not about “the remaining five
analogous cases”. Especially, in concurrent program or algorithms, one has to cover a huge
amount of possible interleavings (combinations of orderings of executions), and a incor-
rectness, like a race condition, may occur only in some very seldom specific interleavings.
So it’s more like there are “5 fantastillion more cases”. . . Proving that a few exemplary
interleavings are correct (or test a few) will simply not do the job. That’s indeed one
problem with testing concurrent systems. Even if one tests a huge amount of interleav-
ings (and coaching an implementation to do check particular interleavings as opposed to
rely on chance is also non-trivial), this normally pales in comparison to the astronomical
number of possible interleavings. For sequential systems or a sequential, deterministic
procedures, the possible behaviors is also astronomical, because typically there are many
possible inputs, conceptually infinitely many often. However, being deterministic, at least
the same input should lead to the same reaction. That’s a big help, in particular when it
comes to reproducability. Furthermore, there are techniques that allow to tailor the input
in such a way that corner cases are taken, for instance, feeding input that for all branches
both the positive as well as the negative branch is executed by at least one test. That’s
known as a form of test coverage.

For concurrent systems, what happens in one particular run is non-deterministic. In
particular there is no part of the program code responsible that this or that decision is
take (as is the case for a conditional statement in the sequential case). The different
interleavings are done by the scheduler or the timings of the parallel processes.

General aspects of logics: truth vs. provability We will see different logics, with dif-
ferent syntax’es, different purposes etc. But the way they are defined and introduced will
share some common pattern.

They their syntax are given as a formal language fixed by grammar. Mostly they will have
the familar boolean propositional logic connectives as core (“and”, “not” etc.), and there
will be various additional syntax on top.

Expressions in the logical syntax are generally called formulas. Though some more specific
names exists, like formulas of propositional logic may be called propositions, or formulas
without free variables in first-order logic are called sentences by some. We mostly use ϕ
(and ϕ1, ψ′, χ . . . ) for formulas independent of the current setting we discuss.

More interesting is the question what formulas respresent or specify. That’s about the
semantics or meaning of the syntax. The question about what some syntax means cannot
be asked just for formulas, the same is relevant for programs: the program code, in the
form of its (abstract) syntax tree has a meaning, the programs semantics, that’s what the
program does at run-time.

For logics, the question about the meaning of a formula is the question about its “truth
status”, like is the formula true or not. That true-or-false is, however a bit too simplistic,
in that it’s too categorical or unconditional.
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The fact whether a formula is true or not is influenced by additional “factors”. Other
terminology for being true is, the formula holds.

. . .

If a formular is unconditionally true, that’s called the formula is valid or in the case of
propositional formulas, it’s a (propositional) tautology. So whether a formula

truth vs. provability:

when does a formula hold, is true, is satisfied, valid, satisfiable

syntax vs. semantics/models, model theory vs. proof theory

• σ |= ϕ (or |=σ ϕ):
– σ satisfies ϕ
– σ models ϕ (σ is a model of ϕ)

• [[ϕ]]σ = >:
– with σ as propositional variable assignment, ϕ is true or ϕ holds
– the semantics of ϕ under σ is > (“true”)

Of course, there are formulas whose truth-ness does not depend on particular choices,
being unconditionally true (or other unconditionally false). They deserve a particular
name like (propositional) “tautology” (or “contradiction” in the negative case).

Another name for a generally true formula or a formula which is true under all circum-
stances is to say it’s valid. For propositional logic, the two notions (valid formula and
tautology) coincide.

If we got to more complex logics like first-order logics, things get more subtle (and the
same for modal logics later). In those cases, there are more “ingredients” in the logic
that are potentially “non-fixed”, but “movable”. For example, in first-order logic, one
can distinguish two “movable parts”. First-order logic is defined relative to a so-called
signature (to distinguish them from other forms of signatures, it’s sometimes called first-
order signature). It’s the “alphabet” one agrees upon to work with. It contains functional
and relational symbols (with fixed arity or sorts). Those operators define the “domain(s)
of interest” one intends to talk about and their syntactic operators. For example, one
could fix a signature containing operators zero, succ, and plus on a single domain
(a single-sorted setting) where the chosen names indicate that one plans to interpret the
single domain as natural numbers. We use in the discussion here typewriter font to
remind that the signature and their operators are intended as syntax, not as the semantical
interpretation (presumably representing the known mathematical entities 0, the successor
function, and +, i.e., addition). There are also syntactic operators which constitute the
logic itself (like the binary operator ∧, or maybe we should write and. . . ), which are
treated as really and absolutely fixed (once one has agreed on doing classical first-order
logic or similar).

The meaning of the symbols of a chosen signature, however, are generally not a priori
fixed, at least when doing “logic” and meta-arguments about logics. On the other hand,
when doing program verification, typically one is not bothered about that, one assumes a
fixed interpretation of a given signature. Anyway, the elements of the signature are not
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typically thought of as variables, but choosing a semantics for them is one of the non-fixed,
variable parts when talking about the semantics of a first-order formula. That part, fixing
the functional and relational symbols of a given signature is called often an interpretation.
There is, however, a second level of “non-fixed” syntax in a first-order formula, on which
the truthness of a formula depends: those are (free) variables. For instance, assuming
that we have fixed the interpretation of succ, zero, leq (for less-or-equal) and so on,
by the standard meaning implied by their name, the truth of the formula leq(succ x,
y) depends on the choices for the free variables x and y.

To judge, whether a formula with free variables holds or not, one this needs to fix two
parts, the interpretation of the symbols of the alphabet (often called the interpretation), as
well as the choice of values for the free variables. Now that the situation is more involved,
with two levels of choices, the terminolgy becomes also a bit non-uniform (depending on
the text-book, one might encouter slightly contradicting use of words).

One common interpretation is to call the choice of symbols the interpretation or also
model.

2.2 Propositional logic

2.2.1 Introduction

A quite basic form of logic is known as propositional or also boolean logic (in honor of
George Boole).2 Other names are statement logic or sentential logic. It’s also underlying
binary hardware, binary meaning “two-valued”. The two-valuedness is the core of classical
logics in general, the assumption that there is some truth which is either the case or else
not (true or else false, nothing in between or “tertium-non-datur”). This is embodied by
classical propositional logic.

In the following, we introduce the three ingredients of a mathematical logics, its syntax,
its semantics (or notion of models, its semantics, its interpretation) and its proof theory.
We don’t go too deep into any of those, especially not proof theory.

Model theory is concerned with the question of when formulas are “true”, what structure
satisfies a formula (its model). Proof theory, on the other hand, is about when formulas are
provable by a formal procedure or derivation system. Those questions are not independent.
A provable formula should ideally be semantically true, that’s the question of soundness of
the proof system. And vice versa: all formulas which are actually “true” should ideally be
provably true as well (a question of completeness). Notationally, one often uses the symbol
` when referring to proof-theoretical notions and |= for model-theoretical, mathematical
ones. ` ϕ thus would represent ϕ is derivable or provable, and |= ϕ for the formula being
“true” (or valid etc.) referring to its semantics.

2Like later for first-order logic and other logics, there are variations of that, not only syntactical, some
also essential. We are dealing with classical propositional logics without without being too dogmatic
which selection of operators we use. One can also study intuitionistic versions. One of such logic is
known as minimal intuitionistic logic, that has implication → as the only constructor.
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Non-classical logics The following remarks are not part of the technical content of the
lecture, but it may be interesting to at least be aware of alternatives of the somehow clas-
sical path we followed. As stated, classical logics is based on the two valued interpretation
of “truth”: if not true, it’s false, if not false, it’s true, there is no middle ground (“tertium-
non-datur” in Latin or “the law of the excluded middle). This way of thinking underlies
also classical first-order logic (see later), which is somehow the “standard” garden-variety
all-purpose logic for many (not all). First-order logic emerged (ca .100 years ago) qas
the underlying logic in the attempt for “formalize math” once and for all. In a way that
attempt “failed”. By formalize something (like math), it’s not just meant to syntactically
represent the domain of interest (like math or parts of it), but to use deductive systems to
derive in a prescribed manner statements that hold (the theorems) and thereby answer-
ing, in a formalistic manner, in principle the truth or falsehood of hopefully all possible
mathematical statements (after which one could fire all mathematicians, as their issues
can be solved without them. . . ).

A calculatorial, step-by-step approach to derive true facts is, as we would say nowadays,
the attempt to find an algorithm or a program for that task. That “grand challenge”,
however to formalize and solve (“algorithmically”) mathematics once and for all failed, it
was ultimately shot down by Kurt Gödel who proved (among other things) the futility of
this attempt: derivability in logics like first-order logics (and related ones) is undecidable.
Turing’s famous undecidability of the halting problem is closely related, which may be
plausible in that are both concerned with deciding results of a computational procedure
(“can I derive step-by-step a theorem in this logic”, “can I do a step-by-step excecution
of that program and will it halt”). The word decision is meant one expects a clear-cut
“yes-or-no” answer. So that corresponds to a classical interpretation. The undecidability
of some logics means that being true and being provable are different things and cannot
be made the same. Being true does not necessarily mean being provably, some statements
are neither provable not disprovable (in the sense that their negation is provable).

Intuitionistic (or constructive) approaches to logics basically take the stand-point that logic
is not about “truth” in the classical sense but about “provability”. In the light of the above
discussion, it also leads to drop the principle of tertum-non-datur, i.e. P ∨¬P is no longer
generally true. For mathematicin, The question whether they do their job in “classical”
or “intuitionistic” thinking is a bit outlandish for most (perhaps an intuitionistic thinker
would try to avoid proofs by contradiction). For computer scientists, the intuitionistic
approach has a certain appeal, since one motivation of it is that logic is about proving
things in an algorithmic manner (i.e., with a computer).

The ultimate cause of troubles is that one tries to prove things about infinite entities with
finite means, like with a finite number of steps of a halting program or deduction process
(already the natural numbers as a simple mathematical structure are ideally infinite).
Boolean logic, which we start with, is not expressive enough to encounter troubles of
infinite, everything is finite.

Nonetheless, one could study intutitionistic propositional logic. It is also interesting that
such things are also relevant in connection with hardware. A logic circuit is seen a binary
device (voltage high or else volrage low, which corresponds to the boolean values true
or false), but actually that’s an abstraction. In reality, for physical reasons, hardware
may have intermediate states, maybe at a certain point in time, or may be instable due to
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oscillation etc). Without going into details, there is a connection between “stable” boolean
circuits and intuitionistic logics.

2.2.2 Syntax: propositions as formulas of propositional logic

Logics express themselves syntactically by so-called formulas. Different logics used differ-
ent formulas. Propositional formulas, the formulas of propositional logics, are commonly
also called just propositions. One can stumble also over texts which call them sentences
(hence the word sentential logic as alternative name for propositional logic). Later we we
also look at formulas of first-order logics and of other logics. The syntax of propositions
we use is given as follows:

ϕ ::= propositions
p | > | ⊥ atomic propositions

| ϕ ∧ ϕ | ¬ϕ | ϕ→ ϕ | . . . compound propositions

(2.1)

One can distinguish between atomic propositions and compound ones. There are two
“constant” atomic propositions, called > and ⊥ (or “true” and “false”). Constant in the
sense that their meaning is fixed, resp. will be fixed in the obvious manner, indicated by
the “names” of the symbols, as soon as we come to the semantics of formulas. Not fixed is
the interpretation of p, representing propositional variables.3 For propositional variable,
we use p1, p′, q . . . as typical elements.

Compound propositions are constructed using logical operators or connectives. We assume
that they are a familiar. They include binary connectives like conjunction and disjunction
∧ and ∨, negation ¬ as unary one, implication → as another one.

One could include more, like “exclusive or” ⊕ or equivalence or bi-implication↔, etc., but
we are here not overly obsessed here by fixing the exact selection of logical operators. The
grammar from equation (2.1) contains “. . . ”. One may also find presentations leaving out
syntax for operators that can be expressed by others, so that the syntax becomes minimal:
no operator can be removed without crippling the expressiveness of the logic. Out shown
syntax is not minimal. For example ∧ can be expressed using ¬ and ∧, and actually also
the atomic propositions > and ⊥ are not strictly needed and could be expressed likewise
by ¬ and ∧, for instance.

Especially in HW, for logical circuits, one may base the hardware one just one logical
operator, “NAND” (“NOR” works likewise). That has advantages for the manufacturing
process, and NAND can express all other operators, including the propositional constants
> and⊥. For the purpose, we consider that as minor details resp. we rely on that the reader
knows such basic things and can handle it. As long as we have prositional constants and

3One can stumble also over texts, where the p’s are called propositional constants, or also propositional
symbols. That’s just terminology and does not change a thing. Even if called propositional constants,
they are less constant than > and ⊥, insofar that the truth value of > and ⊥ is absolutely fixed,
whereas for the p’s, the truth-status needs to chosen. To call the p’s propositional constants can also
be justified, it’s not unreasonable, but as said, it’s just terminology and let’s not loose sleep over that.
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operators like the ones from equation (2.1) and their standard interpretation as semantics),
it’s propositional logic.

As common, at least in computer science, the syntax is given by a grammar. More precisely
here, the context-free grammar from equation (2.1) uses BNF-notation. It’s a common
compact and precise format to describe (abstract) syntax, basically syntax trees. The
word “abstract” refers to the fact that we are not really interested in details of actual
concrete syntax for text files used in a computer. There, more details would have to be
fixed to lay down a presise computer-parseable format. Also things like associativity of the
operators and their relative precedences and other specifics would have to be clarified.

But that is “noise” for the purpose of a written text and human communication. A
context-free grammar is precise, if understood as describing trees, and following standard
convention we allow parentheses to disambiguate formulas if necessary or helpful. That
allows to write p1 ∧ (p2 ∨ p3), even if parentheses are not mentioned in the grammar.
Also we sometimes rely on a common understanding of precedences, for instance writing
p1 ∧ p2 ∨ p3 instead of (p1 ∧ p2)∨ p3, relying on the convention that ∧ binds stronger than
∨. We are not overly obsessed with syntactic details, we treat logic formal and precise but
not formalistic. Tools like theorem provers or model-checkers would rely on more explicit
conventions and concrete syntax.

2.2.3 Semantics: the meaning of propositions

So far we have fixed only the notation of formulas, their syntax. If one has been in contact
with some form of formal logics at all, one will probably have an grip on what propositions
are supposed to represent. Like that ∧ represents “and” and ∨ represents “or”. But it
may be less clear, especially when studying such things for the very first time, though
I assume that for participants of the course this is not the case. For example, in an
English sentence “do you want tea or coffee?”, the colloquial “or” is typically not meant
as the disjunctive operator of propositional logics, written ∨. That sentence is probably
meant as given a choice between tea or coffee but not both, and asking “do you want
either tea or else coffee?” sounds borderline impolite and “do you want tea xor coffee?”
incomprehensible. . .

At any rate, we are better off with fixing the meaning in some unambigous way. To ask
what a proposition means, is to ask “is it true or else false”? So ultimately, a proposition is
mapped to one of exactly two possible value, the two truth values or Boolean values. Let’s
use > for true and ⊥ for false, and call the two-valued Boolean domain by the notation
B = {>,⊥}. To rub it in: we use > and ⊥ as propositional constants in the syntax, and
the values > and ⊥ as ingredient of the semantics or meaning, and unsurpisingly, two
case of fixing the semantics of propositions is that > is interpreted as > and ⊥ as ⊥.
Actually it will be an inductive definition over the syntax of propositions, and the two
cases will be base cases in that inductive definition, dealing with two atomic propositions.
The definition for compound proposition will be done by, obviously, the inductive cases of
the definition.

Besides > and ⊥, there is one base case which we have not covered, namely how to
treat propositional variables p. Since we assume that there is a reservoir of propositional
variables P, one should more correctly say, there’s one base case per variable.
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Anyway, since propositions will generally contain propositional variables the truth status
of the whole proposition depends on which truth value are assumed or chosen for the
propositional variables.

Choosing those is a mapping or function from propositional variables to trues values. We
can call such a function a (propositional) variable assignment and let’s use the σ for those,
i.e. a variable assignment is of the following type:

σ : P → B . (2.2)

With that in place, we can finally define the semantics of a proposition, namely relative
to a propositional assignment. One typical notation for the semantic function are the
“semantic brackets” [[]]; the notation is also used for semantic functions in other context.
Anyway, given a variable assignment σ from P → B and a proposition ϕ from Φ, [[ϕ]]σ is a
boolean value from B. That makes here [[_]]_ a function of the following type (assuming,
for no particular reason, the variable assignment as the first argument):

[[_]]_ : (P → B)→ Φ→ B . (2.3)

When the semantic functions gives back the truth value >, i.e., if

[[ϕ]]σ = > , (2.4)

we say, proposition ϕ is true under the variable σ, or ϕ holds under said variable as-
signment. One hears also the formulation that the variable assignment σ satisfies ϕ.
Notationaly, the latter formulation would often rather written as

σ |= ϕ (2.5)

instead of the formulation from equation (2.4).

|= in the latter equation is the the (semantic) satisfaction relation, in this case the sati-
faction relation for propositional logic. Other logics have other semantic functions resp.
other satisfaction relation.

Both formulaic representations and wordings are, of course, completely equivalent, and
which to use is a matter of preference. We will use both, presumably.

Equation (2.5) as well as (2.4) cover the “positive” case: the formula or prosition is true,
it holds, the assignment satisfies the proposition etc. The negative case means [[ϕ]]σ = ⊥,
resp. σ 6|= ϕ.

That there is such a clear-cut split in satisfaction or else non-satisfaction, in a proposition
being true or else not, in which case the proposition is false, that is characteristic for classi-
cal propositional logic (or more generally also for first-order logic or classical higher-order
logics). We don’t cover non-classical propositional or first-order logics. The most famous
and important alternatives would be intuitionistic variants. One thing that changes for
instance for propositional logics is that is no longer the case that a proposition is false if
and only if it’s negation is true and vice versa. Classically, a proposition (given an choice
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for the propositional variables) is true or else false, there is no other thing beside true or
else false. In Latin, that principle is called “tertium non datur”, there is no third thing be-
sides true or false. For intuitionistic logics, that’s dropped, resp. is not the case. Without
going into details that complicates the way the semantics of propositions is given.

Indeed, for our classical propositional, we have not actually given the semantics. We have
just discussed different symbols that are typically used for it ([[_]]_ and |=) and we have
given types, in equation (2.3). We leave the exact definition as an easy exercise to the
reader. We have mentioned that it ultimately it’s an inductive (or “recursive”) definition
that needs to fix the base cases of the syntax from equation (2.1). The inductive cases
have to cover all the non-atomic logical connectors, defining the truth value of a compound
proposition in terms of the truth values of the sub-propositions. For example, ϕ1 ∧ ϕ2
is true of both ϕ1 and ϕ2 are true, and false otherwise. A definition like that would
correspond to a straightforward recursive procedure.

A compact way to show all the neccessary cases for all connective is to arrange them
in tabular form, a so-called truth table. We show the truth table for conjunction as one
example in Table 2.1.

∧
⊥ ⊥ ⊥
⊥ > ⊥
> ⊥ ⊥
> > >

.

Table 2.1: Truth table for conjuction

Conjuction is a binary connective, i.e., it has two “inputs”. The table contains this four
lines, covering the for combinatins of > and ⊥ for the pairs of input. The last columns
shows the output of the conjunction, thus fixing its semantics. As said, the remaining
constructors are left out here.

2.2.4 Proof theory

In the previous section we fixed the meaning of propositions by defining the semantic
function resp. defining σ |= ϕ. We called σ a variable assignment, associating truth values
to propositional variables. One could also call it a model and use for σ |= ϕ the words
“σ models ϕ” instead of “σ satisfies ϕ”. We will later encounter the notion of “model”
also for first-order logic (first-order model) and for other logics. There, not surprisingly,
the notion of model becomes more complex and interesting. For propositional logic, it
may sound a bit too extravagant to speak of a model of a proposition. But its correct
terminology.

We mention it, because it’s related to “model theory”. That’s dealing with questions
concerning the models for a logic. What are the models? If a formula has an infinite
model, is there also a finite one? And more questions like that. It’s likewise not a
coincidence that the word model is mentioned in model checking. Model checking is not
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about general questions like the ones mentioned, it’s more concretely about “given a model
on the one hand and a formula on the other, does the model satisfies the formula?”. For
propositional logic, to check

σ |=? ϕ (2.6)

is trivial and can be done efficiently; as indicated, the semantic function [[_]] is a recursive
procedure, so one just have to plug in the arguments, calculate [[ϕ]]σ and look at the
outcome. So model checking is a non-problem for propositional logic and actually, the
more general question of what can be said about models in general (“model theory”) is
boring, as well. Model theory get’s more hairy for first-order logic or logics more expressive
than propositional logic, but we will not cover that. We will also don’t do model checking
for first-order logic, but later for modal logics.

In connection with propositional logic, another question is of relevance and is a challenge,
that’s the question if there exists a model or variable assignmnt that satisfies a proposition.
One could formulaically represent that as

? |= ϕ (2.7)

and that’s a question of satisfiability. For propositional logic, it’s the famous SAT prob-
lem and corresponding tools are sat-solvers or more generally constraint solvers. Pure
sat-solving means constraint solving for Boolean constraints (and Boolean constraint is
just another name for a proposition in propositional logic intended to be checked for
satisfiability).

Back to the real issue in the section, which is neither model theory nor model checking,
but proof theory. Proof theory is kind of like the opposite of model theory. Model theory is
about what can be said about the semantics (the models), proof theory is about what can
be proven in a logic in principle. That’s a theoretical question, a more more practical one
is how to prove things efficiently. So one may paraphrase that by saying that model theory
is concerned with when something is “true” and proof theory is about when something
“provable”. These questions of course hang together; the whole purpose of doing a proof
is to establish truth. Ideally, of course, all true things should be provably so, and likewise
all false things should be demonstrably false as well (refutable). In such a situations truth
and provability coincide. Howerer, that’s rarely the case. That has to do with liminations
of computability; performing a proof is ultimately a computation process and already for
first-order logic, one runs into undecidability.

Proof theory (same for model theory) is concerned withmeta theory, it’s about a given logic
and its proof procedures but it’s not formulated inside the logic at hand. For instance,
when doing a statement about what can be proven in propositional logic, that’s not a
propositional formula, it’s perhaps an English sentence, mentioning a particular proof
procedure, which likewise is not given as propositional formula. Propositional logic would
anyway be too weak to capture any of that.
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Let’s get more concrete: how to do proofs for propositional logic? The question is im-
presise, it depends on what one intends to prove. But ultimately all plausible things one
could be interested in are decidable.

As mentioned, the “model checking” question from equation (2.6) is efficiently decidable
(and uninteresting). Finding a satifying variable assignment (equation (2.7)) is likewise
decidable. We simply have to choose > and ⊥ for all propositional variables inside the
given proposition and check the result. If we find a satisfying σ, ϕ is satisfiably, and, after
checking all combinations, we have found not, it’s not satisfiable. It’s like making a giant
truth table. Since there are only finitely many relevant σ to check, since the proposition
contains only finitle many variables, SAT is decidable. The problem with that brute force
method is the combinatorial explosion of checking different combinations of truth values.
Unfortunately, theoretically speaking, from the perspective of complexity theory, we have
to live with that. There is not much one can do, Boolean satisfiability or SAT is known
to be NP-complete (actually, it’s the prototypical NP-complete problem. When claiming
that not much can be done, that’s from a theoretical point of view. Practically, many
things can be done and have been done to make SAT-solvers and other forms of constraint
solvers to tackle larger and larger problems.

Another thing one could be interested in is not satisfiability, but validity: is a proposition
true for all variable assignments. Such a valid propositional formula is also called a
propositional tautology. One can also solve that by checking out all possible variable
assignment σ for the involved propositional variables.

Just filling out a giant truth table in a brute force manner is a proof procedure, only not a
very elegant one. So, doing proofs for boolean satisfiabilty or validity can be done smarter,
looking for specific strategies, or finding “short-cuts”. What I mean by short-cut is pretty
common sense, like if on processes a conjunction ϕ1 ∧ ϕ2 and the evaluation strategy has
determined that ϕ1 is ⊥, then there is no purpose to find out all different evaluations for
ϕ2.

Working hard on evaluation strategies has led to different techniques and proof methods
(David-Putnam and variations, resolution and on and on) and while in general, SAT is
still NP-hard, such strategies (and smart data representations) have lead to quite powerful
SAT solvers or other boolean prover implementations.

To round off this section, let’s have a look at satisfiability and validity. Those two notions
in classical forms of logics, are two sides of a coin: a formula is valid iff its negation is
unsatisfiable. Formulated contra-positively, in terms of non-validity and satisfiability, it
means

6|= ϕ iff σ |= ¬ϕ for some σ

The model σ for the negation ¬ϕ, refuting validity of ϕ, is also called counter-example.
Model-checking is not doing satisfiability or validity, but we will encounter also there the
concept of counter-examples, which is analogous to the one discussed here. It’s a valuable
feature of a program verification method to be able to give back counter examples. The
information that a program does not satisfy its specification and requirements is not very
helpful. Such a failure needs to be accompagnied with information what and where the
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problem is, and that’s called the counter example. It’s a model or example that shows that
the negation of the property of interest is satified. Since model checking is not validity or
satisfiability checking, that idea needs some porting to work with, for instance, temporal
logic model checking, but the concept is similar.

2.3 Signatures, terms, and substitutions

As far as logics are concerned, we dealt so far, in Section 2 with a most simple form
of logic, classical propositional logic. It’s a bare form of logics, insofar it does not speak
about anything. It is a logic in most bare form, regulating truthness and falseness, without
referring to anything particular which is being true or false. So, in that sense, it is a very
sterile form of logic.

First-order logic, covered later in Section 2.4, allows to speak and reason about “things”. In
propositional logic, one could have a propositional variable even, but that’s just a name,
like p or q. Those propositional variables, which count among atomic propositions are
either true or false in classical propositional logic, but there is no “evenness” about the
variable or something that is being even or not. In first-order logic or other more expressive
logic, one could formulate things like even(x), where even now is called a predicate. First-
order logic is also called more explicitly first-order predicate logic. The predicate even is
still just a name and in that sense there is also no “evenness” about it as scuh, but now
it speaks about something (and one can try to axiomatize things about that name so that
it captures “evenness”). In even(x), x is meant as variable, plausible representing natural
numbers. And depending on which natural number x represents, the even-predicate is
intended to be true or false. When one intends to speak about numbers, one also need
syntax for that (not just variables). I.e., one would need syntax for natural number (like
0, 1, . . . ), and operations on them (like addition and multiplication two be able to write
expressions like 2× (x+ 1). In combination with the even-predicate, one would like that
even(1 + 1) evaluates to >, even(2 × 5 + 1) to ⊥, and the truth status of even(x + 1)
dependent on the choice of x.

Without further arrangements, as mentioned, there is no evenness about the even-predicate
even(x + 1), it’s a symbol, in the same way as the proposition called even would be in
propositional logics. The “arrangement” could be fixing the interpretation of even and of
+ etc. That would be a semantics, in a way a model-theoretic approach. Or one could
try to specify rules one wishes to hold for a predicate called even in combination with
other symbols for natural numbers, for instance stipulating as axiom ∀x.even(2 × x) or
∀x.even(x+ 1)→ odd(x) etc. That could provide an axiomatization. And then one could
ask; does the axiomatization, the proof-theoretic approach, capture exacly the standard
natural numbrs (the model-theoretic way). The answer would be no.

But this section is not about how to give meaning to the symbols (either by attaching a
model like the natural numbers, nor by trying to axiomatize it). That will be dealt with
in the subsequent Section 2.4 about first-order logic.

In this section we are concerned with the symbols themselves, the syntactic aspects of
first-order logic, bare any meaning. The domain specific concept of syntactical material
for first-order logic is called (first-order) signature. It consist of a choice of functional
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and relational symbols, each with a given arity (or more generally with given sorts). For
instance, when working with natural numbers, the symbol + represents a binary operation,
i.e., is of arity 2, and a relation or predicate like ≤ is likewise of arity 2.

2.3.1 Signatures

The signature is domain-specific, since first-order logic has also logical syntax, including
the operators from propositional logics like conjunction, negation, etc.

Definition 2.3.1 (Signature (single-sorted)). A signature Σ = (Σf ,Σrel , ar) con-
sists of two finite, disjoint sets of functional and relational symbols together with a
function ar : Σf + Σrel → N, fixing the arity for each symbol.

A signature with functional symbols only is called algebraic signature.

Abstractly, one could write Σf = {f (2)
1 , f

(0)
2 , g(1), . . .} and Σrel = {R(1)

1 , R
(2)
2 , Q(2), . . .},

indicating the arity as superscript.

In this lecture, we often leave the signature implicit or in English, and don’t operate with
Definition 2.3.1 in its full glory. For instance, when using natural numbers, we might use
(and have used) symbols like + and ≤, both of assumed arity 2, without writing ≤(2) or
+(2) or explicating ar as function.

Functional symbols of arity 0 are also called constant symbols. For the natural numbers
0 is an example of a constant symbol.

Relational symbols of arity 0 are like the propositional symbols in propositional logic
(we called them mostly propositional variables). Indeed, a degenerated signature with
no functional symbols and only 0-arity relational symbols corresponds to propositional
logic.

The concept of a signature from Definition 2.3.1 is a bit limited, at least in practice. An
arity of a symbol is the number of arguments the symbol takes. That implies that all
arguments are of the same type. A type in our context is commonly not called type, but
sort. Definition 2.3.1 assumes that there is only one sort (left implicit), and that’s why
it’s called a single-sorted signature. When working with such signatures, for instance in
connection with first-order logics, that’s too restrictive to be useful in many cases.

One wants the possibility to work and reason about different data structures at the same
time. That then leads to many-sorted signatures. If multi-sortedness is what’s needed in
practice, why does one bother with single-sorted signatures (and single-sorted first-order
logics) at all and why do many texts focus on the single-sorted case? Well, it’s mostly a
theoretician’s thing. When studying, say, first-order logics, like studying its proof theory or
model theory, basically all interesting, fundamental results work the same in both settings.
The many-sorted case only leads to a slightly notational overhead (“given sorts s1, s2, . . . sn
with n ≥ 1, blablabla”), which one is happy do do without when exploring properties of
the logics, working on the logic’s meta-theory, perhaps stating that the results carry over
straightforwardly to the many-sorted case.
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In practice, of course, specifying and verifying properties of a system or a program, one
wants to be able to work with natural numbers and lists and whatever is relevant in the
concrete setting.

So sorts are symbols representing different domain, like nat or bool or whatever we need.
We don’t use (for here) the notation N or B, since for now we stress that sorts like nat
and bool are syntax, symbols form the signature, whereas B and N are the semantics,
i.e., the boolean values resp. the natural numbers. The intention is of course that nat
is interpreted by the domain N etc., but associating meaning to syntax is the task of the
semantics.

One could then work with integers and integer list and use a symbols like cons in the
functional part of the signature with the type int × Listint → Listint. We don’t give
a many-sorted version of the concept of signature from Definition 2.3.1. We hope it’s
clear enough how it works and invoke the excuse for not doing it, namely everything “just
carries over”.

In a many-sorted setting we then have some form of type system. Actually, already in the
single-sorted case we have one. A term cons (0, 0) is equally ill-typed as is +0 in a single-
sorted setting, where + needs two arguments, not one. At any rate, even when working
with a large number of different sorts, the type discipline is fairly trivial. Therefore we
won’t bother to give a formal definition of well-sorted terms. We simply assume that we
only work with well-typed expressions. For a programming language, one does not waste
time to think what an ill-typed program means, one cannot run it anyway, and we won’t
waste time here to consider formulas of ill-sorted terms.

Many-sorted signatures have many sorts, like nat, or Listint. Why are those things
are not called types, but sorts? Well, here and there, one finds also the word type for
those. And for all intent and purposes, they are types. Still, more common is the sort-
terminology for algebraic and first-order signatures. Perhaps that has historical reasons.
It has also to do with the fact that, as far as type systems are concerned, the discipline is
very restricted. People dealing with type systems would laugh at it and feel ashamed (and
feel better when pointing out that it’s just a sort system, not a grown-up type system. . . ).
The restriction is that one has a number of sorts, which corresponds to atomic base types,
like the mentioned nat and Listint and the operators like cons: nat×Listint → Listint,
where nat×Listint → Listint can reasonably be called the type of cons. But for function
symbols of the signature, only types of the following form are allowed

s1 × . . . s2 → s

If we call that a type, theb si and s are not also types, but something else (namely sorts).
This restricting disallows for instance that cons is of type int→ (Listint → Listint). It
some sense, that type is equivalent to (int×Listint)→ Listint, but it’s simple not within
the framework of algebraic or first-order signature. Likewise on can not have a symbol
for a map-like function of type ((int → bool) × Listint) → Listbool). A map-function
is a higher-order function; it takes another function as argument. That’s not doable in
algebraic signature, and there are good reasons for that. Algebraic signatures are not just
play a role for first-order logics, but the field of (general) algebras uses them. And the core
theory and central results of (general) algebra simply rests on that syntactic restriction.
Without it’s no longer (general) algebra.
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For the lecture, we will look not too deep at first-order logic, but don’t explore “algebra”
(which can be seen as a quite restricted form of first-order logic with only a functional
signature and considering equations only. So it’s a form of equational logic and in that
sense, there is one and only one relational symbol, namely “=”, but since that’s fixed, one
does not bother to introduce a Σrel-signature just for that.

When pointing out that higher-order functions like map are not allowed in algebraic and
first-order signatures, we should avoid a misconception that could suggest itself at this
point. Namely that higher-order functions would be covered by higher-order logic, which
goes beyond first-order logic. That’s a misconception. Higher-or-not-order-ness of predi-
cate logic refers to about what can be quantified over. For instance, second-order predicate
logic is allowed to quantify over predicates, first-order logic cannot. Third order predicate
logic can quanify over predicates over predicates or sets of setc. etc. That’s not the same
as the question what the predicates ultimately speak over. In logics with algebraic signa-
tures of the form introduced here, predicates range over elements from the domains of the
given sort, and they don’t range over functions.

Of course there are logics that can deal with higher-order function and are higher-order
wrt. to the quantification over predicates. Often that are logics in connection with typed
λ-calculi and phrased often as (intuitinistic) dependent type theory. There are also quite a
number of theorem provers based on dependent type theories, like Isabelle/Hol, Coq, and
others. Anyway, higher-order aspects won’t be covered in our lecture, mostl probably.

2.3.2 Terms

Closely related to (algebraic) signatures is the notion of terms. That’s nothing else than
expressions formed with the syntactic material from a given signature, i.e., constructed
using the given function symbols. Additonally, one has variables available, i.e., a given
countably infinite setn X (and we assume typical elements like x, y′, . . . as variables). For
terms, the relational part of a first-order signature is not used, only the functional part
Σf (also called an algebraic signature).

Definition 2.3.2 (Terms (single-sorted)). Given an algebraic signature Σ and a
(countably infinite) set of variables X, then the set of terms over Σ and X, written
TΣ(X) is given by the following grammar.

t ::= x variable
| f(t1, . . . , tn) f of arity n

(2.8)

The set of ground terms over Σ is given as TΣ(∅) (also written as TΣ).

The terms from Definition 2.3.2 are single-sorted and based on the single-sorted version of
signatures from Definition 2.3.1. The definition requires that terms must be “well-typed”
or “well-sorted” in that a function symbol that expects a certain number of arguments
(as fixed by the signature in the form of the symbol’s arity) must be a applied on exactly
that number of arguments. The number n can be 0, in which case the function symbol is
also called a constant symbol. In the straightforward many-sorted generalizations, terms,
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by definition would likewise be required to respect the sorts. As mentioned earlier, the
multi-sorted setting is not really different, it does not pose fundamentally more complex
challenges (neither syntactically nor also what proof theory or models or other questions
are concerned).

As a simple example: with the standard interpretation in mind, a symbol zero would be
of arity 0, i.e., represents a constant, succ would be of arity 1 and plus of arity 2. For
clarity we used here (at least for a short while) typewriter font to refer to the symbols
of the signature, i.e., the syntax, to distinguish them from their semantic meaning. Often,
as in textbooks, one might relax that, and just + and 0 for the symbols as well.

In practical situations (i.e., tools), one could allow overloading, or other “type-related”
complications (sub-sorts, for example) for the sake of convenience. Also, in concrete syntax
supported by tools, there might be questions of associativity or precedence or whether one
uses infix or prefix notations. For us, we are more interested in other questions, and allow
ourselves notations like x plus y or x+ y instead and similar things, even if the grammar
seems to indicate that it should be plus x y. Basically, we understand the grammars as
abstract syntax (i.e., as describing trees) an assume that educated readers know what is
meant if we use more conventional concrete notations.

2.3.3 Substitutions, in particular term substitutions

A central notion in connection with terms is the concept of substitution. Actually, it’s
not just important for terms, but plays a role in many situations which involve syntactic
constructions containing variables. But let’s focus for now on terms.

To substitute means to replace something. Substitutions are meant to replace variables
occurring in a term by terms. At its core, a substitution is defined as mapping from
variables to terms, expressing said replacment.

Definition 2.3.3 (Term substitution (single-sorted)). Given terms TΣ(X) over a
signature Σ and using variables from X, a substitution θ is a mapping of type

X → TΣ(X) . (2.9)

In abuse of notation we use substitutions also on terms, i.e. as mapping of type
TΣ(X)→ TΣ(X).

We write θt or just θ(t) for applying the substitution θ in term t. In the literature, the
post-application notation like tθ is also very common. Note that Definition 2.3.3 does
not spell out how to lift the substitution function on variables from Equation (2.9) to
work on terms. In abuse of notation (as is common), given a mapping θ on variables,
we use the same symbol also for terms. In programming-language terms we make use of
overloading.

Substitution, especially in practice, are finite functions in that they replace only finitely
many variables. Terms contain finitely many variables, if any. So applying a subtitution
only affects the variable occuring in the terms under consideration, so from that point of
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view, there is no real use for substitutions affecting inititely variables. For notation for
finite substitution, we use [t/x] for replaceing x by t, or [t1, t2/x1, x2] for replacing x1 and
x2, etc. As an example, [1 + z/x]((x+ (y ∗ x))) gives (1 + z) + (y ∗ (1 + z)).

That’s enough for the moment concerning substitutions, it should be sufficiently clear
and/or sufficiently known. We have defined substitutions on terms. We will later use
substitution also on first-order formulas (actually, the concept of substitution makes sense
everywhere if one has “syntactic expression” with “variables”): formulas will contain,
besides logical constructs and relational symbols also variables and terms. The substitution
will work the same as here, with one technical thing to watch out for (which is not
covered right now): Later, variables can occur bound by quantifiers. That will have two
consequences: the substitution will apply only to not-bound occurrences of variables (also
called free occurrences). Secondly, one has to be careful: a naive replacement could suffer
from so-called variable-capture, which is to be avoided (but it’s easy enough anyway).

2.3.4 First-order signature (with relations)

So far we have focused on algebraic signatures, the part Σf of the signature from Definition
2.3.1 used for terms. In first-order logic, the signature, besides function symbols, contains
also relational symbols Σrel . Those are intended to be interpreted “logically”. For instance,
in a single -sorted case, if one plans to deal with natural numbers, one needs relational
symbols on natural numbers, like the binary relation leq (less-or-equal, representing ≤)
or the unary relation even. One can call those relations also predicates and they form
later then the atomic formulas of the first-order logic (also called (first-order) predicate
logic). When unspecific and talking generally, we use letters like P , Q′ etc. as typical
elements of Σrel . standard binary symbol: .= (equality)

Further side issues and remarks

Remark 2.3.4 (Sort for Booleans). The above presentation is for the single-sorted case
again. The multi-sorted one, as mentioned, does not make fundamental trouble.

In the hope of not being confusing, I would like to point out the following in that context. If
we assumed a many-sorted case (maybe again for illustration dealing with natural numbers
and a sort nat), one can of course add a second sort intended to represent the booleans,
let’s call it bool. Easy enough. Also one could then think of relations as boolean valued
function. I.e., instead of thinking of leq as relation-symbol, one could attempt to think
of it as a function symbol namely of sort nat × nat → bool. Nothing wrong with that,
but one has to be careful not confuse oneself. In that case, leq is a function symbol, and
leq(5,7) (or 5 leq 8) is a term of type bool, presumably interpreted same as term
true, but it’s not a predicate as far as the logic is concerned. One has chosen to use the
surrounding logic (FOL) to speak about a domain intended to represent booleans. One
can also add operator like and and or on the so-defined booleans, but those are internal
inside the formalization, they are not the logical operators ∧ and ∨ that part part of the
logic itself.
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Remark 2.3.5 (0-arity relation symbols). In principle, in the same way that one can have
0-arity function symbols (which are understood as constants), one can have 0-arity relation
symbols or predicates. When later, we attach meaning to the symbols, like attaching the
meaning ≤ to leq, then there are basically only two possible interpretations for 0-arity
relation symbols: either “to be the case” i.e., true or else not, i.e., false. And actually
there’s no need for 0-arity relations, one has fixed syntax for those to cases, namely “true”
and “false” or similar which are reserved words for the two only such trivial “relations”
and their interpretation is fixed as well (so there is no need to add more alternative such
symbols in the signature).

Anyway, that discussion shows how one can think of propositional logic as a special case
of first-order logic. However, in boolean logic we assume many propositional symbols,
which then are treated as propositional variables (with values true an false). In first order
logics, the relational symbols are not thought of as variables, but fixed by choosing an
interpretation, and the variable part are the variables inside the term as members of the
underlying domain (or domains in the multi-sorted case).4

Remark 2.3.6 (Equality). The equality symbol (we use .=) plays a special role (in general
in math, in logics, and also here). One could say (and some do) that the equality symbol
is one particular binary symbol. Being intended as equality, it may be captured by certain
laws or axioms, for instance, along the following lines: similar like requiring x leq x
and with the intention that leq represents ≤, this relation is reflexive, one could do the
same thing for equality, stating among other things x eq x with eq intended to represent
equality. Fair enough, but equality is so central that, no matter what one tries to capture
by a theory, equality is at least also part of the theory: if one cannot even state that two
things are equal (or not equal), one cannot express anything at all. Since one likes to
have equality anyway (and since it’s not even so easy/possible to axiomatise it in that
it’s really the identity and not just some equivalence), one simply says, a special binary
symbol is “reserved” for equality and not only that: it’s agreed upon that it’s interpreted
semantically as equality. In the same way that one always interprets the logical ∧ on
predicates as conjuction, one always interprets the .= as equality.

As a further side remark: the status of equality, identity, equivalence etc is challenging
from the standpoint of foundational logic or math. For us, those questions are not really
important. We typically are not even interested in alternative interpretations of other
stuff like plus. When “working with” logics using them for specifications, as opposed
to investigate meta-properties of a logic like its general expressivity, we just work in a
framework where the symbol plus is interpreted as +, end of story. Logicians may
ponder the question, whether first-order logic is expressive enough that one can write
axioms in such a way that the only possible interpretation of the symbols correspond to
the “real” natural numbers and plus thereby is really +. Can one get an axiomatization
that characterizes the natural numbers as the only model (the answer is: no) but we don’t
care much about questions like that.

4Strictly speaking, unless one has an empty signature, one one not even need true and false a pre-arranged
standard atomic proposition, as one could define the true case as x leq x ∨¬ x leq x (if one had
for example leq). Of course, no one wants to do like that (though for reasons of economy, some
representations only introduce maybe true, knowing that false can be represented by the negation,
same for omitting ∨ if one has ∧ and �).
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2.4 First-order logic

In this section, we briefly cover first-order logics. It’s not an in-depth discussion, since
the lecture is mostly concerned with other forms of logics, like temporal logic. Still, like
propositional logics, predicate logic is basic knowledge, so we at least cover a possible
syntax and discuss how that logic is interpreted, i.e., speak shortly about semantics and
a bit of proof theory, as well.

As said, we are mostly interested temporal logics or other logic. But that’s actually a
bit orthogonal. Temporal logic will have temporal connectives, but also standard, non-
temporal logical operators, like conjunction or implication. Taking propositional logic as
core, adding temporal or modal operators, leads to propositional temporal or modal logic,
but one can add such operators to first-order logic, as well . . . So it can’t hurt to have a
short look at or get a short reminder of first-order logics.

2.4.1 Syntax

Definition 2.4.1 (Formulas of first-order logics). Given a signature Σ, the formulas
of first-order logic are given by the following grammar.

ϕ ::= P (t, . . . , t) | > | ⊥ atomic formulas
| ϕ ∧ ϕ | ¬ϕ | ϕ→ ϕ | . . . formulas
| ∀x.ϕ | ∃x.ϕ

(2.10)

We use ϕ for formulas of first-order logic, the same symbol we used for the formulas of
propositional logic (aka propositions) from equation (2.1), and we also will use the same
symbol for formulas of later logics.

As before for propositional logic, we silently assume proper priorities and associativities
(for instance, ¬ binds by convention stronger than ∧, which in turn binds stronger than
∨ etc.) In case of need or convenience, we use parentheses for disambiguation.

The grammar, choice of symbols, and presentation (even terminology) exists in variations,
depending on the textbook. It’s often convenient to work with a sorted or typed variant,
using for example syntax like ∀x:Nat.ϕ, which does not change much from a logical point
of view.

The above definition, as we did in the propositional case, is a bit generous wrt. the offered
syntax. One can be more economic in that one restricts oneself to a minimal selection
of constructs (there are different possible choices for that). For instance, in the presence
of (classical) negation, one does not need both ∧ and ∨ (and also → can be defined as
syntactic sugar). Likewise, one would need only one of the two quantification operators,
not both. Of course, in the presence of negation, > can be defined using ⊥, and vice
versa. In the case of the boolean constants > and ⊥, one could even go a step further and
define them as P ∨¬P and P ∧¬P (but actually it seems less forced to have at least one
as native construct). One could also explain > and ⊥ as propositions or relations with
arity 0 and a fixed interpretation. All such representations can be found here and there,
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but they are inessential for the nature of first-order logic and as a master-level course we
are not loosing sleep over representational questions like that. Of course, if one had to
interact with a tool that supports, for instance first-order logics or a fragment or extension
thereof, (like a theorem prover or constraint solver) or if one wanted to implement such a
tool oneself, syntactial questions would of course matter and one would have to adhere to
stricter standards of that particular tool.

2.4.2 Semantics: the meaning of first-order logic formulas (semantics,
interpretation, models . . . ).

After fixing the syntax, we have to address what formulas mean. It’s analogous to what we
did for propositional logic (and later for other logics). Conceptually, the way the semantics
is defined is analogous to the situation for propositional logics. The syntax is given by a
grammar, and the semantics is a mapping of syntax trees to a semantical “domain”. In the
propositional setting, the mapping was given by assigning truth values to the propositional
syntax, and that mapping was lifted to propositions.

For first-order logics, the situation gets a bit more involved. There are two syntactic levels.
There is the level of functional and relational symbols, with which one can form terms
over a given signature and relations between terms or predicates on terms.

Besides that level, there’s the logical level, which needs to be interpreted as well. Most of
that part is the same as for the propositional level (for instance, the symbol ∧ is conjuction,
as before etc.) The quantifiers are new of course, compared to propositional logics.

In the following we assume a given signature Σ, and we focus on the single-sorted case,
with the excuse that, as mentioned, it does not make a difference, in theory. A first-order
structure, in the single-sorted case, is simply some set of elements together with functions
and relations on it.

For illustration, let’s take the familiar natural numbers N. The set N in itself does not
qualify as structure, for that, one needs additional constants, functions, and predicates
or relations on that set or domain of the structure. A typical selection could be the
following:

(N; 0, λx.x+ 1,+,×,≤,≥) (2.11)

Here, the domain N is equipped with 4 functions (one of which is 0, which is of zero arity
and this called usually a constant rather than function) and two binary relations ≤ and
≥. Never mind the λ-notation, it’s just meant as a function that takes one argument from
the domain and returns its successor.

Structures like that can be used to give meaning to first-order signatures. That’s done by
associating to each function symbol of a given arity a mathematical function of the same
arity, and analogously, for each relational symbol or predicate symbol of a given arity. a
matheamtical relation of fitting arity. The association is a mapping for which we use I,
the interpretation function or interpretation for short, and a model is the pair consisisting
of a domain A together with the interpretation function (and implicitly the signature,
assumed given).
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Definition 2.4.2 (First-order Σ-structure). Assume a first-order signature Σ. A
first-order structure M for Σ is a tuple

M = (A, I) (2.12)

where A is a set (the domain) and I (the interpretation), maps functional symbols
function f such that I(f) : An → A for each f ∈ Σ(n)

f and relational symbols P
such that I(P ) ⊆ An (for each P ∈ Σ(n)

rel ).

Instead of I(f) and I(P ), we mostly write [[f ]]I and [[P ]]I or f I and P I . Another name for
Σ-structure is Σ-model. As a side remark: The special case of first-order signatures con-
taining no relational symbols, but only function symbols is also called algebraic signature
(see Definition 2.3.1). In line with that, the corresponding structures (without relations5

or predicates) are called Σ-algebras.

As before, we introduce the concept for a single-sorted signature and consequently, the
Σ-structure has one single domain. The many-sorted case is the obvious generalization.
In particular, the interpretation function is required in that case not respect the sorts of
the symbols (not just their arity).

Definition 2.4.2 makes as strict separation between syntax on the one hand, and the
mathematical structure or model on the other. So, for the illustrative example of natural
numbers from equation (2.11), which is the semantical level, one has also a syntactical
layer, the signature. So, to make the split more visible, would could write the coresponding
signature Σ with one sort say Nat and function symbols zero, succ, plus and times
and relational symbols leq and geq. So, the times is meant as symbol, and × as the
well-know mathematical function of multiplication. The interpretation function would fix
[[times]]I = ×, or [[leq]]I = ≤ for one of the relations.

One could also alternatively fix [[times]]I′ = +, or [[leq]]I′ = ≥. Sortwise or typewise, that
would be just fine, but of course it would be a non-recommended interpretation of symbols
like times and leq.

For most people including mathematicians (excepts perhaps logicians doing model theory
or semanticists) all of that is a bit schizophrenic or over-the-top hair-splitting. Interpreting
the symbol times by ×, ok, but isn’t × also a symbol? Sure, in a way yes, still talking
about models, interpetations, semantics, etc. there is this split, one symbol (say times)
is is meant as syntax, and associated with that is a mathematical function (but one needs
to say which function it is, or define it, and in this case one could use the symbol + and
appeals to the knowledge of the reader to have an understanding what + does, or defining
it perhaps semantically, maybe using induction, if one feels the need).

As said, for most it’s a bit over the top, and would be content with just working with a
structure as in equation (2.11), not bothering to make the split in the two levels explicit.

That may sound nitpicking, but probably it’s due to the fact that when dealing with
“foundational” questions like model theory, etc. one should be clear what a model actu-
ally is (at least at the beginning). But also practically, one should not forget that the

5Except equality.
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illustration here, the natural numbers, may be deceivingly simple. If one deals with more
mundane stuff, like capturing real world things as for instance is done in ontologies, there
may be hundreds or thousands of symbols, predicates, functions etc. and one should be
clear about what means what. Ontologies are related to “semantics techniques” that try
to capture and describe things and then query about it (which basically means, asking
questions and draw conclusions from the “data base” of collected knowledge) and the
underlying language is often (some fragment of) first-order logic.

Giving meaning to variables

After having introduced the notion of Σ-structure, giving an interpretation for the syn-
tactic material of a first-order signature, are we now ready to fix the semantics of first
order formulas? Formulas contain of course also logic connectives like ∧ or ¬, but that will
work analogously to the propositional case. One piece missing is that we have to deal with
variables. Formulas can contain occurrences of (free) variables, i.e., variables which are
not in the scope of a quantifier. The logical status of such an open formula obviously may
depend on which values are chosen for the free variables For example, assume an atomic
formula like (x minus one) geq zero and assume the obvious interpretation of the involved
symbols on the domain of natural numbers, i.e., the formula represents (x − 1) ≥ 0. For
values of x larger or equal 1, that represents a truth about natural numbers, but for a
value of 0 for x, it’s false. That should be clear enough, so let’s nail it down. Let’s call a
mapping that assigns values to variables plausibly a variable assignment.

Definition 2.4.3 (Variable assignment). A variable assignment for variables from
X and a domain A is a mapping σ of the following type:

σ : X → A (2.13)

In Section 2.2, we introduced already variable assignments, there for propositional logics,
see equation (2.2). We also used the same symbol for it and conceptually, it’s similar, any-
way: giving values to variables. In the context of propositional logics, it was propositional
variables, here its variables representing values from a semantic domain of values. Note
that what what we called propositional variables p . . . in propositional logic correspond
in first-order logics to relational symbol or predicate symbols of arity 0. If one has such
0-arity symbols in the signature, they are not considered variables and they are given
their meaning by the interpretation, either as > or ⊥. That actually means there is no
much need for such “constant” predicate symbols or proposition symbols, two are enugh,
one interpreted as > and one as ⊥ (and even those could be defined, for example the one
representing false-hood as negation of the one representing truth-ness and truthness as
ϕ ∨ ¬ϕ, choosing some arbitrary formula ϕ. Our syntax from Definition 2.3.3 provided
two keywords > and ⊥ (which are like 0-arity predicates) whose interpretation will be
fixed to the obvious truth values > and ⊥ accordingly.

A variable assignment is sometimes also called valuation or also state. The latter namely
is not so much used when dealing with (first-order) logics as such, but when using such
a logic for program verification. There, some variables play the dual role. The program
being verified containts typical program variables. Th logic speaks about the program,
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using perhaps first-order logic or a fragment thereof. For instance, first-order formulas
could express at a point in a program expectations about the values of some program
variables, like asserting that, at that point, a particular variable is non-negative. This
would be an example of a assertion. Many languages, for instance Java, offer assertions of
that form (but not quantifications, that would be too expressive for the intended purposes
of run-time assertions). Properties of program variables are captured by free variables
in formulas. In a logical setting, values of variables are fixed by variable assignments
or valuation, when speaking about variables in a program, we think of that assignment
as the current state of the program. In imperative programs, a stretch of code can of
course change the values of variables by assignments, i.e., there will be state changes, so
the assertion before a stretch of code will be different from the assertion afterwards. The
assertion before is typically called pre-condition and the assertion afterwards the post-
condition of that code piece (but of course the post-condition of a particular piece of code
is the pre-condition for what follows, if anything).

Be it as it may, the discussion just explains that mappings of the form from equation (2.13)
are also known as state in particular in the context of verification of imperative programs
which deal with states and state changes. Logics like first-order logics in isolation are
typically seen as declarative, not dealing with variable changes; thus the terminology talks
about valuations rather than states (though it’s the same thing). Later we will talk about
modal and temporal logics, those are logics which (rather generally speaking) reason about
changes, for instance changes over “time” during an execution of a system.

Now we have fixed the interpretation of function symbols and know how to assign values
to variable. So everything is in place to give meaning to terms containing variables. Given
an interpretation for, it’s done by straightforwardly lifting σ to terms for which we write

[[t]]Iσ

Even if straighforward, for completeness sake, here is the definition by induction on the
structure of terms:

Definition 2.4.4 (Interpretation of terms). Given a signature Σ and a correspond-
ing model M = (A, I), the value of term t from TΣ(X), with variable assignment
σ : X → A written [[t]]Iσ) is given inductively as follow:

[[x]]Iσ = σ(x)
[[f(t1, . . . , tn)]]Iσ = [[f ]]I([[t1]]Iσ, . . . , [[tn]]Iσ) .

(2.14)

Variables are given their meaning by σ, function symbols are given their meaning by I (in
the equation we write [[f ]]I) and the rest is straightforward induction.

Before we tackle also the semantics of formulas, we have get one aspect concerning variables
out of the way. It has to do with the quantifiers in the formulas. The quantifiers ∀ and
∃ range over variables and bind them. For instance, (free) occurrences of x in ϕ or bound
by the quantification in ∀x.ϕ, so no longer free. The quantification introduces a scope for
the bound variable, the variable can be seen as “local” to that scope.
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Note that it’s possible that a variable is at the same time free in some part of a formula
and bound in another part, like variable x in (∃x.x = y + 15) ∧ y = 2 × z. Thus one
speaks not just about free or bound variables, but more precisely of variable occurrences:
x occurs bound in the left part of the conjunction and occurs free in the right-hand part.
The other variables y and z occur free, only.

In the presence of variable binders, the notion of substitution needs some adaptation
resp. some words of caution. Definition 2.3.3 defined substitution for terms over an alge-
braic signature. That implied there had been no quantifiers around, and everything was
straightforward. Now, we want to make use of substitutions also for formulas. Substi-
tutions are, as before, (see equation (2.9)). . . [careful with substitution, other binding,
scoping mechanisms]

. . .

ϕ = ∃x.x+ 1 .= y θ = [x/y] (2.15)

The satisfaction relation

Without further ado, we can now fix the meaning of first-order formulas. As mentioned in
connection with propositional logics, one can do that in the form of a semantic function
[[_]] (like we did for terms as part, which are part of formulas)) or with a satisfaction
relation |= (see equation (2.16). One finds both notations, it’s a matter of taste, and we
will use both.

The semantics combines the interpretation of functional symbols, variables and relational
symbol with that of the logical connectives, the latter defined analogously to what’s been
done for propositional case (except for the quantifiers, which are new, of course).

Given a signature Σ as fixed, one says that variable assignment σ makes a formula ϕ true
in a model M , or ϕ holds in a model M and under an assignment σ, or M and σ satisfy
ϕ, or similar. Notationally written as

M,σ |= ϕ or σ |=M ϕ . (2.16)

Alternatively, as said, on can base the definition on a functional formulation, for instance
writing [[ϕ]]Iσ for the truth value of ϕ in a given model M and under a variable assignment
σ.
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Definition 2.4.5 (Satisfaction relation).

M,σ |= >
M,σ 6|= ⊥
M,σ |= P (t1, . . . , tn) iff P I([[t1]]Iσ, . . . , [[tn]]Iσ)
M,σ |= ¬ϕ iff M,σ 6|= ϕ
M,σ |= ϕ1 ∧ ϕ2 iff M,σ |= ϕ1 and M,σ |= ϕ2
M,σ |= ϕ1 ∨ ϕ2 iff M,σ |= ϕ1 or M,σ |= ϕ2
M,σ |= ϕ1 → ϕ2 iff M,σ 6|= ϕ1 and M,σ |= ϕ2
M,σ |= ∀x.ϕ iff M,σ′ |= ϕ for all x-variants σ′ of σ
M, σ |= ∃x.ϕ iff M,σ′ |= ϕ for some x-variants σ′ of σ

(2.17)

Side remark 2.4.6 (Terminology). In seldom cases, some books call the pair of (M,σ) a
model (and the part M then called interpretation or something else). It is a terminology
question (thus not so important), but it may lead to different views, for instance what
“semantical implication” means. The standard default answer what that means is the
following (also indepdendent form the logic). A formula ϕ1 implies semantically a for-
mula ϕ2, if all models of ϕ1 are also models of formula ϕ2 (the satisfaction of ϕ1 implies
satisfaction of ϕ2).

Now it depends in if one applies the word “model” to M or to the pair M,σ). That
leads to different notions of semantical implications, at least if one had formulas with free
variables. For closed formulas, it does not matter, so some books avoid those finer points
but just defining semantical implication on closed formulas.

Proof theory

We have fixed the semantics or model and interpretation of first-order logic formulas, we
have defined validity and satisfiability. What is missing is how to prove that a formula
or sentence is valid or satisfiable. Notions like truth and satifaction etc. are defined
in reference to an external mathematical “reality”, e.g., in reference to a Σ-structure.
That’s all very standard, though the sceptics may ask about what kind of reality are we
talking about, like how real are, for instance, the natural numbers or other structures, are
they somehow more fundamental than first-order or other logics that justifies that we use
mathematical structures to give meaning to logical formulas? Shouldn’t logics rather be
the foundation of mathematics?

We don’t loose sleep over such philosophical questions. But it’s a concern, of course,
having clarified validity and satisfaction etc., how to establish it as a fact or disprove it.
So it’s a question of mechanical procedure or algorithmic approach to prove or disprove
valid formulas or derive logical consequences from a given set of sentences. That’s what
proof theory is concerned with.

Using the semantic definition of validity directly, one would have to check for all models
that each of them make the formula true. There are infinitely many models and one cannot
check them all. If one is after satifiabilty, not validity, one could try one model after the
other to find one that satisfies the formula. That likewise would be hopelessly unpractical.
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There are not only infinitely many models, the models themselves may be infinite, so even
after having decided on a model, checking if a formula holds in the model or not may not
be possible.

All that attempts would not qualify as proof theory anyway. We are interested how to
establish the “truth-ness” of a formula or refute it. Model theory asks, is this formula
“true” or valid, proof-theory asks is a formula provable. More generally, it’s about how
to devise proof systems for that task, and asking about limits of what can be proven in a
given logic. Implementations of such calculi are called theorem provers. That’s because a
formula derivable or inferrable in a proof systems are also called a theorem of the calculus.
There are also proof systems trying to establish if a formula is satisfiability, corresponding
implementation are rather called satisfiability checkers or constraint solvers.

Above we mentioned limits of what can be proven. It’s a well-known fact, that validity
of first-order logic is undecidable. Which means there cannot be an algorithm or a proof
system that can be used to decide that. For first-order logic, the best we can hope for is a
system that is able to derive as theorems all valid formulas, and non-valid formulas cannot
be derived as theorem. Isn’t that deciding validity? No, of course not, because when a
formula is not valid, non-derivability can mean that inference process does not terminate,
so one never knows. Soundness and completeness is as good as it gets for first-order logics,
but the logic is undecidable. Actually, it does not take much to obtain logics where also
completeness is out of the window,6 for instance second-order logics or doing first-order
logics and fixing the model to be the natural numbers with the usual operations.

Since we are not too deeply interested in first-order logic in this lecture and also not so
much in validity and theoremhood, but rather in model checking, we don’t dig deeper
here. We just say a few gegeral words about the shape of proof systems.

Proof systems There are many flavors of proof systems for first-order logic. We don’t
explore them or their differences. We just mention some aspects largely common to such
systems, also for different logics.

Let’s focus on validity, i.e., a system to derive only (and perhaps all) valid formulas. There
are also refutation systems, basically focusing on the dual question of (non-)satisfiabilty.
They are also of practical relevance, but as said, let’s focus just one flavor, validity.

The purpose of such a proof system is to allow to derive all valid formulas. Those are
infinitely many, so one cannot just list them all, of course. So, it’s a (specification of)
a way to derive or infer them. Often, the proof system is given in a non-deterministic
way, leaving out which derivation steps are supposed to be explored first. Of course in an
implementation, derivation strategies need to be fixed, and heuristics of how concretely
make use of the proof system in terms of strategy or scheduling is very important. For
the specification of a proof system, it is often simpler to leave out, at least to some extent,
such questions that have to do with efficience, and focus of whether the system is sound
and complete (if possible).

6Of course if one does not care about soundness, then completeness is obtainable, though that’s a non-
option typically.
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The way that such inference systems are arranged, very generally, is that there is a pool
of a priori given formulas together with a way to generate or derive new formulas from
those and those already derivered previousy. The given formulas are often called axioms
and the generation process is specified by derivation rules.

To use a standard notation, a rule looks as follows

ϕ1 . . . ϕn

ψ
(2.18)

Often rules are of more refined shape, involving side condictions, or more information than
just formulas, but anyway.

The formulas ϕ1, . . . , ϕn on top of the rule are called the premises and the one ψ below
the conclusion of the rule. The rule is intended to express that if all of the premises
have been established, either by virtue of being an axiom or having been derived earler
in the process, the the conclusion ψ can be added as (another) theorem to the derived
formulas.

If the axioms are semantically valid, and if the rules like the one shown allow only to
generate valid formulas when using prior valid formulas in a derivation step, then obviously
all derivable formulas are valid. In other words, one has a sound derivation system for
the given logic. Typically, that’s easy to achieve and easy to see. Completeness is quite
a different story, that no valid formula is missed in the genration process.

The derivation of new formulas from old ones can be seen as a sequence, adding new
formulas to older ones. Alternatively, in many presentations, it’s rather a tree. Be that
as it may, the derivation is also called a proof of the “last” formula at the end. Since
the rule system does typically not specify which rules to apply when, proving a formula
corresponds to proof search, and the choice of search strategy has a huge impact in the
efficiency of a implementation of a proof system.

The way the story here is presented, deriving valid formulas is a process that generates
valid formulas from axioms using rules. Also that is not the way that proving works. In
practical verification tasks, one has most probably a property in mind one is instereted in
to establish or check if it holds. In other words, simply generating valid formulas one after
other so see if the one interesting one shows up in the process is not a useful strategy. So
the derivation rules in a search are better seen backwards. A conclusion of the rule is the
goal one tries to establish and the hypotheses of a rule are the subgoals.

Given a proof system one writes ` ϕ, of the formula ϕ can be derived in the system. One
also says synonymously, ϕ is a theorem of the given derivation system. One writes 6` ϕ if
that’s not the case. Those are proof theoretic statements about the formula and the proof
system. There model theoretic counterparts are |= ϕ and 6|= ϕ: the formula is valid resp.
is not valid. A theory is a set of formulas, and one can also there distinguish between a
proof theoretic theory: all the formulas such that ` ϕ in a given derivation system. Or
the semantic or model theoretic theory, all valid formulas |= ϕ.
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Ideally, one has a sound and complete proof systems for the models one wants to cover.
In this case, semantical concepts like validity or truth coincide with the proof theoretic
ones like derivability or theoremhood. In notation

|= ϕ iff ` ϕ

Often, one is also interested not just in validity, but in “consequences”. Like Γ |= ϕ
meaning that ϕ is a semantical consequence of the set of formulas Γ. It’s a consequence
in that every model of (all the formulas of) Γ is also a model of ϕ. Proof-theoretically one
would write Γ ` ϕ. That’s meant to represent: In the given proof system, ϕ can be derived
using the given axiom plus the formulas from Γ (as so to say additional axioms). Again,
in a favorable situation with soundness and completeness, one has Γ |= ϕ iff Γ ` ϕ.

In some way, implication→ represents a form of conseqence (as do inference rules): some-
thing follows from or is implied by something else. Thus Γ |= ϕ may seem the same
|= ∧ Γ→ ϕ: the conjunction of all formulas in Γ implies ϕ. For some logics, that’s indeed
the case, but one has to be careful, depending on the logic, and the exact interpretation
of what |= actually is supposed to mean. For instance, in first order logics when having
formulas containting free variable. At any rate, that’s fineprint for our interest and we
don’t dig deeper.

A proof system for propositional logic As said, we don’t venture into introducing, com-
paring, and investigating different proof systems. But let’s have at least one or two simple
examples for concreteness sake. We don’t show a proof system for first-order logic, to keep
it really simple, we focus on propositional logic. A first-order logic system could contain
the propositional rules as shown, but would need more to deal with quantification.

Ax1
ϕ→ (ψ → ϕ)

Ax2
(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

DN
((ϕ→ ⊥)→ ⊥)→ ϕ

ϕ ϕ→ ψ
MP

ψ

Table 2.2: Axioms and rules for a fragment of propositional logic

The system has three axioms and one inference rule. The name DN of the third axiom
stands for double negation. The reason for that is, that negation can be defined or explained
in terms of ⊥ and implication by having ¬ϕ defined as

ϕ→ ⊥ .
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Actually, we were a bit sloppy when saying there are three axioms. We should more
correctly say, that there are 3 axiom schemas. What that means is that each axiom
scheme represents infinitely many concrete axioms as instantiation. The “formulas” ϕ, ψ,
and χ mentioned in the rule system are meta-variables representing formulas, but are not
formulas themselves, strictly speaking.

The rule system from Table 2.2 is in a form called Hilbert style. Hilbert systems are an
early and influential form of proof systems. It’s however mostly of historical interest, as
there are better ways to automate reasoning. What exactly is a good design depends also
on what one wants to achieve (and for what kind of domain), for instance whether it’s for
interactive theorem proving or fully automated deduction. Hilbert-style systems are not
good for much practical things. . .

To get at least a taste of the proof system (and a taste why it’s clumsy), let’s look at a
very small example, deriving a rather trivial property.

Example 2.4.7. The following derivation establishes ` ϕ→ ϕ.

(ϕ→ ((ϕ→ ϕ)→ ϕ))→
((ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ)) Ax2 (2.19)

ϕ→ ((ϕ→ ϕ)→ ϕ) Ax1 (2.20)
(ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ) MP on (2.19) and (2.20) (2.21)
ϕ→ (ϕ→ ϕ) Ax1 (2.22)
ϕ→ ϕ MP on (2.21) and (2.22) (2.23)

The example also illustrates the concept of axiom schemas. The axioms from the derivation
rules are not used “as-is” but they are instantiated. For instance, in the first two lines,
it’s a rather complicated specific case of the second axiom. It’s problematic, since if we we
proceed line by line, generating new theorems from previous until we get what we want,
how are we supposed to come up with the specific instances of the axioms that ultimately
lead to success? And that’s just one aspect why Hilbert systems are no practically useful
representation. Another one is that it seems weird that in order to prove something
pretty obvious like ϕ → ϕ one is forced to use some ridicously convoluted formula like
(ϕ → ((ϕ → ϕ) → ϕ)) → ((ϕ → (ϕ → ϕ)) → (ϕ → ϕ)) as part of the argument. That’s
not how it should be.

Natural deduction style proof systems Better alternatives are known as sequent calculi
or systems of natural deduction. All those systems are about deriving valid formulas.
There are also so-called refutation systems, on the other hand, which do something else,
namely they try to refute a formula by checking if it’s negation is satisfiable, among them
various resolution methods and tableaux method.

We don’t look here into those refutation alternatives, but we at least mention in which
way sequent calculi and natural deduction systems differ from the Hilbert formulation.
At at very high level, also sequent calculi and natural deduction systems are of the form
described, there is a pool of axioms (resp. axioms schemas) and there are derivation rules.
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The systems typically work with derivation trees as proofs, not with sequences of formulas,
but that’s more a presentational issue. One can easily use a tree like presentation for proofs
in the Hilbert rules of Table 2.2: the axioms are at the leaves and the inner nodes are
instances of the modus ponens rule MP. Maybe also for historical reasons, Hilbert-style
proofs are mostly presented as sequences, not as trees, but that’s not the real difference.

Hilbert-style formulations were “criticized” as unnatural, in that it was perceived that
using those axioms and rules does not really reflect in a natural way, that logical arguments
are done.

The above derivation in Example 2.4.7 should have given a feeling of that. The proof
was pretty convoluted, in particular given the fact that this is really the most trivial valid
thing that can be said about →, and implication somehow lies the heart of logics. Logics
is not just about describing things with formulas, it’s about drawing conclusions, figuring
out consequences from facts (as for instance in automated reasoning). Now that a formula
ϕ is implied by itself seems the single most obvious thing about implication and it does not
feel right that it requires so many steps to derive.

One could say, why not add that as axiom to the other ones if it’s so central? One could of
course do so. Of course then one has more axioms than one needs since, as the derivation
shows, the “self-implication” formula can be derived.

Trying to get an axiomatization with ϕ→ ϕ as additional axiom would also miss the point.
The problem is not that it’s hard to derive the particular case where ϕ is implied by ϕ as
the most immediate consequence. One needs generally a better way to draw conclusions.

Gentzen in particular suggested that a more natural way to arrange logical arguments is
reasoning from hypotheses. Like:

Assuming ϕ as hypothesis, it follows that ϕ holds.

One could write ϕ B ϕ for that and use that as axiom. An as a rule one could use

ϕ1 B ϕ2
→I

B ϕ1 → ϕ2
(2.24)

Also that expresses a simple fact about →. If one assumes ϕ1 as hypothesis and that
allows to prove ϕ2, as stipulated in the premise of the rule, then surely one can derive the
implication ϕ1 → ϕ2 in the conclusion, and that implication is derived without assuming
ϕ1 as hypothesis on the left of B (the hypothesis has been discharged in the derivation
step).

Such kind of argumentation working with hypotheses is characteristic for natural deduction
system and sequent calculi. Another general distinguishing feature of such systems, in
comparison to Hilbert’s formulation is that they have more rules and less axioms.

In the discussion here, we focus on one connective, namely →. Of course, there may
be more built into the logics (as opposed to be explained as macros of others), like ∧,
¬ etc. All of them need to be covered by a proof system. Hilbert’s standpoint would
be: there is exactly one derivation rule, namely modus ponens and that’s it. At least
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Γ B ϕ1 Γ B ϕ2 ∧-I
Γ B ϕ1 ∧ ϕ2

Γ B ϕ1 ∧ ϕ2 ∧-E1
Γ B ϕ1

Γ B ϕ1 ∧ ϕ2 ∧-E2
Γ B ϕ2

Table 2.3: Introduction and elimination rules for conjunction

in propositional logic, in first-order logic one would add also some rule(s) dealing with
quantification. Anyway, all the propositional connectives are covered by an approriate
selection of axioms, and propositional deriviation relies solely on applying modus ponens
as the one and only rule.

Natural deduction, in contrast, would cover each logical connective with a few rules,
characteristic for the connective. One particular connective, say ∧ is characterised by
so-called introduction and elimination rules. The terminology is easily explained. An
intruduction rule, for instance for ∧ is a rule, where the premises don’t mention ∧, but
the conclusion does, so applying the rule introduces that construct. An elimination rule
does the converse. At least one premise mentions ∧, but the conclusion does not.

Let’s have a look then at the rules for conjunction for illustration. Before doing that, and
looking back at equation (2.24) for implication, we realize the the format of the rules of
the derivation system gets more complex compared to the ones we started out with in
equation (2.18). The the premises and the conclusions don’t just consist of formulas. In
the example from equation (2.24), the only premise is of the form ϕ1 B ϕ2. That’s slightly
simplified, insofar that left of the symbol B, in general there is a set of formulas, not just
one as in the discussion from above. So-called sequent calculi often also work with sets
of formulas on the right of B. Let’s stick however, to a formulation with one formula on
the right. Thus, the rules operate with pairs of the form Γ B ϕ, with Γ a set of formulas,
the hypotheses. Such a judgement or sequent is intended to capture that, assuming all
formulas from Γ, ϕ holds.

Concerning concretely the rules for ∧, see Table 2.3. For ∧, there is one introduction
rule and two elimnation rules. It’s characteristic for so called natural deduction system,
that each connective of the syntax is covered by appropriate introduction and elimination
rules. The so-called sequent calculi work similar, however focusing on elimination rules.
As mentioned, the pair Γ B ϕ is often called a sequent. Still, the rules from Table 2.3 are
natural deduction rules, namely that of a natural deduction system in sequent formulation,
as it’s called.

A Hilbert style system would capture ∧ not by rules, but by axioms like the ones from
Table 2.3.

ϕ1 → ϕ2 → (ϕ1 ∧ ϕ2) ∧-I ϕ1 ∧ ϕ2 → ϕ1 ∧-E1 ϕ1 ∧ ϕ2 → ϕ2 ∧-E2

Table 2.4: Axioms for conjunction
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We have said, natural deduction systems work with introduction and elimination rules.
That also applies to implication →. The rule modus ponens MP 2.2 is nothing else than
the elimination rule for →. For completeness sake, Table 2.5 shows the corresponding
rules.

Γ, ϕ1 B ϕ2 →-I
Γ B ϕ1 → ϕ2

Γ B ϕ1 → ϕ2 Γ B ϕ1 →-E
Γ B ϕ2

Table 2.5: Introduction and elimination rules for implication

The introduction rule →-I is the rule that shows how natural deduction systems (and
likewise sequent calculi) work explicitly with a set of hypotheses and the set of hypotheses
in the rule changes from Γ, ϕ in the premise to Γ in the conclusion, discharging ϕ. We
had discussed that already in connection with the special situation for ϕ→ ϕ in equation
(2.24).

2.5 Modal logics

This section gives a taste of so-called modal logics. It covers some general aspects from the
perspective of logics. In the verification part later, we will likewise deal with modal logics,
but more from the perspective of how to do model checking and we cover a few specific
modal and in particular temporal logics of interest in computer science and program
verification. Still, some warm-up about modal logics in general can’t hurt. After some
general remarks in Section 2.5.1, we follow the same path as we did for propositional logics
and first-order logics. We fix some syntax in Section 2.5.2, we address semantics, models,
etc., and say a few words about proof systems in Sections 2.5.3 and 2.5.4.

Actually, there is no such thing as “the” modal logics. To some extent that is true also
for propositional logics and first-order logics. Sure, one can select a few fundamental
connectives or add more syntactic sugar to the syntax, there are classical versions or
intuitionistic ones. And then there are many different ways how to design a proof system
for the logics. But mostly, when saying “propositional logics”, everyone means more or
less the same thing, the rest is details. Similar for first-order logics.

Modal logics are differentiated also by the fact “modality” can mean quite different things
(like time, belief, knowledge and other things). All that can be captured by modalities,
leading to different modal logics.

At the face of it, logics covering beliefs, time, knowledge have not much in common, at
least there seems no reason why one would expect so. It turns out, they have a lot in
common, namely what conceptually constitutes a model for such logics. The central
section for us is thus Section 2.5.3, which introduces the idea of such models. They will be
called Kripke models and in computer science, they basically can be seen as transition
systems (a form of graphs). The section about the syntax of modal logic will likewise be
less interesting for us, since later we will work with specific syntax for specific logics, in
particular temporal logics not with a generic syntax with modal operators. The section
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about proof system is less relevant, as we are concerned often with model checking, not
deriving valid formulas. But the idea of Kripke structure will be important, as this is the
notion of “model” when doing model(!) checking (for temporal logics).

2.5.1 Introduction

The roots of logics date back very long, and those of modal logic not less so. As far as
his interests in logics was concerned, Aristotle not only wrote about syllogisms etc., like
modus ponens, he also had his fingers in the origins of modal logic and discussed some
kind of “paradoxes” in that context that gave food for thought for future generations of
philosophers, puzzling about what to make out of such modalities.

Very generally, a logic of that kind is concerned not with absolute statements (which are
true or else false) but qualified statements, i.e., statements that “depend on” something.
An example for a modal statement would be “tomorrow it rains”. It’s difficult to say
in which way that sentence is true or false, only time will tell. . . It’s an example of a
statement depending on “time”, and tomorrow is an example of a temporal modality. But
there are other modalities, as well (referring to knowledge or belief like “I know it rains”,
or “I believe it rains” or similar qualifications of absolute truth.

Statements like “tomorrow it rains” or others were long debated, often with philosphical
and/or even religous connotions like: is the future deterministic (and pre-determined by
God’s providence), do persons have a free will, etc. Those questions will not enter the
lecture. Nonetheless: determinism vs. non-determinism is meaningful distinction when
dealing with program behavior, and we will also encounter temporal logics that view time
as linear which kind of means, there is only one possible future, or branching, which means
there are many. It’s however, not meant as a fundamental statement about the “nature
of nature”, it’s just a distinction of how we want to treat the system. If we want to
check individual runs, which are sequences of actions, then we are committing ourselves
to a linear picture (even when dealing with non-deterministic programs). But there are
branching alternatives to that view as well, which lead to branching temporal logics.

Different flavors of modal logic lead to different axioms. Let’s write � for the basic modal
operator (whatever its interpretation), and consider

�ϕ→ ��ϕ , (2.25)

with ϕ being some ordinary statement (in propositional logic perhaps, or first-order logic).
If we are dealing with a logic of belief, should the following ne a valid formula: If I believe
that something is true, do I believe that I believe that the thing is true? What about “I
believe that you believe that something is true”? Do I believe it myself? Not necessarily
so.

As a side-remark: the latter can be seen as a formulation in multi-modal logic: it’s not
about one single modality (being believed), but “person p believes”, i.e., there’s one belief-
modality per person; thus, it’s a multi-modal logic. We start in the presentation with a
“non-multi” modal logic, where there is only one basic modality (say �). Technically, the
syntax may feature two modalities � and ♦, but to be clear: that does not yet earn the
logic the qualification of “multi”: the ♦-modality is in all considered cases expressible by
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�, and vice versa. It’s analogous to the fact that (in most logics), ∀ and negation allows
to express ∃ and vice versa.

Now, coming back to various interpretations of equation (2.25): if we take a “temporal”
standpoint and interpret � as “tomorrow”, then certainly the implication should not be
valid. If we interpret � differently, but still temporally, as “in the future” then again the
interpretation seems valid.

If we take an “epistemologic” interpretation of � as “knowledge”, the left-hand of the
implication would express (if we take a multi-modal view): “I know that you know that
ϕ”. Now we may ponder whether that means that then I also know that ϕ? A question
like that may lead to philosophical reflections about what it means to “know” (maybe in
contrast with “believe” or “believe to know”, etc.).

The lecture will not dwell much on philospophical questions. The question whether equa-
tion (2.25) will be treated as mathematical question, more precisely a question of the
assumed underlying models or semantics.

It’s historically perhaps interesting: modal logic has attracted long interest, but the ques-
tion of “what’s the mathematics of those kind of logics” was long unclear. Long in the
sense that classical logics, in the first half of the 20th century had already been super-
thoroughly investigated and formalized from all angles with elaborate results concerning
model theory and proposed as “foundations” for math etc. But no one had yet come
up with a convincing, universally accepted answer for the question: “what the heck is a
model for modal logics?”. Until a teenager and undergrad came along and provided the
now accepted answer, his name is Saul Kripke. And models of modal logics are now called
Kripke-structures (it’s basically transition systems).

2.5.2 Syntax

Modal logics comes equipped with connectives to express the modalities the logics is inter-
ested in. One typicallly finds two modal operators, called “necessity” and “possibility”.
Formulas �ϕ and ♦ϕ are read as “necessarily ϕ” and “possibibly ϕ” or simply “box ϕ” or
“diamond ϕ”.

Different flavors of modal logics interpret the modal operators differently. In a temporal
setting �ϕ can be interpreted as “always ϕ. And there are many other modal logics.

logics �ϕ
temporal always ϕ
doxastic I believe ϕ.
epistemic I know ϕ.
intuitionistic ϕ is provable.
deontic It ought to be the case that ϕ.

One finds logics with more operators, but those two are the classical ones. One can also
work with combinations, like trying to capture the temporal evolution of knowlege, which
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would be a temporal-epistemic logic. We will restrict here the modal operators to � and
♦, and in the later part of the lecture mostly work with a temporal mind-set.

Definition 2.5.1 shows a syntax for some vanilla modal logics. It is formulated as extension
of propositional logics, so it’s propositional modal logics. One can also use first-order logic
as underlying logic, that does not change the modal part of the story.

Definition 2.5.1 (Formulas of modal logic). The formulas of (propositional) modal
logic are given by the following grammar.

ϕ ::= > | ⊥ atomic propositional formulas
| ϕ ∧ ϕ | ¬ϕ | ϕ→ ϕ | . . . propositional formulas
| �ϕ | ♦ϕ

(2.26)

2.5.3 Semantics

Now to the core of the modal logic section, clarifying the semantics and the notion of
models for such logics.

Kripke structures The definition below makes use of the “classical” terminology for
modal logics. It’s actually quite simple, based on a relation, here written R, on some set.
The relation is also called accessibility relation and the “points” connected by that relation
are called worlds. So: a modal model is thus just a relation, or we also could call it a
graph, but traditionally it’s called a frame (a Kripke frame). That kind of semantics is also
called possible world semantics (but not graph semantics or transition system semantics,
even if that would be an ok name as well).

The Kripke frame in itself is not a model yet, in that it does not contain information to
determine if a modal formula holds or not. The general picture is as follows: the elements
of the underlying set W are called “worlds”: on some world some formulas holds, and in
a different world, different ones. “Embedded” in the modal logic is an “underlying”logic.
As said we mostly assume propositional modal logic, but one might as well consider an
extension of first-logic with modal operators. For instance, in connection with runtime
verification will make use of a first-order variant of LTL, called QTL, quantified temporal
logic, but that will be later. In the propositional setting, what then is needed for giving
meaning to model formulas is an interpretation of the propositional variables, and that
has to be done per world.

In the section of propopositional logic, we introduced “propositional variable assignments”
σ : P → B, giving a boolean value to each propositional variable from σ. What we now
call a valuation does the same for each world which we can model as a function of type

W → P → B .
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Alternatively one often finds also the “representation” to have valuations of typeW → 2P :
for each world, the valuation gives the set of atomic propositions which “hold” in that word.
Both views are, of course equivalent in being isomorphic.

Side remark 2.5.2 (Labelled “graphs”). The valuation function V associates a propo-
sitional value to each propositional value in each world. As mentioned, a Kripke frame
may also be called a graph or also transition system. In the latter case, the worlds may
be called less pompously just states and the accessibility relation is called transition rela-
tion. The individual edges in the graph are seen as transitions from one state to another.
That terminolgy is perhaps more familiar in computer science. The valuation function
can also be seen to label the states with propositional information. A transition system
with attached information is also called labelled transition system.

But one has to be careful a bit with terminology, resp. aware that there are different ways
of “labelling” and different names for it.

When it comes to labelled transition systems, additional information can be attached to
transitions or states (or both). Often labelled transition systems, especially for some areas
of model checking and modelling, are silently understood as transition-labelled. For such
models, an edge between two states does not just express that one can go from one state
to the other. It states that one can go from one state to the other by doing such-and-such
as expressed by the label of the transition. In an abstract setting, the transitions may be
labelled just with letters from some alphabet.

As we will see later, going from a transition system with unlabelled transitions to one with
transition labels correspond to a generalization from “simple” modal logic to multi-modal
logic. But independent on whether one considers transitions as labelled or not, there is a
“state-labelling” at least, namely the valuation that is needed to interpret the propsitions
per world or state.

As a side remark: classical automata can be seen as labelled transition systems, as well,
with the transitions being labelled. There are also variations of such automata which deal
with input and output (thereby called I/O automata). Two classical versions of that idea
are used in describing hardware (which is a form of propositional logic as well. . . ), both
label the transitions for the input. However, one version labels the states with the output
(Moore-machines) whereas another one labels the transitions with the output (Mealy-
machines), i.e., in the latter representation, transitions contain input as well as output
information. Both correspond to different kinds of hardware circuitry (Moore roughly
correspond to synchronous hardware, and Mealy to asynchronous one).

We will encounter automata later, as well, but in a form that fits to our particuar modal
resp. temporal logic needs. In particular, we will look at Büchi-automata, which are like
standard finite-state automata except that they can deal with infinite words (and not just
finite ones). Those automata have connections, for instance, with LTL, a central temporal
logic which we will cover.
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Definition 2.5.3 (Kripke frame and Kripke model).
• A Kripke frame is a structure (W,R) where

– W is a non-empty set of worlds, and
– R ⊆W ×W is called the accessibility relation between worlds.

• A Kripke model M is a structure (W,R, V ) where
– (W,R) is a frame, and
– V a function of type V : W → (P → B), called valuation.

The valuation function is isomorphic to a function V : W → 2P ; we will make use of both
representations.

Kripke models are also called Kripke structures. The standard textbook about model
checking Baier and Katoen [2] does not even mention the word “Kripke structure” or
“Kripke model”, it basically uses transition systems instead of Kripke models with worlds
called states (and the concept of Kripke frame is called state graph there). I say, it’s
“basically” the same insofar that there, they (sometimes) also care to consider labelled
transitions, and furthermore, their transition systems are equipped with a set of initial
states. Whether one has initial states as part of the graph does not make much of a
difference.

Also the terminology concerning the set P varies a bit (we mentioned it also in the con-
text of propositional logics). What we call here propositional variables, is also known as
propositional constants, propositional atoms, symbols, atomic propositions, whatever.

Example 2.5.4 (Kripke model). Assume P = {p, q} as propositional variables. Figure
2.1 shows (the graphical representation of) a simple Kripke model. Formulaically M =
(W,R, V ) is given by W = {w1, w2, w3, w4, w5}, R = {(w1, w5), (w1, w4), (w4, w1), . . . },
and V = [w1 7→ ∅, w2 7→ {p}, w3 7→ {q}, . . . ].

p p p

q

5
4 2

1

3

Figure 2.1: Example of a Kripke model

The example is slightly informal (and also later we allow ourselves these kind of “infor-
malities”, appealing to the intuitive understanding of the reader). There are five worlds,
numbered for identification. In the Kripke model, they are referred to via w1, w2, . . . (not
as 1, 2, . . . as in the figure). Later, we often call corresponding entities states, not worlds,
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and then we tend to use s1, s2, . . . for typical states. For the valuation, we use a notation
of the form [... 7→ ...] to denote a finite mapping.

In particular, we are dealing with finite mappings of type W → 2P , i.e., to subsets of the
list of atomic propositions P = {p, q}. The sets are not explicitly noted in the graphical
illustration, i.e., the set-braces {. . .} are omitted. For instance, in world w1, no proposi-
tional letter is mentioned, i.e., the valuation maps w1 to the empty set ∅.

An isomporphic (i.e., equivalent) view on the valuation is, that it is a function of typeW →
(P → B) which perhaps captures the intended interpretation better. Each propositional
letter mentioned in a world or state is intended to evaluate to “true” in that world or
state. Propositional letter not mentioned are intented to be evaluated to “false” in that
world.

As a side remark: we used finite mappings inf the example and illustration, and in and
many applications. The definition of Kripke structure, however, does not require that
there is only a finite set of worlds, W in general is a set, finite or not.

Satisfaction relation Now we come to the semantics of modal logic, i.e., how to interpret
formulas of (propositional) modal formulas. That is done by defining the corresponding
satisfaction relation, written as |=, as before. After the introduction and discussion of
Kripke models or transition systems, the satisfaction relation should be fairly obvious
to some extent, especially the part of the underlying logic (here propositional logic): the
valuation V is made exactly so that it covers the base cases of atomic propositions, namely
give meaning to the elements of P depending on the current world of the Kripke frame.
The treatment of the propositional connectives ∧, ¬, . . . is identical to their treatment
before. Remains the treatment of the real innovation of the logic, the modal operators �
and ♦.

Definition 2.5.5 (Satisfaction). A modal formula ϕ is true (or it holds) in the
world w of a model V , written V,w |= ϕ, if:

V,w |= p iff V (w)(p) = >

V,w |= ¬ϕ iff V,w 6|= ϕ

V,w |= ϕ1 ∨ ϕ2 iff V,w |= ϕ1 or V,w |= ϕ2

V,w |= �ϕ iff V,w′ |= ϕ, for all w′ such that w R w′

V,w |= ♦ϕ iff V,w′ |= ϕ, for some w′ such that w R w′

As mentioned, we consider V to be of type W → (P → B). If we equivalently assumed a
type W → 2P , the base case of the definition would read p ∈ V (w), instead.

For now, we prefer the former presentation for 2 reasons (but actually, it does not matter
of course). One is, it seems to fit better with the presentation of propositional logic,
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generalizing directly the concept a boolean valuation. Secondly, the picture of “assigning
boolean values to variables” fit better with seeing Kriple models more like transition
systems, for instance capturing the behavior of computer programs. There, we are not so
philosphically interested in speaking of “worlds” that are “accessible” via some accessibility
relation R, it’s more like states in a progam, and doing some action or step does a transition
to another state, potentially changing the memory, i.e., the content of variable, which in
the easiest case may be boolean variables. So the picture that one has a control-flow graph
of a program and a couple of variables (propositional or Boolean variables here) whose
values change while the control moves inside the graph seems rather straightforward and
natural.

Sometimes, other notations or terminology is used, for instance w |=M ϕ. Sometimes, the
modelM is fixed (for the time being), indicated by the words like. “Let in the followingM
be defined as . . . ”, in which case one finds also just w |= ϕ standing for “state w satisfies
ϕ”, or “ϕ holds in state w” etc. but of course the interpretation of a modal formula
requires that there is alway a transition system relative to which it is interpreted.

Often one finds also notations using the “semantic brackets” [[_]]. Here, the meaning
(i.e., truth-ness of false-ness of a formula, depends on the Kripke model as well as the
state, which means one could define a notation like [[ϕ]]Mw as > or ⊥ depending on wether
M,w |= ϕ or not. Remember that we had similar notation in first-order logic [[ϕ]]Iσ

Side remark 2.5.6 (“Forcing”). We discussed (perhaps uneccessarily so) two isomorphic
view of the valuation function V . Even if not relevant for the lecture, it could be noted
that a third “viewpoint” and terminology exists in the literature in that context. Instead
of associating with each world or state the set of propositions intended to hold in that
state, one can define a model also “the other way around”: then one associates with each
propositional variable the set of states in which the proposition is suppoed to hold, one
would have a “valuation”

Ṽ : P → 2W .

That’s of course also an equivalent and legitimate way of proceeding. It seems that this
representation is not “popular” when doing Kripke models for the purpose of capturing
systems and their transitions (as for model checking in the sense of our lecture), but for
Kripke models of intuionistic logics. Kripke also propose “Kripke-models” for that kind
of logics (for clarity, I am talking about intuitionistic propositional logics or intuitionistic
first-order logice et.c, not (necessarily) intuitionistic modal logics). In that kind of setting,
the accessibility relation has also special properties (being a partial order), and there are
other side conditions to be aware of. As for terminology, in that context, one sometimes
does not speak of “w satisfies ϕ (in a model)”, for which we write “w |= p”, but says
“world w forces a formula ϕ”, for which sometimes the notation w  ϕ is favored. But
those are mainly different traditions for the same thing.

For us, we sometimes use notations like [[ϕ]]M to represent the set of all states in M that
satisfy ϕ, i.e.,
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[[ϕ]]M = {w | M, s |= ϕ} .
In general (and also other logics), |=- and [[_]]-style notations are interchangable and
interdefinable. And we will freely make use of both

How to interpret “box” and “diamond” The pronounciation of �ϕ as “necessarily ϕ”
and ♦ϕ as “possibly ϕ” are generic, and their meaning is given by Definition 2.5.5.

When dealing with specific modal logics, they still are mathematically given by the gen-
eral definition, but how to think about that gets more specific and they will be called
correspondingly more specifically, for instance: “in all futures ϕ” or “I know that ϕ”
etc.

Related to the intended mindset, one imposes different restrictions on the accessibility
relation R. In a temporal setting, if we interpret �ϕ as “tomorrow ϕ”, then it is clear
that ��ϕ (“ϕ holds in the day after tomorrow”) is not equivalent to �ϕ. If, in a different
temporal mind-set, we intend to mean �ϕ to represent “now and in the future ϕ”, then
��ϕ and�ϕ are equivalent. That reflects common sense and reflects what one might think
about the concept of “time” and “days” and “future”. Technically, and more precisely, it’s
a property of the assumed class of frames (i.e., of the relation R). If we assume that all
models are built upon frames where R is transitive, then �ϕ→ ��ϕ is generally true.

Validity and frame validity We should be more explicit about what it means that a
formula is “generally true”. We have encountered the general terminology of a formula
being “true” vs. being “valid” already. In the context of modal logic, the truth-ness
requires a model and a state to judge the truth-ness: M,w |= ϕ. A model M is of the
form (W,R, V ), it’s a frame (= “graph”) together with a valuation V . A propositional
formula is valid if it’s true for all boolean valuations (and the notion coincided with being
a propositional tautology).

Now the situation get’s more finegrained (as was the case in first-order logics). A modal
formula is valid if M,w |= ϕ for all M and all w. For that one can write

|= ϕ (2.27)

So far so good. But then there is also a middle-ground, where one fixes the frame (or a
class of frames), but the formula must be true for all valuations and all states. For that
we can write

(W,R) |= ϕ (2.28)

Let’s abbreviate with F a frame, i.e., a tuple (W,R). We could call that notion frame
validity and say for F |= ϕ that “ϕ is valid in frame F”. So, in other words, a formula is
valid in a frame F if it holds in all models with F as underlying frame and for all states
of the frame.

One uses that definition not just for a single frame; often the notion of frame-validity is
applied to sets of frames, in that one says F |= ϕ for all frames F such that . . . ”. For
instance, all frames where the relatiton R is transitive or reflexive or whatever. Those
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restrictions of the allowed class of frames reflect then the intentions of the modal logic
(temporal, epistemic . . . ), and one could speak of a formula to be “transitivity-valid” for
instance, i.e., for all frames with a transitive accessibility relation.

The latter would be an ok terminology, but it’s not standard. There are (for historic
reasons) more esoteric names for some standard classes, for instance, a formula could be
S4-valid. That refers to one particular restriction on R which corresponds to a particular
set of axioms traditionally known as S4. See below for some examples.

Side remark 2.5.7 (Temporal logics and preview to LTL). Coming back to the informal
“temporal” interpretation of �ϕ as either “tomorrow ϕ” vs. “now and in the future ϕ”,
where the accessibility relation refers to “tomorrow” or to “the future time, from now
on”. In the latter case, the accessibility relation would be reflexive and transitive. When
thinking about such a temporal interpretation, there may also be another assumption on
the frame, depending on how one sees the nature of time and future.

One way would be to see the time as linear. Points in time form a line, fittingly called a
timeline, connecting the past and the future, with “now” in the middle, perhaps measured
in years or seconds, or steps in an run of a program etc. With such a linear picture in
mind, it’s also clear that there is no difference between the modal operators � and ♦.7
In the informal interpretation of � as “tomorrow”, one should have been more explicit
that “tomorrow” was meant “for all possible tomorrows” to distinguish it from ♦ that
represent “there exist a possible tomorrow”. In the linear timeline picture, there is only
one tomorrow, we conventionally say “the next day” not “for all possible next days” or
some such complications. Consequently, if one has such a linear picture in mind (resp.
works only with such linear frames), one does not actually need two modal operators � and
♦, one can collapse them into one. Conventionally, for that collapsed one, one writes ©.
A formula©ϕ is interpreted as “in the next state or world, ϕ holds” and pronouced “next
ϕ” for short. The© operator will be part of LTL (linear-time temporal logic), which is an
important logic used for model checking and which will be covered later. When we (later)
deal with LTL, the operator © corresponds to the modal operators ♦ and � collapsed
into one, as explained. Besides that, LTL will have additional operators written (perhaps
confusingly) � and ♦, with a different interpretation capturing “always” and “eventually”
Those are also temporal modalities, but their interpretation in LTL is different from the
ones that we haved fixed for now, when discussing modal logics in general.

Restrictions on the frames, resp. the accessibility relation As mentioned, different
classes of model logics arise by imposing restrictions on which frames one considers. Re-
strictions on the binary relation R ⊆W ×W include that it is reflexive, transitive, (right)
Euclidian, total, that it’s an order relation, and more. It’s not the goal of the lecture to
study those and compare different logics (and many variations have been studied indeed).
Still, we at least mention some common restrictions.

7Characterize as an exercise what exactly (not just roughly) the condition the accessibility relation must
have to make � and ♦ identical.
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Definition 2.5.8. A binary relation R⊆W ×W is
• reflexive if every element in W is R-related to itself.

∀a. a R a

• transitive if
∀a b c. a R b ∧ b R c→ a R c

• (right) Euclidean if

∀a b c. a R b ∧ a R c→ b R c

• total if
∀a. ∃b. a R b

The following remark may be obvious, but anyway: The quantifiers like ∀ and the other
operators ∧ and ∨ are not meant here to be vocabulary of some (first-order) logic, they are
meant more as mathematical statements, which, when formulated in for instance English,
would use sentences containing words like “for all” and “and” and “implies”. One could
see if one can formalize or characterize the defined concepts making use formally of a
first-order logic, but that’s not what is meant here. We use the logical connectives just as
convenient shorthand for English words.

Example 2.5.9 shows some how some accessibiity relations are captured by different for-
mulas, in that they are valid under the corresponding restriction.

Example 2.5.9.

• (W,R) |= �ϕ→ ϕ iff R is reflexive.
• (W,R) |= �ϕ→ ♦ϕ iff R is total.
• (W,R) |= �ϕ→ ��ϕ iff R is transitive.
• (W,R) |= ¬�ϕ→ �¬�ϕ iff R is Euclidean.

2.5.4 Proof theory and axiomatic systems

We only sketch proof theory of modal logic, as we are more interested in model checking
as opposed to verify that a formula is valid. There are connections between these two
questions, though. As explained earlier, proof theory is about formalizing the notion of
proof. That’s done by defining a formal system, a proof system, that allows to derive or
infer formulas from others. Formulas a priori given are also called axioms, and rules allow
new formulas to be derived from previously derived ones (or from axiom). One may also
see axioms as special form of rule, namely one without premises.

The style of presenting the proof system here is the plain old Hilbert-style presentation.
As mentioned, there are other styles of presentations, some better suited for interactive,
manual proofs and some for automatic reasoning, and in general more elegant anyway.
As also mentioned, one difference between Hilbert-style and the natural deduction style
presentations is that Hilbert’s presentation put’s more weight on the axioms, whereas
the alternative downplay the role of axioms and have more deduction rules (generally
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speaking). That suits us fine: As discussed, different classes of frames (transitive, reflexive
. . . ) correspond to axioms or selection of axioms, and we have seen examples for that in
Example 2.5.9.

Since we intend (classical propositional) modal logics to encompass classical propositional
logic not just syntactically but also conceptually/semantically, we have all propositional
tautologies as derivable. Furthermore, we have the standard rule of derivation, already
present in the propositional setting, namely modus ponens.

That so far took care of the propositional aspects (but note that MP can be applied to
all formulas, of course, not just propositional ones). But we have not really taken care of
the modal operators � and ♦. Now, having lot of operators is nice for the user, but puts
more burden when formulating a proof system (or implementing one) as we have to cover
more case. So, we treat ♦ as syntactic sugar, as it can be expressed by � and ¬. Note:
“syntactic sugar” is a well-established technical term for such situations, mostly used in
the context of programming languages and compilers. Anyway, we now need to cover
only one modal operator, and conventionally, it’s �, necessitation. The corresponding
rule consequently is often called the rule of (modal) necessitation. The rule is below called
Nec, sometimes also just N or also called G (maybe historically so).

Is that all? Remember that we touched upon the issue that one can consider special classes
of frames, for instance those with transitive relation R or other special cases, that lead
them to special axioms being added to the derivation system. Currently, we do not impose
such restrictions, we want general frame validity. So does that mean, we are done?
At the current state of discussion, we have the propositional part covered including the
possibility do to propositional-style inference (with modus ponens), we have the plausible
rule of necessitation, introducing the �-modality. Apart from that, the two aspects of the
logic (the propositional part and modal part seem conceptually separated. Note: a formula
�p → �p “counts” as (an instance of a) propositional tautology, even if � is mentioned.
A question therefore is: are the two parts of the logic somehow further connected, even if
we don’t assume anything about the set of underlying frames?

The answer is, yes, and that connection is captured by the axiom stating that � distributes
over →. The axiom is known as distribution axiom or traditionally also as axiom K. In a
way, the given rules are the standard base line for all classical modal logics. Modal logics
with the propositional part covered plus necessitation and axiom K are also called normal
modal logics.

Side remark 2.5.10 (“Un-normal” modal logics). As a side remark: there are also certain
modal logics where K is dropped or replaced, which consequently are no longer normal
logics. Note that it means they no longer have a Kripke-model interpretation either. Since
our interest in Kripke-models is that we use transition systems as representing steps of
programs, Kripke-style thinking is natural in the context of our course. Non-normal logics
are more esoteric and “unconventional” and we don’t go there.

The distribution axiom K is written as “rule” without premises. The system focuses on
the “new” aspects, i.e., the modal part. It’s not explicit about how the rules look like that
allow to derive propositional tautologies (which would be easy enough to do, and includes
MP anyway). We have seen those earlier anyway.
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ϕ is a propositional tautology
PL

ϕ

K
�(ϕ1 → ϕ2)→ (�ϕ1 → �ϕ2)

ϕ→ ψ ϕ
MP

ψ

ϕ
Nec

�ϕ

Table 2.6: Axioms for the base line propositional modal logics (“K”)

The sketched logic is is also known under the name K itself, so K is not just the name of
the axiom. The presentation here is Hilbert-style, but could also present the same logics
differently.

We show in Table 2.8 a few more axioms (with their traditional names, some of which
are just numbers, like “axiom 4” or “axiom 5”). In the literature, then one considers and
studies “combinations” of those axioms (like K + 5), and they are traditionally also known
under special, not very transparent names like “S4” or “S5”. See Table 2.8 for some better
known ones.

�(ϕ→ ψ)→ (�ϕ→ �ψ) (K)
�ϕ→ ♦ϕ (D)
�ϕ→ ϕ (T)
�ϕ→ ��ϕ (4)
¬�ϕ→ �¬�ϕ (5)
�(�ϕ→ ψ)→ �(�ψ → ϕ) (3)
�(�(ϕ→ �ϕ)→ ϕ)→ (♦�ϕ→ ϕ)) (Dum)

Table 2.7: Various properties of R and their axioms

The first ones are pretty common and are connected to more or less straightforward frame
conditions (except K which is, as said, generally the case for a frame-based Kripke-style
interpretation). Observe that T implies D.

The are many more different axiom studied in the literature, how they are related and
what not. The axiom called Dum is more esoteric (the paper [17] calls it “[among the]
most bizzare formulae that occur in the literature” ) and actually, there are even different
versions of that (Dum1, Dum2 . . . ).
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Logic Axioms Interpretation Properties of R
D K D deontic total
T K T reflexive
K45 K 4 5 doxastic transitive/euclidean
S4 K T 4 reflexive/transitive
S5 K T 5 epistemic reflexive/euclidean

reflexive/symmetric/transitive
(i.e. equivalence relation)

Table 2.8: Different flavors of modal logic

Concerning the terminology doxastic logic is about beliefs, deontic logic tries to capture
obligations and similar concepts. Epistemic logic is about knowledge.

2.5.5 Exercises

Exercise 2.5.11 (Formulas holding in worlds of a model). Consider the frame (W,R)
with W = {0, 1, 2, 3, 4} and (i, i+ 1) ∈ R.

q p, q p, q q q

0 1 2 3 4

Let the “valuation” Ṽ (p) = {1, 2} and Ṽ (q) = {0, 1, 2, 3, 4} and let the model M be
M = (W,R, V ). Which of the following statements are correct in M and why?

M, 0 |= ♦�p
M, 0 |= ♦�p→ p
M, 2 |= ♦(q ∧ ¬p) ∧�(q ∧ ¬p)
M, 0 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q)))
M |= �q

Solution 2.5.12 (of Exercise 2.5.11). The answers to the above questions are: yes, no,
yes, yes, yes.

Perhaps a remark concerning the status ♦�p in the first situation. The frame is

Exercise 2.5.13 (Bidirectional frame). A frame (W,R) is bidirectional iff R = RF +RP
s.t. ∀w,w′. w RF w′ ↔ w′ RP w.

q p, q p, q q q

0 1 2 3 4
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Consider M = (W,R, V ) from before. Which of the following statements are correct in M
and why?

M, 0 |= ♦�p
M, 0 |= ♦�p→ p
M, 2 |= ♦(q ∧ ¬p) ∧�(q ∧ ¬p)
M, 0 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q)))
M |= �q
M |= �q → ♦♦p

Solution 2.5.14. The solutions are: no, yes, no, yes, yes, no.

The frame used in Exercise 2.5.13 is bi-directional. Effectively, the relation R in the
example is symmetric, so actually the example would not need to mention the concept of
being bi-directional. Later, when we present temporal logics, there are variants that can
speak not just about the future, but also about the past. In such a temporal setting, one
could interpret the formulas on bi-directional frames, the future operators being based on
RF and the operators taking about the past on RP .

Exercise 2.5.15 (Validities). Which of the following formulas are valid in modal logic.
For those that are not, argue why and find a class of frames on which they become valid.

�⊥
♦p→ �p
p→ �♦p
♦�p→ �♦p

Solution 2.5.16. 1. �⊥: Valid on frames where R = ∅.
2. ♦p→ �p: Valid on frames where R is a partial function.
3. p→ �♦p: Valid on bidirectional frames.
4. ♦�p→ �♦p: Valid on Euclidian frames.

2.6 Dynamic logics

2.6.1 Introduction

Dynamic logics is a so-called program logics and used in connection with a pogramming
language. I.e., the formalism contains two levels of syntax, one the programming notation,
and then the logics, both interwoven. A specified program consists of the program code
plus logical annotations, sprinkled throughout the code. Hoare-logic is a typical example
for that, where the code is annotated with assertions (in first-order logic or similar).
Indeed, dynamic logics can be seen as a generalization of Hoare logics. Such a specification
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style, formulas being written as part of the code syntax, is a bit different from the way,
for instance, LTL will be used. There, the logic is used externally, specifying the behavior
of a program or process from the outside. It’s a bit like the difference between a black box
and white box view in testing.

We want to talk about programs, states of a program, and in particular change of the state
of the program when executing programming instructions. The (perational semantics of
a program is typically some form of transition system (or Kripke structure), and we know
already, that logics that talk about transition systems are modal logics. We said, dynamc
logic can also be seen as a generalization of Hoare-logics. Our exposition does not present
it under that perspective by starting with Hoare-logics, we start by explainig multi-modal
logic.

Connections between modal logics and FOL There are various connections between
FOL and modal logics, for instance, modal logic may be seen as FOL with one free variable,
but seeing it like that we loose the “beauty” of modal logics (being tailor-made as logic
speaking about transition systems). Such connections between other logics and modal
logics are not important for the course.

2.6.2 Multi-modal logic

It’s a pretty straightforward generalization of modal logics. Instead of one relation in the
transition system, we handle many, instead of having box and diamond as modal operators
over one relation, we have modal operators for each of them. That’s basically it.

We start by illustrating it with a Kripke frame with 2 relations Ra and Rb, both subsets
of W ×W . An alternative and equivalent way of seeing it that one deals with a “labelled
transition relation”, i.e. one R ⊆W×A×W , where A is the set of labels, here A = {a, b}.

Definition 2.6.1 (Formulas of multi-modal logic)). The formulas of a multi-modal
logic are given by the following grammar.

ϕ ::= p | ⊥ | ϕ→ ϕ | ♦0ϕ | ♦1ϕ | . . . (2.29)

where p is from a set of propositional atoms.

Compard to the “mono”-modal syntax from Definition 2.5.1, we left out some operators.
But those can easily defined by combinations of the others in the standard way. In partic-
ular multi-modal logical also has a duals to the diamind-operators, with �i and ♦i being
duals of each other, of course.

ϕ ::= ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | �0ϕ | �1ϕ | . . . (2.30)

Not only is the syntax extended, also the concept of model needs the corresponding obvious
generalzation. So a Kripke frame then is of the form
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(W, {R0, R1, . . .}) (2.31)

with each relation Ri a relation over W , and multi-modal Kripke-models adds a valuation
V on top of that, as before. Also the semantics, i.e., satisfaction relation is effectively
unchanged:

M,w |= ♦iϕ iff ∃w′. w Ri w
′ and M,w′ |= ϕ (2.32)

Cf. also the original versions of Kripke frames and models from Definition 2.5.3 and of |=
from Definition 2.5.5.

The relations Ri may may overlap; i.e., their intersection need not be empty. Also in-
finitely many modalities are possible, so not just {Ra, Rb, Rc} for a finite set of labels or
{R0, R1, . . . , Rn}. As a further remark: when discussing (a variant of) PDL and maybe
TLA (temporal logic of actions), the different relations Ra arise from “programs” or “ac-
tions”. So, if one sees the a as taken from a set A, then the set is not taken as unstructured
and containing uninterpreted letters from an alphabet or numbers. Instead, the actions
may have a syntax in itself, representing programs or single steps in a program. Since there
are many actions or programs, which lead to infinitely many corresponding “modalities”.

2.6.3 Dynamic logics & PDL

There are different variants of the concept of dynamic logics. As mentioned at the begin-
ning, as a program logics, it contains logical notation and notation for logical specification.
Not only can one base the idea on different underlying logics (like propositional vs. first-
order logics), but also are the programming languages and notations that one can equip
with a specification and verification formalism. For instance, the KeY verifier tool8 is a
theorem prover for Java programs, based on dynamic logics. Thus, the underlying program
“notation” is Java.

For the presentation here, we take a more abstract view, i.e., we present dynamic logics
not on top of a concrete programming language like Java. Capturing such a language by
logic proof rules to enable verification of programs in that language is complex. Not so
much because the dynamic logic as such is complex, but because programming languages
themselves are complex: many special cases have to be covered, languages offer many
abstractions and different features that can interfere with each other. It’s not impossible,
as said, KeY does just that (and implements corresponding derivation rules and other
assisting techologies). But when discussing dynamic logic for a real programming language,
the language details would overwhelm the logical aspects and it would become more a
quite detailed study of synatcial and semantical aspects of a particular language, like for
instance Java. Detailed, as it would descibe minutely the behavior of the language by
logical formulas.

What we therefore do instead is using a propositional version of dynamic logics, PDL, on
so-called regular programs.

8See https://www.key-project.org.

https://www.key-project.org/
https://www.key-project.org
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Regular programs Dynamic logics speaks about “programs”, where a program is written
in some “notation”. in other words, programs written in some form of programming
language. Here, (propositional) dynamic logic talks about regular programs.

Compared to programs written in real programming languages, regular programs are writ-
ten in a rather more restrictive or abstract program notation, namely regular programs.

As a multi-modal logic, dynamic logics is interpreted on labelled transition systems. Before,
when talking about multi-modal logics, we presented the labels as unstructured, just some
elements from some label set A. Here, we add structure on A, basically regular expressions,
which are seen as the underlying programming language notation. Of course, that’s a very
abstract way of representing programs, basically abstracting away from concrete data, like
values of variables etc. That fits well with the decision to work with propositional logic
as underlying formalism, as opposed to first-order logics.

Regular languages are a well-known formalism, used for various purposes. For instance
they play a role for covering so-called lexical aspects of a programming language in the
lexer phase of a compiler. The describe finite-state automata, they are used for (regular)
pattern matching, etc.

We use regular language syntax, resp. an extension of the commonly used syntax to
denote programs. In that aspects, it corresponds to the well-know view that regular
expressions is a declarative notation for finite-state machines (or transition systems), which
can be understood as some machine-model that can be executed, taking transition after
transition.

Let’s assume a set Π0 of atomic programs a, b, . . . , also seen as atomic actions or atomic
labels. Besides that and s in regular expressions, there are constucts for sequences, non-
deterministic chhoices (“or”), and iteration, the Kleene start. Those can be seen as ab-
straction to programming constructs like sequential compositions, conditionals, and loops.
Of course in a programming language, conditionals are not non-deterministic. The non-
determinism in regular programs in th presentd form is a result of abstraction. Since the
language has abstract away from data (like the logic part based on propositional logic
as core), conditionals, lacking the data to make a case-distinction, are correspondingly
abstracted to non-deterministic choices. It’s a level of abstraction that correponds to
control-flow graphs (with the data-part abstracted away).

The discussion so far focused on constructs that are supported also by regular expressions,
atoms a, choice +, sequencing, written ·, and the Kleene star.9

But regular programs contain further constructs. There are two constants, called skip
and fail and written 1 and 0. The first one represents the program that does not do
anything, and is guaranteed to terminate. The second one is sure to not terminate i.e.,
diverge or at least not terminate properly, but not doing anything else. These programs
are polar opposites to each others and can be considered duals to each other (but we have
introduced the concept of duality only for logics, not for program notations).

Then there is one last construct, programs of the form ϕ?. Such a program is kind of like
a mixture of the skip program 1 and the fail program 0. Why the latter to terminate
resp. fail to terminate unconditionally, a test ϕ? either succeeds, i.e., behaves like 1, or

9In regular expressions one often uses | instead of +, but it’s the same thing.
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immediately fails, i.e., behaves like 0, depending on whether the formula ϕ evaluates at
the given situation to true or false. Let’s first summarize the syntax of regular programs
in Definition 2.6.2. Note that the syntax given in the definition is not complete since
the logical formulas ϕ of the tests are not yet nailed down. That will be done shortly
afterward.

Definition 2.6.2 (Regular programs). The syntax of regular programs α, β ∈ Π is
given according to the grammar:

α ::= a, . . . ∈ Π0 | 1 | 0 | α · α | α+ α | α∗ | ϕ? . (2.33)

Now to the formulas ϕ. It’s formulas from propositional dymamic logics, a modal logic,
and besides the usual propositional connectives, the interesting one is the modality, of
course. Let’s base our syntax on the box- or necessity-modality; the diamond counter-
part is definable as dual. The modality is written [α]. So the multiplicity of the modalites
comes from that they are “indexed” by (regular) programs. Note that the syntax of the
programs refers to dynamic logica formulas via the tests, and the level of formulas refer
back to programs via the modality operator(s): the two levels of programs and formulas
are mutually recursive. So the syntax for regular programs from equation (2.33) is part
of the grammar for in equation (2.34) below.

Definition 2.6.3 (PDL syntax). Given a set Π0 of atoms (or atomic regular pro-
grams or atomic actions), with typical elements a, b, . . . The formulas ϕ of proposi-
tional dynamic logic (PDL) over regular programs α are given as follows.

α ::= a, . . . ∈ Π0 | 1 | 0 | α · α | α+ α | α∗ | ϕ?
ϕ ::= p, q, . . . ∈ P | > | ⊥ | ϕ→ ϕ | [α]ϕ

(2.34)

where P is a set of atomic propositions.

Some more remarks on tests Tests can be seen as special atomic programs which may
have logical structure, but their execution properly terminates in the same state iff the
test succeeds (is true), otherwise fails if the test is deemed false in the current state.

As for termination: test have two outcomes, a positive and a negative. If the test “suc-
ceeds”, the test properly terminates. The qualification “properly” for this form of termi-
nation is a hint that there are also other forms of termination: When the test fails, it
“terminates” in that it fails. That is sometimes called improper termination. In program-
ming languages, a cause of improper termination can be raising an (uncaught) exception.
One may interpret a failing test as divergence, i.e., definitely not terminating.

Actually, the behavior of tests is connected to assertions as known from many high-level
programming language. For example, in Java, one can use assert(b) as construct, where
b is a Boolean expression. Basic programming hygiene mandates, that b has no side effects,
so it’s a side-effect free boolean expression over the variables used in the programs (like
making sure that x >= y or similar). Indeed, assert-statements of that form corresponds
to a simple form of tests as supported in DL. It’s a simple form, in that only propositional
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formulas (= boolean expressions) over program variables are allowed, whereas in dynamic
logic, more complex formulas are allowed. And the formulas of dynamic logic can contain
program code as part of their modalities.

Note: it’s about proper or improper termination of the test, not the program. In general a
test is used in a program, for instance a test followed by the rest of the program. In regular
programs that is written as ϕ?·α (in other contexts and real programming languages, often
semicolon ; is used for sequential composition instead).

The difference between proper termination and failure is: in the first case, the test termi-
nates without consequences (especially no side effects) and the program behaves as α. On
the other hand, when the test fails, the whole program fails, i.e., terminates improperly as
well. That corresponds to the situation, that an assertion assert(b) raises an exception
which is uncaught and causes the whole program to terminate in a non-proper way.

So, simple Boolean tests are of the form ϕ? where ϕ is a propositional formula:

ϕ ::= > | ⊥ | ϕ→ ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ . . . .

and more generally, for complex tests, ϕ is an arbitrary formula in dynamic logic.

Some remarks about PDL als multi-modal logics As multi-modal logic, formulas are
interpreted on a Kripke-model with multiple relations: each α is represented by a relation
Rα. The relations for the basic program a, b, . . .Π0 are assumed given. They represent
the the semantics of the atomic statements in the (abstraction of the) concrete program
one models or more generally of the programming language. Operations on/composition
of programs are interpreted as operations on relations.

When considering the language as such (and not just one concrete program), there are
infinitely many box modalities [α] (same for diamond 〈α〉 of course), and there are infinitely
many relations Rα.

The interpretation of the two modalities we know already from the modal logic part. The
[α] corresponds to a universal quantification of all α-successors, the dual 〈α〉 stipulates
the existance of an α-successor.

If we spell it out for the box-modality, [α]ϕ means

If program α is started in the current state, then, if it terminates, then in its
final state, ϕ holds.

Analoguously (or rather dually), 〈α〉ϕ means

If program α is started in the current state, then, there there is a successor, i.e.,
there is the possibility that the program terminates, and when doing so and
stepping to that possible successor, ϕ holds.

There is, however, a subtlety now which was not much visible in the modal logical setting
(including the multi-modal one), where the actions were uninterpreted and unstructured
symbols from an alphabet. Now, they are interpreted and structured, namely interpreted
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as regular programs, and that includes the possibility of non-termination. So having a
pair s1 and s2 in a relation Rα, i.e., s1Rαs2 (for which we also write

s1
α−→ s2

it’s interpreted as that a program starts in state s1 and when executing α, it reaches s2
when α properly terminates. So, a transition s1

α−→ s2 implies that α terminates properly.
The absence of such a transition implies that α is not done at that point, of course, but
also α is attempted but does not properly terminate. In our regular languages, that would
be caused by a failed test. In real programming languages, they may be other reason for
not terminating properly.

For the modalities, [α]ϕ, being interpreted as universal quantification over all α-successors
stipulates for a state s1, that, if the execution of α terminates starting from s2, then the
progam will be in a state, say s2, for which ϕ holds. If the program, starting at state s1
does not terminate, then [α] vacuously holds in s1. Programs may be non-deterministic
(including regular programs). So it may be the case, that some executions of α terminate
and others don’t. The formula [α]ϕ imposes a restriction (namely ϕ) on the post-states
for all terminating executions of α. But does not require anything for the others. This is
connected with the notion of partial correctness (as opposed to total correctness).

In contrast, the dual operator 〈α〉ϕ insists on that there exists an execution, where α
terminates after which ϕ holds.

The terminology if partial and total correctness may become more plausible if one would
consider the restricted setting where programs are deterministic. Regular programs can
be non-deterministic, but dynamic logic, as stated, makes sense also with other program
notation, for instance, talking about sequential and deterministic programs. For example,
the KeY-tool focuses on sequential Java programs (though also adaptations to multi-
threaded Java exist).

Anyway, if the programming language happens to be deterministic, then for each s1, there
exists at most one s2 such that s1

α−→ s2: if α terminates, s2 is the sucessor state, if not,
there is no successor state. In that setting as before, [α]ϕ specifies that, if the program
terminates, the successor state must satisfy ϕ, but if it does not terminate, it’s fine too
(= partial correctness). The dual operator 〈α〉ϕ, on the other hand, insists that α
terminates plus that ϕ holds afterwards (= total correctness).

The notions of partial and total correctness are often used in connection with Hoare logic.
Indeed, Hoare logic can be seen as a special, restricted case of dynamic logic. There, one
operates syntactically not with “modal operators”, but one write specifications as so-called
triples. Triples can be interpreted in a total or in a partial correctness way. Sometimes, one
distiguished that notationally by writing [ϕ1] α [ϕ2] and { ϕ1 } α { ϕ2 }, correspondingly.
Note that, unlike here, the logical formulas ϕ1 and ϕ2 do not contain “program syntax”:
in dynamic logic, the two layers (programs and logic) are more intimately inverwoven
(via the modalities and the tests), in Hoare-logics, the layers are more clearly separated
(programs sprinkled with formulas in between). In that sense, Hoare-logic is a restricted
form of dynamic logic.

Exercise 2.6.4 (Define conventional programming constructs). The syntax of regular
programs cannot really be called a programming notation. Now the exercise is to define
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conventional programming constructs with the help of the introduced vrsion of dynamic
logics in combination with the constructs of regular programs. The constructs to encode
are listed in equation (2.35).

skip fail
if ϕ then α else β if ϕ then α
case ϕ1 then α1; . . . case ϕn then αn
while ϕ do α repeat α until ϕ
while ϕ1 then α1 | · · · | ϕn then αn od

(2.35)

A few words to the constructs. The syntax from Definition 2.6.3 already contains 1 and 0,
which we said represent skip and fail and alongside we also explained what they supposed
to mean. In the exercise, one is requested to give an “alternative” definition, using tests.
Why did we then introduc 1 and 0 then in the first place? Well, the syntax of regular
programs from Definition 2.6.3 makes sense independent from fixing the logic part. In our
presentation, doing dynamic logic, the logic part can refer back to the program language
level via tests. If one restrict to a simpler setting, leaving out th modalities and test,
regular programs still make sense, only the logic is no longer strong enough to encode skip
and fail (and the other constructs of this exercise).

2.6.4 Semantics of PDL

Let’s nail down the semantics of PDL more precisely. The core we know already: dynamic
logic is a multi-modal logic, so we need transition systems with multiple relations. We can
call them also labelled transition systems of labelled Kripke structures. We are dealing in
particular with dynamic logics for regular programs. In that particular setting, one can
characterize the transition systems or Kripke frames further. The shape of the possible
transition systems is not arbitrary. Since they result form describing the transitions of reg-
ular programs, further restrictions apply. That will lead to the definition of regular Kripke
structures, and PDL will be interpreted over that. It’s similar to the earlier discussions
about modal logics, where we discussed restricted classes of frames, like with a transitive
or reflexive accessibility or transition relation. Here the restriction is: the frames, resp.
labelled transition systems are regular.

Let’s start with adding “labels” to Kripke structures resp. frames.

Definition 2.6.5 (Labelled Kripke structures). Assume a set of labels Σ. A labelled
Kripke structure is a tuple (W,R,Σ) where

R =
⋃
l∈Σ

Rl (2.36)

is the union of the relations indexed by the labels of Σ.

The set Σ is also called the alphabet. Alternatively we can define R as a ternary (=
three-argument) relation:

R ⊆W × Σ×W . (2.37)
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For labels in general, we may use l, l1 . . . but also a, b, . . . or others. Besides that, is nicer
to use a−→ as notation instead of Ra, and write more suggestively

w1
a−→ w2 or s1

a−→ s2

instead of (w1, w2) ∈ Ra resp. (s1, s2) ∈ Ra (or instead of (w1, a, w2) ∈ R resp. (s1, a, s2) ∈
R if we define R as in equation (2.37), which is of course equivalent).

Regular Kripke structures Now, as promised, we look at the consequences of working
with regular programs on the shape of the labelled transition systems. The labels are
thought of as representing regular programs and thus having structure, there the different
relations Ra are related, reflecting the intended semantics of regular programs. The inter-
pretation of interpretation of certain programs or labels fixed. For instance 0 represents
the failing program and α1 ·α2 is fixed to represent sequential composition. Thus relations
like 0, Rα1·α2 , . . . must obey side-conditions reflecting the intended meaning of those con-
structs. The interpretation of the “atoms” of regular programs a is assumed given, so also
the relations Ra are assumed given, and we then have to fix the interpretation semantics of
the remaining constructs of regular programs on top of that. That leads to the definition
of regular Kripke structures.

Definition 2.6.6 (Regular Kripke structures (no tests)). A regular Kripke struc-
ture is a Kripke structure labelled as follows. For all atomic programs a ∈ Π0,
choose some relation Ra. For the remaining syntactic constructs (except tests), the
corresponding relations are defined inductively as follows.

R1 = Id
R0 = ∅
Rα1·α2 = Rα1 ◦Rα2

Rα1+α2 = Rα1 ∪Rα2

Rα∗ = ⋃
n≥0R

n
α

In the definition, Id represents the identity relation, ◦ relational composition, and Rn and
the n-fold composition of R.

Actually, there is one piece missing, namelely how to represent Rϕ?. PDL is conceptually
more complex than plain multi-modal logics in that there is a mutual dependence of the
programs and the formulas. Formulas contain programs via the modalities and programs
contain formulas via the tests. Thus, there is also a mutual dependence on the semantics
of formulas, i.e., the definition of the satisfaction relation |=, and the conditions on the
transition relation of regular Kripke structure, on which the formulas are interpreted.
So in principle, |= and regular Kripke-structures would have to be defined “at the same
time” (Definitions 2.6.6 above and 2.6.7 below). After defining regular Kripke structures
omitting the tests in Definition 2.6.6, we continue here by definining |= first, and only
afterwards we add the missing piece to regular Kripke structures.
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Interpreting PDL formulas We will next define the satisfaction relation |= in the usual
manner by induction on the structure of the formulas.

Definition 2.6.7 (Satisfaction relation). A PDL formula ϕ is true in the world w
of a regular Kripke model M = (W,−→, V ), written M,w |= ϕ, if:

M,w |= p iff p ∈ V (w) for all propositional atoms
M,w 6|= ⊥
M,w |= >
M,w |= ϕ1 → ϕ2 iff whenever M,w |= ϕ1 then also M,w |= ϕ2
M,w |= [α]ϕ iff M,w′ |= ϕ for all w′ such that w α−→ w′

M,w |= 〈α〉ϕ iff M,w′ |= ϕ for some w′ such that w α−→ w′

(2.38)

The semantics should contain no surprises: it’s the standard Kripke interpretation in
a multi-modal setting. One ingredient, as said, is missing, though, that’s how to the
semantics for tests (coming next).

To give the exact interpretation of test programs ϕ? as relations, we need to know how to
interpret formulas ϕ.

• omitted so far: what relationship corresponds to

ϕ?

• remember the intuitive meaning (semantics) of tests

Test programs Tests interpreted as subsets of the identity relation.

Rϕ? = {(w,w) | w |= ϕ} ⊆ Id (2.39)

Some special cases:

• R>? = Id
• R⊥? = ∅
• R(ϕ1∧ϕ2)? = {(w,w) | w |= ϕ1 and w |= ϕ2}
• [α]ϕ is like looking into the future of the program and then deciding on the action

to take. . .

The slides show some special cases of the definition from equation (2.39). One may also
compare that with the “exercises” slide from earlier. As discussed earlier, the intuition of
“executing” a test in a particular state is that it either succeeds (it terminates properly,
by doing nothing) or it “fails” which blocks the program from continuing. In the informal
discussion back then concerning proper and non-proper termination, we drew a parallel
to raising exceptions in programming languages. That parallel is adequate in particular
for deterministic programs; for non-determistic ones it only goes so far. So, in connection
with the non-deterministic choice operator, a few more words may be in order. See below,
after finishing the discussion of equation (2.39).
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Testing > always, i.e., in each state succeeds. That means that R>? is the identity relation
itself. It can also be interpreted that executing >? corresponds to executing skip (later,
in a different context like LTL and programs there, “do-nothing” steps are also called
stuttering. . . ). Testing for ⊥ “fail” in each state when executed, which means R⊥? is
the empty relation. The corresponding program, the dual to skip, is also called fail.
The standard Boolean operators are interpreted as usual. For instance the ∧ as logical
conjuction (or as intersection of Rϕ1 and Rϕ2 , which is the same).

Finally, as the most complex case, the interpretation for [α]ϕ?: what kind of relation does
that corresponds to, resp. what does it mean to execute such a test? Well, we know what
[α]ϕ means. It specifies the “post-condition” for all executions of α. If that evaluates
to true, the test succeeds and the program can proceeds, alternatively, it fails. So, this
allows to “look into the future” of an execution, for instance, if one would write [α]ϕ? · α
as regular program. So, the rest of the program is only executed, if it assured that all
possible outcomes of α satisfy ϕ. Note that α in turn may contain further tests. Of course,
one can speak about “other” programs than the rest [β]ϕ? · α where β 6= α, but still the
rest α is only executed if the execution of β would satify the given property ϕ. Referring
to future outcomes of programs, be it α or β is a very powerful mechanism.

Earlier, we compared tests to assertions like assert(b) in standard programming lan-
guages. Those assertions are very much weaker, in particular one cannot use modal oper-
ators to speak about complex properties that may involve specifyng the future of program
and make the execution of the program depend on that. The propositional assertions
are more intended for being checked at run-time, without involving complex properties
referring to future continuations (or other complications).

Non-deterministic choice, tests, and exceptions As mentioned, the parallel between
fail, i.e., ⊥? and exceptions works convincingly for deterministic programs, for non-
determistic ones less so. That can be illustrated, of course, when combining tests with
non-deterministic choices. As in regular expressions, the non-deterministic choice operator
may be read as “or” (and written + for regular programs, for regular expression | is more
common). So, α1 +α2 may be read as “do α1 or α2”. All fine and good, but let’s combine
that with tests, and consider

ϕ? · α1 + ¬ϕ? · α2 (2.40)

For the discussion here, the form of the assertion ϕ does not matter, is it may be a simple
predicate (like x = 0 resp x 6= 0 for the negated case). The semantics starts, make a choice
between the left-hand or the right-hand side. The left-hand side will be execute if the test
ϕ? succeeds. Alternatively choose the right hand side, which “then” will be executed if
¬ϕ? succeeds, otherwise not.

What is slightly dubious seem the explanation

“first execute the choice and then check the test; if successful, continue, if non-
successful, don’t do anything”.
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It’s in particular dubious, if we intuitively think that a failed test amounts to raising an
exception. The program from equation (2.40) is interpreted as “if-then-else”: depending
on which of the two tests evaluates to true, either the left-hand side or the right-hand side
of the conditional is executed.

But if we think that first a choice is made, and afterwards, the corresponding test is
executed to see if one can continue, that is a different way of thinking about the program.
In particular, when the test is interpreted as potential exception, that’s an unplausible
illustration. In a conventional program involving choices, the semantics makes a choice,
and if that leads to an exception, then that’s what happens. Here, the failing alternative
is ignored: having a transition corresponding to a non-propertly terminating program is
interpreted the same way as not having a transition at all (remember R⊥? = ∅). It’s
unplausible to say, a program that throws an exception (or will through one in all possible
futures is the same as having no program at all).

Here, the interpretation is, that a choice is made selecting among those alternatives that
terminate properly, where branches that lead to failures (= non-proper termination) are ig-
nored as if there were not even there. This form of choosing among “successful” alternatives
while ignoring the ones that fail is called angelic choice and the form of non-determinism
angelic nondetermism.10 It miracously picks an alternative that will turn out “positively”
in that it terminates properly, if such an alternative exists. Note that the choice makes
not just a decision “right now” as in equation (2.40), which is used for illustration. Also
in a situtation α1 + α2, where the two branches are not immediately “guarded” by a test,
which can be used to make a decision now, the choice pics one of the “successful”, i.e.,
properly terminating outcomes of α1 or α2. To have such an angelic interpretation of
non-determinism is not part of a standard behavior of a programming language (neither is
the dual, choising the worst outcome, which is known as demonic choice). These notions
appear in connection with how to interpret the occurence of non-determistic choices in a
program when it comes to verify properties about it. And, as it is, regular programs have
an angelic intepretation of the choice operator.

Axiomatic System of PDL

Further reading On dynamic logic, a book nicely written, with examples and easy pre-
sentation: David Harel, Dexter Kozen, and Jerzy Tiuryn: [19]. Chap. 3 for beginners, a
general introduction to logic concepts. This lecture is based on Chap. 5 (which has some
connections with Chap. 4 and is strongly based on mathematical notions which can be
reviewed in Chap. 1)

Exercises

The exercises have been placed on a separate sheet.
10We will encounter the concept of angelic and daemonic non-determinism again.
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Exercises: Play with binary relations

• Composition of relations distributes over union of relations.
R ◦ (⋃iQi) = ⋃

i(R ◦Qi) (⋃
iQi) ◦R = ⋃

i(Qi ◦R)
• R∗ , I ∪R ∪R ◦R ∪ . . . ∪Rn ∪ . . . , ⋃

n≥0R
n

Show the following:

1. Rn ◦Rm = Rn+m for n,m ≥ 0
2. R ◦R∗ = R∗ ◦R
3. R ◦ (Q ◦R)∗ = (R ◦Q)∗ ◦R
4. (R ∪Q)∗ = (R∗ ◦Q)∗ ◦Q∗
5. R∗ = I ∪R ◦R∗

Exercises: Play with programs in DL

• In DL we say that two programs α and β are equivalent iff they represent the same
binary relation Rα = R = Rβ.

Show:

1. Two programs α and β are equivalent iff for some arbitrary propositional constant p
the formula 〈α〉p↔ 〈β〉p.

2. The two programs below are equivalent:

while ϕ1 do
α;
while ϕ2 do β

if ϕ1 then
α;
while ϕ1 ∨ ϕ2 do

if ϕ2 then β else α
Hint: encode them in PDL and use (1) or work only with relations

Exercises: Play with programs in DL Use a semantic argument to show that the fol-
lowing formula is valid:

p ∧ [a∗]((p→ [a]¬p) ∧ (¬p→ [a]p))↔ [(a · a)∗]p ∧ [a · (a · a)∗]¬p

What does the formula say (considering a as some atomic programming instruction)?
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3
LTL model checking
Chapter

What
is it

about?
Learning Targets of this Chapter

The chapter covers LTL and how to
do model checking for that logic,
using Büchi-automata.
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3.1 Introduction

In this chapter, we leave behind a bit the classical “logical” treatment of logics like asking
for validity etc., i.e., asking |= ϕ, but proceed to the question of model checking, i.e., when
does a concrete model satisfies a formula M |= ϕ (more precisely, when does a state s in a
model satisfies a formula, writtenM, s |= ϕ). We do that for a specific modal logic, indeed,
a specific temporal logic. It’s one of the most prominent ones and the first one that was
taken up seriously in computer science (as opposed to studied in logics, mathematics or
philosophy). We will also cover a central way of doing model checking of such temporal
logics, namely automata-based model checking.

3.1.1 Temporal logic?

Temporal logic is a modal logic of “time”. There is not just one temporal logic, there
are in fact many. Time in that context is mostly not understood as the real-world time,
like time of the day in hours and seconds, though there are temporal logics to deal with
that.

Time is understood more abstractly, capturing more changes in a system or situation but
abstracting away from when exactly that happens. Even if one abstracts away from that,
there aare different ways of modelling time. One inportant distinction is that of linear
vs. branching time.

The linear picture is probably more how one informally thinks about time. Each day is
followed by the next one, time flows from the past to the future, that’s the linear picture
behind a time line. Systems, in particular concurrent systems, are non-deterministic:
running it multiple times will result in different outcomes. That can come fron internal
reasons, like different scheduling decisions or other sources of internal non-determinism,
But it can also be cause by interacting with the outside world. That’s typical for reactive or
interactive systems and different interactions leads to different reactions as well (external
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non-determinism). Whatever reasons for the non-determinism, if one repeats running a
system, the run or execution, seen as a linear sequence of steps, will be different. And
typically, there are very many different runs.

But still, that’s a linear picture. The behavior of a system is characterised by a set of
runs or executions (typically a huge number, maybe infinite). Branching time takes a more
complex view. In that view, the non-determinism of the system is not just captured by the
fact that there are many different linear runs, but by modelling that a each point in time
(or a least some intermediate points in time) the system can behave non-deterministically
in that it could continue in different ways: the continuating branches. Repeating that
pattern leads to a tree-like model, which underlies branching time. We see both models
and logics for both models.

Besides that, there are other aspects how to treat time. For instance, discrete time vs.
continuous time. We mostly deal with discrete time. Systems proceed step by step, from
one state to other, and that’s discrete behavior. Time can be see as time instances or
points in time (as we mostly do), but there are also logics and models what work with
time intervals.

Another distinguishing characteristic is the following. Most logics will be able to express
properties concerning the future. Like: “never will there be a deadlock”, meaning “never
in the future”. But there also also versions that can (additionally) talk about the past.

The notion of time here, in the context of temporal logics in general and LTL in particular,
is kind of abstract. Time is handled in a similar way as we did when introducing modal
logics in general, i.e., as “relation” between states (or worlds): proceeding from one state
to another via a transition means a “temporal step” insofar that the successor state is
“after” the first state. But the time is not really measured, i.e., there is no notion of
how long it takes to do a steps. So, the systems and correspondingly the logics talking
about their behavior are not real-time systems or real-time temporal logics. There exists,
however, variants of temporal logics which handle real-time, including versions of real-time
LTL, but they won’t (probably) occur in this lecture.

3.2 Linear-time temporal logics

In linear temporal logic (LTL), also called linear-time temporal logic, is one of the
most prominent temporal logics used in model checking. It’s supported notably by Spin,
and other model-checkers. It was the first, or one of the first temporal logics taken up in
computer science, and there are variations of that logics.

With it, we can describe properties like, for instance, the following: assume time is a
sequence of discrete points i in time, then: if i is now,

• p holds in i and every following point (the future)
• p holds in i and every preceding point (the past)

. . . •pi−2 •pi−1 •pi •pi+1 •pi+2 . . .
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Time here is linear and discrete. One can consequently just use ordinary natural numbers
(or integers) to index the points in time. We will mostly be concerned with properties
referring to the future, i.e., we won’t go much into past-time LTL resp. versions of LTL
that allow to speak about the future and the past.

3.2.1 Syntax

As before, we start with the syntax of the logic at hand, it’s given by a grammar, as usual.
We assume some underlying “core” logic. Focusing on the temporal part of the logic, we
don’t care much about that underlying core. Practically, when it comes to automatically
checking, the choice of the underlying logic of course has an impact. But we treat the
handling of the underlying logic as orthogonal. We will mostly we just assume propositional
logic as core logic, but the LTL-part of the story would not change if we used first-order
logic or another logic.

The first thing to extend is the syntax: we have formulas ψ of said underlying core, and
then we extend it but the temporal operators of LTL, adding �, ♦, ©, U , R, and W . So
the syntax of (a version of) LTL is given by the grammar of Table 3.1.

ψ propositional/first-order formula
ϕ ::= ψ formulas of the “core” logics

| ¬ϕ | ϕ ∧ ϕ | ϕ→ ϕ | . . . boolean combinations
| ©ϕ next ϕ
| �ϕ always ϕ
| ♦ϕ eventually ϕ
| ϕ U ϕ “until”
| ϕ R ϕ “release”
| ϕ W ϕ “waiting for”, “weak until”

Table 3.1: LTL syntax

As in earlier logics, one can ponder, whether the syntax is minimal, i.e., do we need all
the operators, or can some be expressed as syntactic sugar by using others? The answer
is: the syntax is not minimal, some operators can be left out and we will see that later.
For a robust answer to the question of minimality, we need to wait until we have clarified
the meaning, i.e., until we have defined the semantics of the operators.

Remark on the syntax

We had mentioned it already earlier, in the section covering modal logics. The operators
always and eventually from LTL are written often as � and ♦, but they are interpreted
slightly different from the interpretation of box and diamond in conventional modal logic.
Since we are working in a linear structure, the ©-operator corresponds to both box and
diamond over the transition relation, both collapsed. One can also interpret � and ♦
from LTL to correspond to the traditional modalities over the transitive closure of the
one-step successor relation.
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3.2.2 Semantics

For the semantics, we need to define a satisfaction relation |= between “models” and
LTL formulas. In principle, we know how that works, having seen similar definitions when
discussing modal logics in general (using Kripke frames, valuations, and Kripke models).

Now, that we are dealing with a linear temporal logic, the Kripke frames are of linear
structure. As usual, what kind of valuations we employ would depend on the underlying
logics. For example for propositional LTL, one needs an interpretation of the propositional
atoms per world, for first-order LTL, one needs a choice of the free variables in the terms
and formulas (the signature and its interpretation does not change when going from one
world to another, only, potentially, the values of the variables).

That’s also what we do next, except that we won’t use explicitly the terminology of Kripke
frame or Kripke model. We simply assume a sequence of discrete time points, indexed by
natural numbers. So the numbers i, i + 1, etc. denote the worlds, and the accessibility
relation simply connects a “world” i with its successor world i+ 1.

As was done with Kripke models, we then need a valuation per world, i.e., per time
point. In the case of propositional LTL, it’s a mapping from propositional variables to the
boolean values B. To be consistent with common terminology, we call such a function of
type P → B here not a valuation as we did mostly before, but a state (but see also the
side remarks about terminology below). Let’s use the symbol s to represent such a state
or valuation. A model then provides a state per world, i.e., a mapping

N→ (P → B) . (3.1)

This is equivalently represented as an infinite sequence of the form

s0s1s2 . . . (3.2)

where s0 represents the state at the zero’th position in the infinite sequence, s1 at the
position or world one after that, etc. Such an infinite sequence of states is called path,
and we use letters π, π′ etc. to refer to paths. It’s important to remember that paths are
infinite.

Some remarks on terminology: paths, states, and valuations The notions of states
and paths . . . are slightly differring in the general literature. It’s not a big problem as
the used terminology is not incompatible, just sometimes not in complete agreement.

For example, there is a notion of path in connection with graphs. Typically, a path in a
graph from a node n1 to a node n2 is a sequence of nodes that follows the edges of the
given graph and that starts at n1 and ends in n2. The length of the path is the number of
edges (and with this definition, the empty paths from n to n contains one node, namely
n). There maybe alternative definitions of paths in “graph theory” (like sequences of
nodes instead of edges). In connection with our current notion of paths, there are 3 major
differences. Our paths are infinite, whereas when dealing with graphs, a path normally
is understood as a finite sequence. There is no fundamental reason for not considering
(also) infinite paths in graphs (and some people of course do), it’s just that the standard
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case there is finite sequences, and therefore the word path is reserved for those. LTL, on
the other hand, deals with ininite sequences, and consequently uses the word paths for
those.

The other difference is that a path here is not defined as “a sequence of nodes connected
by edges”. It’s simply an infinite sequence of valuations (and the connection is just by
the position in the sequence), there is no question of “is there a transition from state at
place i to that of at place i+ 1 (or one may see it as implicitly given by the “underlying”
implict linear Kripke-frame, where there is an edge from i to i + 1). Later, when we
connect the current notion of paths to “path through a transition system”, then the states
in that infinite sequence need to arise by connecting transistions or edges in the underlying
transition system or graph.

Finally, of course, the conventional notion of path in a graph does not speaks of valuations,
it’s just a sequence of nodes. If N is the set of nodes of a graph, and Nn the finite set
{i ∈ N | i < n}, then a traditional path (of length n) in graphs is a function Nn → N such
that it “follows the edges”.

There are other names as well, when it comes to linear sequences of “statuses” when
running a program. Those include runs, executions (also traces, logs, histories etc.).
Sometimes they correspond to sequences of edges (for instance, containing transition labels
only). Sometimes they correspond to sequences of “nodes” (containing “status-related”
information like here), sometimes both.

Anyway, for us right now and for propositional LTL), a path π, as given in Definition 3.2.1
is an infinite sequence of states (or valuations).

Paths and computations

Definition 3.2.1 (Path). A path is an infinite sequence

π = s0, s1, s2, . . .

of states. It can be seen as a mapping of type N→ (P → B).
πk denotes the suffix path sk, sk+1, sk+2, . . .. πk denotes the state sk.

It’s intended that (later) paths represent behavior of programs resp. “going” through
a transition system. A transitions system is a graph-like structure (and may contain
cycles), and a path can be generated following the graph structure. In that sense it
corresponds to the notion of paths as known from graphs (remember that the mathematical
notions of graph corresponds to Kripke frames). Note, however, that we have defined path
independent from an underlying program or transition system. It’s not a “path through
a transition system”, but it’s simply an infinite sequence of state (maybe caused by a
transition system or maybe also not).

Now, what’s a state then? It depends on what kind of LTL we are doing, basically propo-
sitional LTL or first-order LTL. A state basically is the interpretation of the underlying
logic in the given “world”, i.e., the given point in time (where time is the index inside
the linear path). In propositional logic, the state is the interpretation of the propositional
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symbols (or the set of propositional symbols that are considered to be true at that point).
For first-order logic, it’s a valuation of the free variables at that point. When one thinks
of modelling programs, then that corresponds to the standard view that the state of an
imperative program is the value of all its variables (= state of the memory).

The satisfaction relation π |= ϕ is defined inductively over the structure of the formula.
We assume that for the formulas of the “underlying” core logic, we have an adequate
satisfaction relation |=ul available, that works on states. Note that in case of first-order
logic, a signature and its interpretation is assumed to be fixed.

Definition 3.2.2 (Satisfaction). A path π satisfies an LTL formula ϕ, written
π |= ϕ, under the following conditions:

π |= ψ iff π0 |=ul ψ with ψ from the underlying core language
π |= ¬ϕ iff π 6|= ϕ

π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |=©ϕ iff π1 |= ϕ

π |= ϕ1 U ϕ2 iff πk |= ϕ2 for some k ≥ 0, and
πi |= ϕ1 for every i such that 0 ≤ i < k

The definition of |= covers © and U as the only temporal operators. It will turn out that
these two operators are complete insofar that they can express the remaining operators
from the syntax, at least the remaining temporal ones. Those other operators are �, ♦,
R, and W , according to the syntax we presented earlier. That’s a common selection of
operators for LTL, but there are sometimes even more added for the sake of convenience
and to capture commonly encountered properties a user may wish to express.

We could explain those missing operators as syntactic sugar, showing how they can be
macro-exanded into the core operators. What we (additionally) do first is giving a direct
semantic definition of their satisfaction. As mentioned already earlier, the two important
temporal operators “always” and “eventually” are written symbolically like the modal
operators necessity and possibility, namely as � and ♦, but their interpretation is slightly
different from them. Their semantic definition is straightforward, referring to all resp. for
some future point in time.

The release operator is the dual to the until operator, but is also a kind of “until” only
with the roles of the two formulas exchanged. Intuitively, in a formula ϕ1 R ϕ2, the ϕ1
“releases” ϕ2’s need to hold, i.e., ϕ2 has to hold up until and including the point where
ϕ1 first holds and if ϕ1 never holds (i.e., never “realeases ϕ2), then ϕ2 has to hold forever.
If there a point where ϕ1 is first true and thus releases ϕ2, then at that “release point”
both ϕ1 and ϕ2 have to hold. Furthermore, it’s a “weak” form of a “reverse until” insofar
that it’s not required that ϕ1 ever releases ϕ2.
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Definition 3.2.3 (Satisfiability of further operators).

π |= �ϕ iff πk |= ϕ for all k ≥ 0
π |= ♦ϕ iff πk |= ϕ for some k ≥ 0

π |= ϕ1 R ϕ2 iff for every j ≥ 0,
if πi 6|= ϕ1 for every i < j then πj |= ϕ2

π |= ϕ1 W ϕ2 iff π |= ϕ1 U ϕ2 or π |= �ϕ1

Validity and semantic equivalence

Now with the semantics nailed down, we can transport other semantical notions to LTL.
Validity, as usual captures “unconditional truth-ness” of a formula. In this case, it thus
means, that a formula holds for all paths.

Definition 3.2.4 (Validity and equivalence).

• ϕ is (temporally) valid, written |= ϕ, if
π |= ϕ for all paths π.

• ϕ1 and ϕ2 are equivalent, written ϕ1 ∼ ϕ2, if
|= ϕ1 ↔ ϕ2 (i.e. π |= ϕ1 iff π |= ϕ2, for all π).

Example 3.2.5. � distributes over ∧, while ♦ distributes over ∨.

�(ϕ ∧1 ϕ2) ∼ (�ϕ1 ∧�ϕ2)
♦(ϕ1 ∨ ϕ2) ∼ (♦ϕ1 ∨ ♦ϕ2)

In some way, especially from the perspective of model checking, valid formulas are “boring”.
They express some universal truth, which may be interesting and gives insight to the logics.
But a valid formula is also trivial in the technical sense in that it does not express any
interesting properties. After all, it’s equivalent to the formula >. In other words, it’s
equally useless as a specification as a contradictory formula (one that is equivalent to ⊥),
as it holds for all systems, no matter what.

Valid formulas may still be useful. If one knows that one property implies another (resp.
that ϕ1 → ϕ2 is valid), one could model-check using formula ϕ1 (which might be easier),
and use that to establish that also ϕ2 holds for a given model. But still, unlike in logic
and theorem proving, the focus in model checking is not so much on finding methods to
derive or infer valid formulas.

The following illustrations are for propositional LTL, where we use p, q and similar for
propositional atoms. We also indicate the states by “labelling” the corresponding places
in the infinite sequence by mentioning the propositional atoms which are assumed to hold
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π |= �p •p0 •p1 •p2 •p3 •p4 . . .

π |= ♦p •0 •1 •2 •p3 •4 . . .

π |=©p •0 •p1 •2 •3 •4 . . .

π |= p U q •p0 •p1 •p2 •q,(p)3 •4 . . .

π |= p R q •q0 •q1 •q2 •p,q3 •4 . . .

π |= p W q •p0 •p1 •p2 •p3 •p4 . . .

Figure 3.1: Illustration of LTL formulas

at that point (and leaving out those which are not). However, those are illustrations. For
instance, when illustrating π |=©p, the illustration shows that p holds at the second point
in time (the one indexed with 1). The absence of p for i = 0 in the picture is not meant to
say that it’s required that ¬p must hold at i = 0 etc. Similar remarks apply to the other
pictures.

For the last three examples from Figure 3.1, we should remark the following. For the case
of U , the q is required to show up after a finite initial sequence of p’s. For the R, the
sequence of q’s can be infinite, and in this case the p does not show up. Also for W , the
weak form of until, the sequence of p can be infinite, which in this case is obvious since
we have defined p W q as p U q ∨�p.

3.2.3 The Past

The LTL presentation so far focuses on “future” behavior, and the “future” will also be
the focus when dealing with alternative logics (like CTL or the µ-calculus (not 2021)).
In the section we shortly touch upon switching perspective in that we use LTL to speak
about the past; similar switches could be done also for the mentioned other logics, among
others. We don’t go too deep.

In a way, there is not much new here, if we just talk about the past instead of the future.
If we take a transition system (or graph or Kripke structure), in a way it’s just “reversing
the arrows” (i.e., working with the reverse graph etc.). It corresponds to “run the program
in reverse”, and then future and past swap their places, obviously. Basically, the same
conceptual picture can be done for LTL, considering the linear paths “backwards”. Of
course, instead of talking about the next state, but backwards (and using reverse paths as
models), it’s probably clearer if we leave paths as model unchanged, but speak about the
previous state instead. In general, introduce past versions of other temporal operators:
eventually (in the future) becomes sometime earlier in the past, etc. In this way, we can
also get a logic which allows to express properties that mix requirements about the future
and the past.
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It may seem as if the future and the past were basically the same. However, it’s actually
not true that future and past are 100% symmetric (as we perhaps implied by the above
discussion about reversing the perspective). What is asymmetric is the notion of path. It
is an infinite sequence (or a function N→ (P → B), but that’s asymmetric insofar it has a
start point, but no end. That will require a quite modest variation the way the satisfaction
relation |= is defined for the past operators. Apart from that, there is not really much
new.

As for the semantics now, we cannot simply use paths, we need pairs (π, j) of paths and
positions, where the position indicates the point of “now” [25]. Let’s write �−1, ♦−1 etc.
for past operators. The definition of the satisfaction relation is straightforward

(π, j) |= �−1ϕ iff (π, k) |= ϕ for all k, 0 ≤ k ≤ j
(π, j) |= ♦−1ϕ iff (π, k) |= ϕ for some k, 0 ≤ k ≤ j

However, it can be shown that for any formula ϕ, there is a future-formula, a formula
without past operators, ψ such that

(π, 0) |= ϕ iff (π, 0) |= ψ

Example 3.2.6 (Past and future LTL). Let’s consider as example the property

�(ϕ→ ♦−1ψ) (3.3)

mixing future and past operators. It expresses that if a ϕ occurs at a point, there must
have been a point before, where ψ held, and that implication holds always.

That property can be expressed equivalently without past operators, using the (future)
release operator:

ψ R (ϕ→ ψ) . (3.4)

I.e., (π, 0) |= �(ϕ→ ♦−1ψ) iff (π, 0) |= q R (p→ q).

Figure 3.2 illustrates the two equivalent formulations of the property.

•p→♦−1q •p→♦−1q •p→♦−1q •p→♦−1q • . . .

•p→q •p→q •p→q,q • • . . .

Figure 3.2: Illustration of the formulas from Example 3.2.6
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3.2.4 Some LTL examples

Let’s have a look at a few temporal properties and how they can be captured by LTL.
LTL has a formal syntax and semantics, one can capture thus temporal properties unam-
biguously and precisely. Often, though, one starts with informal requirements and it can
be difficult to correctly capture informally stated requirements in temporal logic.

Let’s try to capture the vaguely formulated property

“when p then q.”

It’s not really clear that that is supposed to mean. Here are some more or less plausible
formalizations:

ϕ→ ψ ϕ→ ψ holds in the initial state.
�(ϕ→ ψ) ϕ→ ψ holds in every state.
ϕ→ ♦ψ ϕ holds in the initial state, ψ will hold in some state.
�(ϕ→ ♦ψ) (“response”)

The last formulation is also called a response property (and sometimes one uses a special
notation for that, namely ϕ  ψ). It is not obvious, which one of them (if any) is
necessarily what is intended.

Let’s do a few more examples.

Example 3.2.7. ϕ→ ♦ψ: If ϕ holds initially, then ψ holds eventually.

•ϕ • • •ψ • . . .

This formula will also hold in every path where ϕ does not hold initially.

•¬ϕ • • • • . . .

Example 3.2.8 (Response). �(ϕ→ ♦ψ)

Every ϕ-position coincides with or is followed by a ψ-position.

• •ϕ • •ψ • •ϕ,ψ . . .

This formula will also hold in every path where ϕ never holds.

•¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ . . .
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Example 3.2.9 (∞). �♦ψ There are infinitely many ψ-positions.

•ψ • • •ψ • •ψ • . . .

Note that this formula can be obtained from the previous one, �(ϕ → ♦ψ), by letting
ϕ = >: �(> → ♦ψ).

Before we continue with some more examples, let’s pause for a while and look at the
previous three examples, and compare them with a simpler one, like �p. It’s an example
of an invariant property or just an invariant, requiring that p always holds.

The previous examples, maybe especially the last one about about infinitely many occur-
rences of something, feel more complex, not just because there are the formula is bigger.
Here we discuss and give arguments what’s distinguishes the formulas of the examples
from, for instance, the invariance �p.

Let’s assume we have some system and we want to check whether those properties from
the examples hold. Let’s assume we don’t do model checking, but something simpler like
monitoring or run-time verification. That means, we are dealing with a running system
and we keep an eye on the execution path and the temporal formula to see whether it
holds or not. Of course, it’s a program, not us, that keeps an eye on the situation, and
that’s the run-time monitor. The task is simpler than model checking insofar run-time
verification deals with one execution, whereas model checking attempts to systematically
explore all of them. Checking only one execution, one cannot hope for full verification of
a program. One cannot even hope to establish that the monitored execution satisfies the
property. Why’s that? That’s because paths are infinite. The only thing one can hope
for is that the monitor detects a violation of the specification, and then flags an alarm or
takes corrective actions. That is possible for the an invariance property �p, but not for
the previous examples. For instance, the property from Example 3.2.9 states that there
are infinitely points in time where the property hold. Monitoring can neither confirm that,
it would take an infinite amount of time, nore can it detect a violation. It’s a property one
cannot monitor. Technically, that distinction can be captured by classifying properties as
safety properties on the one hand, the ones that can be monitored, and liveness properties,
those that can’t.

Obviously, properties can contain both aspects, like in a conjunction of �ϕ and one of
the three previous examples. However, it can be shown that every LTL formula can be
equivalently expressed by a conjunction of a pure safety property and a pure liveness
properties. We will talk more precisely about safety vs. liveness later.

The discussion here reasoned that liveness properties like the one from Example 3.2.9 are
intuitively more complex, by pointing out that they inuitively cannot be monitored, unlike
the safety properties. LTL model checking can check all of LTL, safety and liveness, at least
for finite-state systems, but also there, liveness properties are more tricky to deal with.
Model-checking safety properties are actually almost a non-brainer. Take the simplest
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safety property �p. Given a finite-state system, how does one do that? Just exploring
at all possible reachable states, see if any of them violates p. If so, the property does not
hold, if one finds no violation, the property holds. So that’s a straightforward graph search.
Of course the state-graph may be immensely huge. So it requires clever representation
techniques and exploration strategies to do that in practice. But the problem itself is a
graph search, something one learns in the first or second semester, if not earlier.

It’s not obvious at all how one can check liveness properties, like the one from Example
3.2.9 by a finite system. We will see that later, when we address the algorithmic problem
to LTL model checking.

Let’s continue with some more examples- One can check one’s intuition also on the fol-
lowing examples, whether they are safety or liveness properties (or neither).

Example 3.2.10 (Permanence). Eventually ϕ will hold permanently: ♦�ϕ.

• •ϕ • • •ϕ •ϕ •ϕ . . .

Equivalently formulated: there are finitely many ¬ϕ-positions.

Example 3.2.11. (¬ϕ) W ψ

The first ϕ-position must coincide or be preceded by a ψ-position.

•¬ϕ •¬ϕ •¬ϕ •ψ •ϕ • • . . .

ϕ may never hold

•¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ . . .

Example 3.2.12. �(ϕ→ ψ W χ)

Every ϕ-position initiates a sequence of ψ-positions, and if terminated, by a χ-position.

• •ϕ,ψ •ψ •ψ •χ • •ϕ,ψ . . .

The sequence of ψ-positions need not terminate.

• •ϕ,ψ •ψ •ψ •ψ •ψ •ψ . . .



3 LTL model checking
3.2 Linear-time temporal logics 93

Example 3.2.13 (Nested waiting-for). A nested waiting-for formula is of the form

�(ϕ→ (ψm W (ψm−1 W · · · (ψ1 W ψ0) · · · ))),

where ϕ,ψ0, . . . , ψm in the underlying logic. For convenience, we write

�(ϕ→ ψmW ψm−1W · · · W ψ1W ψ0).

. . . •ϕ,ψm •ψm •ψm •ψm−1 •ψm−1 . . .

. . . •ψ2 •ψ2 •ψ1 •ψ1 •ψ0 . . .

Every ϕ-position initiates a succession of intervals, beginning with a ψm-interval, ending
with a ψ1-interval and possibly terminated by a ψ0-position. Each interval may be empty
or extend to infinity.

3.2.5 Dual connectives and complete sets of connectives

In logics, not just in modal logics, one finds often pairs of operators, which are each other’s
opposites. The two quantifiers ∀ and ∃ are an example. Opposite does not mean that
one is the negation of the other. Clearly ¬∀ϕ means something else than ∃ϕ. But it
corresponds to ∃¬ϕ. This form of being in opposition with each other is called duality.

Definition 3.2.14 (Duals). For binary boolean connectives ◦ and •, we say that •
is the dual of ◦ if

¬(ϕ ◦ ψ) ∼ (¬ϕ • ¬ψ).

Similarly for unary connectives: • is the dual of ◦ if ¬ ◦ ϕ ∼ •¬ϕ.

Duality is symmetric, i.e., if • is the dual of ◦ then ◦ is the dual of •. Thus we may refer
to two connectives as dual to each other.

The ◦ and • operators are meant as “placeholders”. One can have a corresponding notion
of duality for the unary operators ♦ and �, and even for null-ary “operators”.

Concerning propositional connectives, ∧ and ∨ are duals, and ¬ is (trivially) its own
dual.

¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ).

If we use 6← for the negated reverse implication, then that is the dual of →?:
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¬(ϕ 6← ψ) ∼ ϕ← ψ

∼ ψ → ϕ

∼ ¬ϕ→ ¬ψ .

A set of connectives is complete (for boolean formulae) if every other connective can be
defined in terms of them. Our set of connectives is complete (e.g., 6← can be defined), but
also subsets of it, so we don’t actually need all the connectives.

Example 3.2.15. The set of connectors ∨ and ¬ is complete. ∧ is the dual of ∨, as
mentioned. The other connectors can be expressed as follows:

ϕ→ ψ ∼ ¬ϕ ∨ ψ
ϕ↔ ψ ∼ (ϕ→ ψ) ∧ (ψ → ϕ)

> ∼ p ∨ ¬p
⊥ ∼ p ∧ ¬p

Actually, it’s not just a complete set, it’s also a minimal complete selection in the sense
that one cannot remove one of the two connectors without loosing completeness. As is
well-known, it’s not the only minimal complete choice of operators. An even smaller
selection is the set consisting just of NAND (or just of NOR).

In LTL, the two operators � and ♦ are duals:

¬�ϕ ∼ ♦¬ϕ and ¬♦ϕ ∼ �¬ϕ (3.5)

As a side remark: the symbols � and ♦ are also part of modal logics in general, with a
different interpretation. But also there, both are duals of each other.

Back to LTL, � and ♦ are not the only temporal duals. Also U and R are each other’s
duals.

¬(ϕ U ψ) ∼ (¬ϕ) R (¬ψ) and ¬(ϕ R ψ) ∼ (¬ϕ) U (¬ψ) (3.6)

We don’t need all our temporal operators either:

Proposition 1 (Complete set of LTL operators). The set of operators ∨,¬,U , and © is
complete for LTL.

Proof. The remaining temporal operators can be expressed as follows:

♦ϕ ∼ > U ϕ
�ϕ ∼ ⊥ R ϕ

ϕ R ψ ∼ ¬(¬ϕ U ¬ψ)
ϕ W ψ ∼ �ϕ ∨ (ϕ U ψ)

The completeness for the propositional connectives has been covered earlier.
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invariant �ϕ
example of a liveness property ♦ϕ
obligation �ϕ ∨ ♦ψ
recurrence �♦ϕ
persistence ♦�ϕ
reactivity �♦ϕ ∨ ♦�ψ

Table 3.2: Classification of LTL properties

3.2.6 Classification of properties

We have seen a couple of examples of specific LTL formulas, i.e., specific properties.
Specific “shapes” of formulas are particularly useful or common, and they sometimes get
specific names (like “response” or “permanence”). If we take © and U as a complete core
of LTL, then already the shape > U ϕ is so useful that it does not only deserve a special
name, it even has a special syntax or symbol, namely ♦. We have encountered other
examples before as well (like permanence) and in the following we will list some more.

Another very important classification or characterization of LTL formulas is the distinction
between safety and liveness. Actually, one could see it not so much as a characterization of
LTL formulas, but of properties (of paths). LTL is a specific notation to describe properties
of paths (where a property corresponds to a set of paths). Of course not all sets of paths
are expressible in LTL (why not?). The situation is pretty analogous to that of regular
expressions and regular languages. Regular expressions play the rule of the syntax and
they are interpreted as sets of finite words, i.e., as properties of words. Of course not all
properties of words, i.e. languages, are in fact regular, there are non-regular languages
(context-free languages etc.).

Coming back to the LTL setting: it’s better to see the distinction between safety and
liveness as a qualification on path properties (= sets or languages of infinite sequences
of states), but of course, we then see which kind of LTL formulas are capturing a safety
property or a liveness property.

Note (again) that “safety” or “liveness” is not property of a paths, it’s a property of path
properties, so to say. In other words, there will be no LTL formula expressing “safety”
(it makes no sense), there are LTL formulas which correspond to a safety property, i.e.,
expresse a property that belongs to the set of all safety properties.

There is a kind of “duality” between safety and liveness in that safety is like the “oppo-
site” of liveness, but it’s not that properties fall exactly into these to categories. There
are properties (and thus LTL formulas) that are neither safety properties nor lifeness
properties.

Safety properties: never anything bad happens

Table 3.2 contains a few kind of formulas, where ϕ, ψ are non-temporal formulas. The
second one, “eventually ϕ”, is not liveness as such, but it’s an example of a liveness
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property, maybe the simplest one. A similar discussion was done when we drew some
parallels between Hoare-logic and dynamic logic.

The invariant is a prominent example of a safety property. Each invariant property is also
a safety property. Some even use the words synonymously, but according to the consensus
or majority opinion, invariant properties are a subset of safety properties. See for instance
the rather authoritative textbook Baier and Katoen [2]. It’s however true that invariants
are perhaps the most typical, easiest, and important form of safety properties and they
also represent the essence of them. In particular, if one informally stipulates that safety
corresponds to

“never something bad happens”,

then that translates well to an invariant (namely the complete absence of the bad thing:
“always not bad”). That characterization of safety is due to Lamport. We also focus on
invariance (see Definition 3.2.16), without given the slightly more complex characterization
of safety.

As we mentioned earlier, there is a connection to monitoring and run-time verification:
Safety-properties are those that can be monitored.

Definition 3.2.16 (Invariant). An invariant formula or just invariant is of the form

�ϕ (3.7)

for some propositional (or more generally, non-temporal) formula ϕ.

Safety formula of the (simplified) form from Definition 3.2.16 express invariance of some
state property ϕ: that ϕ holds in every state of the computation. A state property is
just what the name implies. It’s a property of individual points in time, as opposed
to properties of paths. This distinction will be more prominent later in branching time
logics like CTL or similar. State properties here are captured by the underlying logic, like
propositional logics. Path properties are the the temporal properties.

Example 3.2.17 (Mutual exclusion). Mutual exclusion is a safety property. Let ci denote
that process Pi is executing in the critical section. Then

�¬(c1 ∧ c2)

expresses that it should always be the case that not both P1 and P2 are executing in their
respective critical section.

Observe: the negation of a safety formula is a liveness formula; the negation of the formula
above is the liveness formula

♦(c1 ∧ c2)

which expresses that eventually it is the case that both P1 and P2 are executing in the
critical section.
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Liveness properties

As for safety properties, also here we content ourselves with showing a straightforward
formula expressing liveness, not by characterizing liveness as a property of properties.

Definition 3.2.18 (Liveness). A liveness formula is of the form

♦ϕ (3.8)

for some propositional (or more generally, non-temporal) formula ϕ.

Liveness formulae guarantee that some event ϕ eventually happens: that ϕ holds in at
least one state of the computation.

Connection to Hoare logic After having shed some light on safety and liveness in the
context of LTL, let’s take a quick detour to one famous program logic, namely Hoare logic.
As with most logics, there is not just the one Hoare logic, it’s more style of logics with
many realization.

The lecture does not formally introduce (a specific variant of a) Hoare logic, we just do
some general remarks, to point out a parallel with safety and liveness.

Hoare-logic, named by it’s inventor Tony Hoare, is a so-called program logics. It’s formulas,
ultimately, speak about states of programs, and how that states changes. BTW: since the
logic is about talking and reasoning of state changes, it’s used for imperative program. To
do so, it makes use of assertions. That’s nothing else than formulas in typically first-order
logic (or some variation or fragment) with free variables. Also outside of (Hoare-logic)
program verification, assertions are often supported by programming languages. Java, for
instance, has a assert command. The argument of such a command is an expression
of boolean type. That expression of course can contain some variables, and also Boolean
connectors. Quantifiers are not supported, so it’s a fragment of first-order logic, supporting
propositional logic and the possiblity to talk about variables and functions (or methods)
and relations. In that programmer’s use of assertions, the purpose is not so much to do
program verification or model checking, it’s run-time assertion checking. If in a run, an
assertion at some point in the program code is violated, an exception is raised.

Hoare logics is concerned with verification, and a Hoare-logic proof system provide rules
that capture the effect of the constructs of the programming language on the program
state, when the construct is executed.

That is done by relating the “assertion” before a statement with the one afterwards. This
leads to the well-known pre-condition and post-condition formulation, typical for Hoare
logic., especially appropriate for sequential prog

There are two ways a Hoare-logics specification on a program can be interpreted. The two
ways are called partial correctness and total correctness. The first one states, that when
starting in a state that satisfies the pre-condition, should the program terminate, then it
will be in a state that satisfies the post-condition. Note that under the partial correctness
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interpretation, a pre- and post-condition specification has no opinion on non-terminating
programs.

That’s different for total correctness. Total correctness states that, when starting in a
state that satisfies the precondition, then it’s guaranteed that the program terminates,
and, upon termination, satisfies the post-condition.

Of we use terminated as predicate to express termination, we can express partial and total
correctness of a program P with pre-condition ϕ and post-condition ψ as follows

ϕ→ �(terminated(P )→ ψ) resp. ϕ→ ♦(terminated(P ) ∧ ψ). (3.9)

The formulas are formulas in LTL notation, in Hoare logic would express pre- and post-
conditions notationally as { ϕ } P { ψ } (a so-called Hoare-triple of pre-condition, post-
condition and the program in the middle.)

The two formulas of equation (3.9) are not of the form called safety and liveness from Def-
initions 3.2.16 and 3.2.18. The form is sometimes called conditional safety and conditional
liveness formula, being conditioned on the precondition ϕ.

When independent from the precondition, resp. assume ϕ to be “true”, partial and total
correctness are directly safety and liveness conditions of the form introduced.

Partial correctness may look as a weaker version of total corrctness, already the name
seems to imply that. Perhaps surprisingly it turns out partial and total correctness are
dual to each other. Let’s focus on the un-conditional version, post-condition only. Then,
it should become not so surprising after all: � and ♦ are defined refering to all time points
in the future, resp. to some time point in the future. And ∀ and ∃ are dual operators.

Let’s introduce the following ammbreviations:

PC (ψ) , �(terminated → ψ) and TC (ψ) , ♦(terminated ∧ ψ)

Then
¬PC (ψ) ∼ PC (¬ψ) and ¬TC (ψ) ∼ TC (¬ψ)

Other classes of formulas: Obligation, recurrence and persistence, reactivity

Here the definition of obligations.

Definition 3.2.19 (Obligation). A simple obligation formula is of the form

�ϕ ∨ ♦ψ

for propositional (or generally non-temporal) formulas ϕ and ψ.
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Such a property can equivalently be written as

♦ϕ→ ♦ψ

The equivalent form ♦χ→ ♦ψ states that if some state satisfies χ, then some state must
satisfy ψ.

Obligations subsume safety and liveness properties (and the form presented here).

Proposition 2. Every safety and liveness formula is also an obligation formula.

Proof. It’s a consequence of the following equivalences.

�ϕ ∼ �ϕ ∨ ♦⊥ and ♦ϕ ∼ �⊥ ∨ ♦ϕ

and the facts that |= ¬�⊥ and |= ¬♦⊥.

To be recurrent means to occur over and over again. That can be caputured as follows.

Definition 3.2.20 (Recurrence). A recurrence formula is of the form

�♦ϕ

for some propositional (or more generally, non-temporal) formula ϕ.

It implies that there are infinitely many positions where ϕ holds. A response formula, of
the form �(ϕ→ ♦ψ), is equivalent to a recurrence formula, of the form �♦ψ, if we allow
χ to be a past-formula.

�(ϕ→ ♦ψ)↔ �♦(¬ϕ) W−1 ψ

Next we express some form of fairness as a recurrence property. There are two main
variants of fairness, weak and strong fairness. Generally it means that given two or
more processes competing repeatedly on some resource, it’s not that case that one of the
competing processes is neglected all the time. If applying long enough or often enough
for a resource must ultimately give access to the resource. Resource can mean various
things, typical is processor time or acquiring a lock and getting access to a critical region.
Equation (3.10) below is formulated referring to a step τ , that is enabled resp. is taken.

Example 3.2.21 (Weak fairness). Weak fairness can be specified as the following recurrence
formula.

�♦(enabled(τ)→ taken(τ)) (3.10)
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An equivalent form is

�(�enabled(τ)→ ♦taken(τ)),

Fairness is a concept from concurrent or parallel systems, and can be expressed in LTL.
Later we will see, fairness is not expressible in CTL, another important temporal logics.

As said, fairness means, that some actions or processes are not “unduly neglected” in favor
of other actions or processes. To speak of fairness, there must be an element of choosing
from alternatives (at least two). Another element is that the choice is repeated. If one
has just one choice between two alternatives a one point in time and one is chosen, then
that is neither fair nor unfair. However, if one repeatedly favors one alternative over the
other, then that is unfair. Repeatedly refers actually to infinitely often. So just selecting
alternative A 500 times before choosing B is not a violation of fairness, choosing always
A in an infinite run is.

Often, the choices being made is between actions of different processes, choosing to execute
a statement of process P1 or of P2 (if one has a system of 2 processes). So, that makes
fairness a (typically desired) property of a scheduler. It’s also a very “abstract” and
general notion (taking an “infinitely long” perspective before one speaks about fairness
or unfairness). As hinted at above, if a scheduler assigns 5 times as many slots to P1
compared to P2, thus executing it five times as fast as the other, one might see that as
“unfair” in some sense, but not in the technical sense of fairness defined here. There are
also “bounded” versions of fairness (which we don’t treat here)

For fairness one distinguishes between a strong and weak version. It’s connected with
scheduling as well and the notion of enabledness (of transitions or steps). Transitions can
be enabled or not. That in particular applies to actions in connection with synchronization.
For instance, if a process is at a point where the next action is to take a lock, that step
may or may not be enabled, depending on whether the lock is free or taken. An non-
enabled action that is never scheduled does not count as unfair scheduling: it’s not the
scheduler’s fault that, for instance, the owner of the lock does not give it back, thereby
enabling the other processes waiting on the lock. It may be characterized as unfairness
at some higher-level of looking at the program or characterized as different form of defect
(maybe caused by a deadlock), but it’s not unfairness on the level of scheduling actions:
only actions that are enabled and could thereby be actually selected count when thinking
about fairness.

Weak fairness means, an enabled action cannot remain enabled forever without being
chosen. Strong fairness requires that an action cannot be not chosen if it is enabled
infinitely often (but not necessarily continuously enabled). For instance, in the lock-
illustration: if the lock is taken and released by other processes, then for some process
waiting to take it, the corresponding action toggles between being enabled and disabled.
Weak fairness does not require that the process ultimately get’s the lock, but strong fairness
would ensure that.

Weak and strong fairness are be “recurrent” (sorry for the pun) themes in dealing with
concurrent system. They may also show up in later parts of the lecture, and we will also
see how to express the weak variant in LTL later.

The next property we look at is called persistence or alternatively stabilization.
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Definition 3.2.22 (Persistence). A persistence formula is of the form

♦�ϕ

for some propositional (or more generally non-temporal) formula ϕ.

Persistence of ϕ means, that at some point onwards, it will from then on always ϕ. This is
another way of saying that only finitely many position satisfy ¬ϕ. In other words, persis-
tance is dual to the property “infinitely often”, which is also called recurrence. Recurrence
and persistence are duals:

¬(�♦ϕ) ∼ (♦�¬ϕ) and ¬(♦�ϕ) ∼ (�♦¬ϕ)

The last class of properties is called reactivity, combining persistence and recurrence.

Definition 3.2.23 (Reactivity). A simple reactivity formula is of the form

�♦ϕ ∨ ♦�ψ (3.11)

for propositional (or more generally, non-temporal) formulas ϕ and ψ.

A very general class of formulas are conjunctions of reactivity formulae.

An equivalent formulation of the reactivity formula is

�♦ψ′ → �♦ϕ,

(or also �(�♦χ → ♦ψ)) which states that if the computation contains infinitely many
χ-positions, it must also contain infinitely many ψ-positions.

3.2.7 GCD Example

Let’s look at a small example, a really small one. It mainly intended to illustrate LTL one
more time, connecting it to the behavior of a program. It’s not a typical program for LTL
problems or model checking, insofar that it’s effectively a sequential program.
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The code is some form of pseudo-code for concurrent processes. The code should be
roughly understandable. The body of the process is the lower half of the code. Basically a
big while-loop, consisting of two alternatives, each consisting by of an await-statement.
What exatcly that is does not matter right now. Effectively, in this example the body
of the loop is a two armed alternative. At no point, both branches of the alternative are
enabled, as at most one condition guarding the branches can be true. Additionally the
branches are executed atomically, and that effectively makes the program sequential. So
it’s a fancy version of writing the good old GCD algorithm.

The variables a and b are the inputs of the program, and g is the output. As is often
assumed and good practice, the input variables are immutable, and the output is likewise
not mutated, up until the end when the result is to be returned.

The red l’s that show up in the program are not part of the program. They are indicated
to refer to different control-flow points in the code (and l stands for location or label).
One can (and should) make a difference between labels in the program and locations in
the following sense. In the program, there are labels that refer semantically to the same
control-flow points. For instance l0 and l1. So while in the syntax of the program code, l0
and l1 are different labels, it’s best to think of them to refer to the same location. We don’t
make that formal nor do we make explicit how to turn a program into a control-flow graph;
the locations correspond to nodes in a control flow graph. Control-flow graphs are com-
mon intermediate representations inside a compiler, and actually also model checkers like
Spin use control-flow graph internally. After all, Spin compiles a programming-language
notation for an imperative, concurrent language to executable code, which executes not
just the code, but runs the code being checked against the LTL formula and arranging for
exploring the state-space (plus doing a lot of further tricks and optimizations).

Below is a computation π of our recurring GCD program. States are of the form 〈l, x, y, g〉,
consisting of the location and the values of the local variables x and y as well as the variable
g for the result. One can make the argument, that also the values of a and b are part of
the state, but those don’t change, so we can safely ignore them as uninteresting.

States are of the form 〈l, x, y, g〉, and the execution shown below is an (infinite) sequence
of states. It’s infinite, since for LTL, we need to work with infinite paths (which arise
form the infinite execution). The GCD program is terminating, so it does not technically
continues executing forever, but the usual “trick” to handle that is obvious: when the
program terminates, one assumes that it continues doing steps without changes to the
status. This is known as (one form of) stuttering, and we will cover aspects of stuttering
later (but, as said, the idea as such is rather obvious).

Let at(ln) represent the formula expressing that the program is at location ln, i.e., at a
state of the form 〈ln,_,_,_〉. Let furthermore terminated represent the formula at(l8).

π : 〈l1, 21, 49, 0〉 → 〈lb2, 21, 49, 0〉 → 〈l6, 21, 49, 0〉 →
〈l1, 21, 28, 0〉 → 〈lb2, 21, 28, 0〉 → 〈l6, 21, 28, 0〉 →
〈l1, 21, 7, 0〉 → 〈la2 , 21, 7, 0〉 → 〈l4, 21, 7, 0〉 →
〈l1, 14, 7, 0〉 → 〈la2 , 14, 7, 0〉 → 〈l4, 14, 7, 0〉 →
〈l1, 7, 7, 0〉 → 〈l7, 7, 7, 0〉 → 〈l8, 7, 7, 7〉 → · · ·
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Now, do the following properties hold for π? And why?

�terminated (safety)
at(l1)→ terminated
at(l8)→ terminated
at(l7)→ ♦terminated (conditional liveness)
♦at(l7)→ ♦terminated (obligation)
�(gcd(x, y) .= gcd(a, b)) (safety)
♦terminated (liveness)
♦�(y .= gcd(a, b)) (persistence)
�♦terminated (recurrence)

3.2.8 Exercises

Exercises

1. Show that the following formulas are (not) LTL-valid.
a) �ϕ↔ ��ϕ
b) ♦ϕ↔ ♦♦ϕ
c) ¬�ϕ→ �¬�ϕ
d) �(�ϕ→ ψ)→ �(�ψ → ϕ)
e) �(�ϕ→ ψ) ∨�(�ψ → ϕ)
f) �♦�ϕ→ ♦�ϕ
g) �♦ϕ↔ �♦�♦ϕ

2. A modality is a sequence of ¬, � and ♦, including the empty sequence ε. Two
modalities π and τ are equivalent if πϕ↔ τϕ is valid.
a) Which are the non-equivalent modalities in LTL, and
b) what are their relationship (ie. implication-wise)?

3.3 Automata-based model checking

3.3.1 LTL model checking

Given a formula ϕ in some logic and a model M , appropriate for the logic, model-checking
in general is about answering the question whether

M |=? ϕ, (3.12)

i.e., whether the model satisfies the formula. In our case of temporal logics, the model
takes the form of a transition system together with a starting state, there the transitions
represent steps of a program or system (resp. perhaps an abstraction of a real system).

That’s a straight enough problem, but how to address it depends on the concrete form of
the models and the concrete logics.

As far as the models go, and independent from the logics, a big challenge is typically the
size of the model or transition system: the state space of the model is simply huge for
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realistic problems, maybe even infinite. At least in principle infinite: if one has programs
that work with numbers, then there are infinitely many. One can make the argument that
on a computer, there are only finitely many representable numbers, like up-to MAXINT,
but even if in this case the state space is actually finite, it’s “practically infinite”, since it’s
just too many. Similarly if one tries to verify programs with dynamic data structures, like
lists and trees, etc. Also there, the argument that computer memory is limited and this
there is an upper bound on the size of the trees may be technically true, but not really
helpful in practice.

Of ourse, not all problems require dynamic data structures, some programs run on firmware
or hardware, and indeed, model checking hardware-close systems and algorithms is seen
as one important application area; software being way more challenging.

A prime application area for model checking is also concurrent systems (hardware or
software). When dealing with natural numbers and data structures, which cause huge
or infinite state spaces, other (or additional) techniques may be more adequate, used
in combination with model checking. For concurrent system, there is another reason
why state-spaces become huge. That’s because of processes running concurrently can be
executed with many different interleavings. What makes it tricky is that concurrency-
related bugs are often . . .

3.3.2 Automata-based LTL model checking

As said, there are many variations on the theme of temporal logic model checking: dif-
ferent logics, different kinds of target systems, different models, different techniques, dif-
ferent optimizations, . . . We focus in this section on one prominent technique for LTL,
automata-based model checking.

It’s a method for finite-state models and it an example of so-called explicit state-space
model checking. It’s called explicit state model checking, as the states of the system are
individually represented and the model-checking processe explores the state-space by one
individual state after another. An alternative, which represents sets of states jointly, is
known as symbolic model checking (but that’s for later).

Let’s assume, the transition systems come with one specific state, the initial state. Kripke
frames don’t come equipped with a start state, but for model checking transition systems
representing programs, it’s conventional to assume one specific state. It actually does
not change the problem in the least, but streamlines the following discussions a bit, by
avoiding that we have to say “assume a Kripke-structure M together with a state s. . . ”
over an over again. And as said, it’s conventional for model checking systems anyway.
So, a model M , a transition system, is now a defined like what we introduced as Kripke
structure but with additionally an initial state.

With that triviality out of the way, let’s ask ourselves: in the setting of LTL, with transition
systems as models, and given the model-checking problem from equation (3.12), how could
one go for it?

For simple LTL-formulas like invariance properties �p, it’s conceptually pretty simple.
We are given the model as a transition system, for each state we have the valuation for
the propositional atoms. In particular we are given the status of p for each place. The
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invariance from equation (3.12) holds, if all paths in M , that start from its initial state
s0, satisfy p (see Definition 3.2.2). That’s in general infinitely many paths, and each path
itself is infinite.

But this infinity is not a big deal: one simply has to explore the transition system, starting
from s0, checking all states reachable from s0. If all reachable states satisfy p, the property
holds for all paths starting at s0, i.e., M |= �p holds. If the exploration discovers one
place that violates p, then the model-checking question is answered negatively, and one can
stop the exploration (unless one is interested in all places that violate p). As we assume
that the system is finite, the problem is solved. There may be practical challenges, like
the size of the transition system, but deciding whether �p holds in a finite-state model is
conceptually simple.

Of course, �p is arguably the simplest temporal property, an easy instance of a safety
property. Things don’t look quite so easy with more complex properties. Let’s take ♦�p
as example, expressing infinitely many occurrences of p on all path. How to check that? If
we were interested in checking that there exists a path inM , starting from s0, that contains
infinitely many places where p holds, one could come up with the following: starting from
s0, try to reach a state s such that, starting from s, one finds a cycle in the graph, leading
back to s such that on the cycle, there is a s′ where p holds. One could arrange that more
efficiently than going on a loop-finding mission for all reachable s’s one after the other, but
doing those loop-searches naively would already solve the problem. Of course to decide
the question, one needs to explore, for each place s, all loops. Of course if one has run
through one particular cycle one time, one does not have to run through the same cycle
again, so one can restrict the seach to simple cycles and that makes the problem finite, so
it seems doable.

We made plausible how to look for some path that satisfies �p. The standard form of
LTL are not looking whether there exists a path, it is about checking all paths. One could
try to address that similarly, checking more or less cleverly for reachable states that are
contained in cycles in the graph.

All that may be plausible but we need a general method that works for all of LTL. That’s
the main topic of this chapter, automata-based LTL model checking. We start by laying
out the general ideas behind the approach, details will come later.

The big picture: automata-based LTL model checking as a form of refutation

In a bird’s eye view and very generally, the method can be seen as a refutation proof
method. In the chapter covering non-temporal logics, we touched upon proof-systems,
sketching rule-systems to derive valid formulas. Proof by refutation works differently, so
the proof systems we sketched back then are no refutation systems. Refutation means
doing a proof by contradiction. Instead of proving a formula ϕ, one assumes the opposite
¬ϕ and if, assuming the opposite, one is able to derive absurdity ⊥ (a contradiction), then
the original formula ϕ must be true (or valid etc). In non-intuitionistic logics, that works
fine: instead of trying to establish validity of ϕ, one tries non-satisfiability of ϕ, as both
is equivalent. Formulaically:
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|= ϕ iff ¬ϕ |= ⊥ . (3.13)

Remember, that the core of the satisfaction relation for LTL is defined as a relation be-
tween one paths and one formulas (see Definition 3.2.2). The satisfaction relation between
transition systems and formulas from equation (3.12) is derived from that, posing a re-
quirement on all paths of M starting its initial state.

Formulas describe sets of paths, namely all paths that make the formula true, but likewise
transitition systems describes sets of paths, namely all the paths that start in its initial
state. We can therefore view the model checking problem M |=? ϕ from equation (3.12)
as entailment problem.

Let’s treat the transition system M as specification of all its paths. We can write [[M ]] for
the set of all its paths starting at its initial state. While going down that road, we might
as well say “a path π satisfies M”, i.e. writing π |= M for π ∈ [[M ]]. With this picture
in mind, then the model-checking question M |=? ϕ is the logical entailment: every path
“satisfying” M also satisfies ϕ.

That does not help much in practically addressing the model checking problem, but it helps
to see the analogy to refutation methods. In analogy to validity from the equivalence from
equation (3.13), the entailment can be refuted based on the following equivalence:

Γ |= ϕ iff Γ,¬ϕ |= ⊥ . (3.14)

The set of formulas Γ,¬ϕ on the left hand side of |= is interpreted as conjunction of the
formulas of Γ and ¬ϕ. An entailment is refuted if there is not interpretation that satisfies
all formulas from Γ and ¬ϕ at the same time. In our picture seeing M as well as ϕ as
specifying a set of paths, we could write

M |= ϕ iff M ∧ ¬ϕ |= ⊥ . (3.15)

Alternatively we can formulate entailment as subset requirement:

[[M ]] ⊆ [[ϕ]] iff [[M ]] ∩ [[ϕ]] = ∅ . (3.16)

where we use A to represent the complement of a set A. So [[ϕ]] is represents the negated
formula [[¬ϕ]].

The big picture (2): steps of the construction

We have seen now that model checking can (also) be understood as refutation problem.
And that picture is underlying the automata-based model checking approach which is the
topic of this chapter. But it’s still just a picture. What we need is to operationalize it, to
turn in into an algorithm. So how can one solve the problem
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[[M ]] ∩ [[ϕ]] = ∅ , (3.17)

where M is a transition systems representing the system we want to check and ϕ the
specification in LTL?

In the refutation-discussion we said, the M can also seen as a “logical” specification,
namely specifying a set of paths. But of course M and ϕ are specifications of paths of
quite different formalisms. M is a transition system and ϕ a logical formula. So a notation
like ϕ ∧M we allowed ourselves (in equation (3.15)) is a bit dubious (but of course the ∧
is un-dubiously explained by the intersection formulation from equation (3.16)).

To check entailment resp. the refutation formulation from equation (3.16) directly is
problematic (in that it does not work..). What we would have to do is for checking the
entailment is to calculate two infinite sets of infinite paths and then check that one use
included in the other. For the refutation formulation, we need do to

1. calculate two infinite sets of infinite paths, [[M ]] and [[ϕ]]
2. calculate the complement of the latter,
3. calculate the intersection between then,
4. check if the intersection is empty.

Of course, when done directly, so those steps all involve infinite sets of infinite entities and
that’s not how to do it.

What we need instead is a finite representation of those mentioned infinite sets and
then doing the steps not on the infinite sets but manipulating their finite representation.
Fortunately, we have those finite representations already! Namely the transition system
M and the formula ϕ.

Unfortunatly, though, they are not “on the same level”, one is a transition system and the
other is an LTL formula. What they have in common is that both describe infinite sets of
paths.

To put them on a common level, we have to translate the formula ϕ to a “transition
system”. The above steps of the approach include actually one more, that said translation.
Actually, one of the steps from above listed 4 can be (and is) omitted. That’s step 2),
the complementation. One does not need to figure out how to complement a transition
system: if one has figured out a way to translate all LTL formulas to a transition system,
then one simply translates ¬ϕ to avoid complementation. So the steps, now on the finitite
representations of the infinite sets of paths are

1. translate ¬ϕ to A¬ϕ, a finite respresentation with nodes and edges,
2. calculate a representation that corresponds to the intersection, and
3. check if the intersection represents the empty set.

The above sketch of the approach has to be taken with a grain of salt. We said that one
step put the ¬ϕ at the same level with M by translating it to a transition system. In
principle that’s correct, but there is fine-print. The fine print is that the translated A¬ϕ is
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not exactly of the same form as the transition systemM . We will see that when looking in
detail at the construction (but gloss over the details now, when discussing the big picture).
Indeed A¬ϕ is not called transition system but automaton. That’s why the approach is
called automata-based LTL model checking.

The difference between the definition of transition systems and the automata is not big.
For instance, we consider transition systems in a form where the nodes of the transition
system carry information or a labelled. For the automata, it’s the edges which are labelled
(as is standard for automata). Also, the automata have accepting states, again standard
for automata, whereasM , representing a program or system, does not. In the construction
later, one has to take care that one representation is transition labelled and the other one is
action labelled, but it’s a detail indeed. Both formats, edge-labeled and node-labelled, are
interchangable, and the construction later will contain a small step, where M is massaged
into a edge-labelled representation, to make A and the system representation to be really
on the same level, being two automata not only in spirit, but for real. But that’s for later,
we ignore that in the rest here, we consider transition systems and automata as basically
the same formalism.

Talking about automata and sets of sequences may ring a bell: a very well-known concept
are regular languages. In that context, a set of sequences is called a language and
sequences (over an alphabet) are called words. Languages are typically infinite sets,
finite languages are trivial. It’s a well–known fact that regular languages can be described
finitely in two different and equivalent ways, by regular expressions and by finite-state
automata.

The paralell is pretty close: we are interested in representing infinite sets of words, LTL
corresponds conceptually to regular expressions and in both cases there is automaton
representation as a different finite reprentation.

There are important differences as well. The most important one is that here we are
dealing with infinite sets of infinite words (we call them paths, but that’s just a name).
Furthermore LTL is quite more expressive (already from the fact that it can express
properties about infinite words). Indeed that’s a crucial difference. It has to do with the
fact that LTL can express liveness properties, whereas regular expressions in a way can
only express safety properties. Finally, traditional finite-state automata are defined in
such a way that they describe or accept only finite words. For LTL we need to adapt that,
so that the automata, still finite-state , accepts infinite words. One way of doing that
actually does not even change the definition of finite-state automaton at all, one does just
change the conditions under which a word is accepted by an automaton. Roughly like that:
a standard automaton accepts a word when hitting an accepting state. A infinte-word
automaton accepts a word if it hits accepting states infinitely often. Büchi-automaton
is a well-known version of an infinite word automaton, and that’s the kind of automaton
used for LTL model checking. There are other such automata as well, some equivalent to
Büchi-automata, some not, but we just cover the Büchi-flavor which works well for LTL.

So, are we done then? Not quite. Having a finite representation of infinite sets of infinite
words in the form of automata is great. But the automata have become quite more
expressive thanks to the more complex acceeptance condition. One can implement such
an automaton straightforwardly, in the same way that one can implement a standard
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finite-state automaton, actually since only the acceptences condition has changed, the
implementation is unchanged except when to stop generating or acceting a word.

Indeed, since acceptnance requires to hit an accepting state infinitely often, such automata
cannot be used to actually accept infinite words (in the way an ordinary finite-state au-
tomation can be used to accept finite words, maybe in a lexer). Indeed, using an automaton
or something else, how can one expect to check properties of infinite words? It’s related
to an earlier discussion about safety vs. liveness, and about run-time verification. When
dealing with infinite words or runs and their properties, the best one can do is spotting in
a finite prefix violations of safety properties, liveness properties cannot be monitored or
checked via run-time verification.

That sounds like bad news for model checking, but model checking is not about check-
ing individual runs or individual infinite words, it’s about working with their automata
reprentations.

So what actually needs to be solved algorithmically is

translation: find a translation for LTL formulas to an equivalent Büchi automaton

intersection: construct and automata the represents the intersection of two au-
tomata

emptyness: check if the language of a given automata is empty

As said, a construction covering complementation can be avoided, we simply translate
¬ϕ.

We address the constructions in detail later, but before we do that, let’s elaborate on
the parallel between finite-word languages and infinite-word languages and their finite
representations, looking also the constructions just mentioned.

3.4 Automata and logic

After having shed light on the concepts behind LTL model checking, it’s time to get
more technical. In this section we cover standard finite-state automata, and afterwards
Büchi-automata, a well-known representative of finite-state automata for infinite words.

3.4.1 Finite state automata

Let’s start by introducing the well-known concept of finite-state automata
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Definition 3.4.1 (Finite-state automaton). A finite-state automaton is a quintuple
(Q, q0, ,Σ, F,→), where

• Q is a finite set of states
• q0 ∈ Q is a distinguished initial state
• the “alphabet” Σ is a finite set of labels (symbols)
• F ⊆ Q is the (possibly empty) set of final states
• → ⊆ Q× Σ×Q is the transition relation, connecting states in Q.

What we call alphabet here (with a symbol Σ) is sometimes also called label set (maybe
with symbol L) and sometimes the elements are also called actions. The terminology
“alphabet” comes from seeing automata to define words and languages, the word “action”
more when seeing the automaton as a system model that represents an (abstraction of) a
program.

The notion of finite state automata is probably known from elsewhere. It’s used directly
or in variations in many different contexts. Even in its more basic forms, the concept is
known under different names or abbreviations (FSA and NFA, finite automaton, finite-
state machine). Minor and irrelevant variations concern details like whether one has one
initial state or allows a set of initial states. Sometimes the name is also used “generically”,
for example, automata which carry more information than just labels on the transitions.
For instance, information which is interpreted as input and output on the states and/or
the transitions (also known Moore or Mealy machines). Such and similar variations are
no longer insignificant deviations like the question whether one has one initial state or
potentially a set. Nonetheless those variations are sometimes also referred to as FSAs,
even if technically, they deviate in some more or less significant aspect from the vanilla
definition given here. They are called finite-state machines or finite-state automata simply
because they are state-based formalisms with a finite amount of states and some form of
transition relation in between (and potentially labelled or interpreted in some particular
way or with additional structuring principles).

Other names for related concepts is that of a (finite-state) transition system. And even
Kripke structures or Kripke models can be seen as a variation of the theme, though in
a more logical or philosphical context, the edges betwen the worlds may not be viewed
as transitions or operational steps in a evolving system. In Baier and Katoen [2], they
call Kripke structures transition systems (actually without even mentioning Kripke struc-
tures).

We are not obsessed with terminology. But as preview for later: In the central construction
about model checking LTL, the system on the one hand will represented as a (finite)
transition system where the states are labelled and the LTL formula on the other hand
will be represented by an automaton whose transitions are labelled. The automaton will
be called Büchi-automaton. The definition corresponds to the one just given in Definition
3.4.1. What makes it “Büchi” is not the form or data structure of the automaton itself, it
the acceptance condition, i.e., the intepretation of the set of accepting states.

Let’s illustrate the definition on a small example:

Example 3.4.2. The automaton is given by the 6-letter alphabet (or label set) Σ =
{a0, a1, . . . , a5}, by the 5 states q0, q2, ..., q4, with initial state and one final state and the
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transitions as given in the figure. “Technically”, one could enumerate the transitions by
listing them as triples or labelled edges one by one, like

→ = {(q0, a0, q1), . . . , (q2, a5, q4)} ⊆ Q× Σ×Q ,

but it does not make it more “formal” nor does it add clarity.

q0 q1

q2 q4

q3

a0

a1 a2

a5

a3 a4

Renaming the letters of the alphabet, the above automaton may be interpreted as a process
scheduler :

idlestart ready

executing end

waiting

start

run preempt

stop

block unblock

Figure 3.3: FSA scheduler

Determinism vs. non-determinism

Determinism in a system geneally means that, in a given situation or state, the next
state is determined. Functions are deterministic: given an input, the function output is
determined as well. In that sense, relations can be seen non-deterministic “functions”. For
automata and related formalisms, determinism means, being in a state and given a letter
from the alphabet, there are at most one successor states. The automata from Definition
3.4.1 can be non-deterministic, the definition is based on a transition relation.

Definition 3.4.3 (Determinism). A finite state automaton A = (Q, q0,Σ, F,−→) is
deterministic iff

q0
a→ q1 ∧ q0

a→ q2 =⇒ q1 = q2

for all q0, q1, and q2 from Q and all a in Σ.
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The definition of deterministic automaton is not 100% equivalent with requiring that there
is a transition function that, for each state and for each symbol of the alphabet, yields
the unique successor state. Our definition basically requires that there is at most one
successor state (by stipulating that, if there are two successor states, they are identical).
That means, the successor state, if it exists, is defined by a partial transition function.

Sometimes, the terminology of deterministic finite-state automaton also includes the re-
quirement of totality, i.e., the transition relation is a total relation, wich makes it a total
function.

I.e., the destination state of a transition is uniquely determined by the source state and
the transition label. An automaton is called non-deterministic if it does not have this
property. We prefer to separate the issue of deterministic reaction to an input in a given
states (“no two different outcomes”) from the issue of totality.

It should also be noted that the difference between deterministic (partial) automata and
deterministic total automamata is not really of huge importance. One can easily consider
a partial automaton as total by adding an extra “error” state. Absent successor states
in the partial deterministic setting are then represented by a transition to that particular
extra state. The reason why some presentations consider a deterministic automaton to
be, at the same time, also “total” or complete is, that, as mentioned, it’s not a relevant
big difference anyway. Secondly, a complete and deterministic automaton is the more
useful representation, either practically or also for other constructions, like minimizing a
deterministic automaton. But anyway, it’s mostly a matter of terminology and perspective:
every (non-total) deterministic automaton can immediately alternatively be interpreted
as total deterministic function. It’s the same in that any partial function from A to B,
sometimes written A ↪→ B can be viewed as total function A→ B⊥, where B⊥ represents
the set B extended by an extra error element ⊥.

The automaton from the earlier example, the process scheduler, is deterministic.

Runs, acceptance, and languagues of automata

Definition 3.4.4 (Run). A run of a finite state automaton A = (Q, q0,Σ, F,→) is
a (possibly infinite) sequence

σ = q0
a0→ q1

a1→ . . .

The notation q a→ q′ is meant as (q, a, q′) ∈ →. Each run corresponds to a state sequence
over Q and a word over the alphabet Σ. Of course also the state sequence can be called
a word, interpreting the set of states as alphabet.

As mentioned a few times: the terminology is not “standardized” throughout. Here, on
the slides, we defined a run of a finite-state automaton as a finite or infinite sequence of
transitions. Words which more or less means the same in various contexts (an perhaps
based on transition systems or similar, not automata) include execution, path, etc. All
of them are modulo details similar in that they are linear sequences and refer to the
“execution” of an automaton (or machine, or program). The definition we have given
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contains “full information” insofar that it is a sequence of transitions. It corresponds to
the choice of words in [20] (the “Spin-book”). The book Baier and Katoen [2], for example,
uses the word run (of a given Büchi-automaton) for an infinite state sequence, starting in
a/the initial state of the automaton.

For me, the definition of run as given here is a more “plausible” interpretation of the word.
A run or execution (for me) should fix all details that allows to reconstruct or replay what
concretely happened. Considering state sequences as run would leave out which labels are
responsible for that sequence. Not that it perfectly possible that q a→ q′ and q b→ q′ (for
two different labels a and b) even if the automaton is deterministic.

In a deterministic automaton, of course, a “word-run” determines a “state-run”.

As a not so relevant side remark: we stressed that modulo minor variations, a commonality
on different notions of runs, executions, (and histories, logs, paths, traces . . . ) is that they
are linear, i.e., they are sequences of “things” or “events” that occur when running a
program, automaton, . . . When later thinking about branching time logics (like CTL
etc), the behavior of a program is not seen as a set of linear behaviors but rather as a
tree. In that picture, one execution correspond to one tree-path starting from the root, so
again, one execution is a linear entity.

Side remark 3.4.5 (Other views on the concept of execution). There exist, however,
approaches where one execution is not seen as a linear sequence, but as something more
complex. Typical would be a partial order (a sequence corresponds to a total order). There
would be different reasons for that. They mainly have to do with modelling concurrent
and distributed systems where the total order of things might not be observable. Writing
down in an execution that one thing occurs before the other would, in such setting, just
impose an artificial ordering, just for the sake of having a linear run, which otherwise is
not based on “reality”. In that kind setting, one speaks also of partial order semantics or
“true concurrency” models (two events not ordered are considered “truely concurrent”).
Also in connection with weak memory models, such relaxations are common. Considering
partial orders (when it fits) is also a optimization technique: by avoding to explore all
interleavings of all linearizations of a partial order, one can make model checking technique
more efficient.

Those considerations will not play a role in the lecture: runs etc. are linear for us (total
orderings).

Example 3.4.6 (Run). Consider the automaton from Figure 3.3. State sequences arising
from possible runs look like

idle ready (execute waiting)∗ .

Words in Σ that correspond to the shown state sequences are of the form

start run(block unblock)∗ .

There are of course others as well, for instance runs involving the ready-state resp. preempt-
steps. There are also infinite runs. In general, a single state sequence may A single state
may correspond to more than one word, but in the example, the transition-label sequence
determines the state sequence: the automaton is deterministic.
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Definition 3.4.7 (Acceptance). An accepting run of a finite state automaton A =
(Q, q0,Σ, F,→) is a finite run σ = q0

a0→ q1
a1→ . . .

an−1→ qn, with qn ∈ F .

In the scheduler example from before: a state sequence corresponding to an acceping run
is

idle ready executing waiting executing end .

The corresponding word of labels is

start run block unblock stop .

An accepting run (as defined here) determines both the state-sequence as well as the
label-sequence. In general, the state-sequence in isolation does not determine the label-
sequence, not even for deterministic automata. But in the case of the scheduler example,
it does.

The definition of acceptance is “traditional” as it is based on 1) the existance of an accept-
ing sequence of steps which is 2) finite. The definition speaks of accepting runs. With that
definition in the background, it’s also obvious what it means that an automaton accepts
a word over Σ or what it means to accept a state sequence. Later, when we come to
LTL model checking and Büchi-automata, the second assumption, that of finite-ness will
be dropped, resp. we consider only infinite sequences. The other ingredient, the ∃-flavor
(there exists an accepting run) will remain.

Angelic vs. daemonic choice The ∃ in the definition of acceptance is related to a point
of discussion that came up in the lecture earlier (in a slightly different context), namely
about the nature of “or”. I think it was in connection with regular expressions. Anyway,
in a logical context (like in regular expressions or in LTL), the interpretation is more or
less clear. If one takes the logic as describing behavior (the set of accepted words, the set
of paths etc.), then disjunction corresponds to union of models.

When we come to “disjunction” or choice when describing an automaton or accepting
machine, then one has to think more carefully. The question of “choice” pops up only
for non-deterministic automata, i.e., in a situation where q0

a→ q1 and q0
a→ q2 (where

q1 6= q2). Such situations are connected to disjunctions, obviously. The above situation
would occur where q0 is supposed to accept a language described by aϕ1 ∨ aϕ2. In the
formula, ϕ1 describes the language accepted by q1 and ϕ2 the one for q2. The disjunction
∨ is an operator from LTL; if considering regular expressions instead, the notations “|” or
“+” are more commonly used, but they represent disjunction nonetheless.

Declaratively, disjunction may be clear, but when thinking operationally, the automaton
in state q0 when encountering a, must make a “choice”, going to q1 or to q2, and continue
accepting. The definition of acceptance is based on the existance of an accepting run.
Therefore, the accepting automaton must make the choice in such a way that leads to an
accepting state (for words that turn out to be accepted). Such kind of making choices are
called angelic, the choice supports acceptance in a best possible way.
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Of course, this is also “prophetic” in that choosing correctly requires foresight (but angels
can do that. . . Daemons can do that, as well, it’s only that angels make decisions in favor
of acceptance whereas daemons use their forsight to sabotage it). Of course, concretely,
a machine would either have to do backtracking in case a decision turns out to be wrong.
Alternatively one could turn the non-deterministic automaton to a deterministic one,
where there are no choices to made (angelic or otherwise). It corresponds in a way a
precomputation of all possible outcomes and exploring them at run-time all at the same
time (in which case one does not need to do backtracking). A word of warning though:
Büchi automata may not be made deterministic. Furthermore, it’s not clear what to make
out of backtracking when facing infinite runs.

The angelic choice this proceeds successfully if there exists a successor state that allows
succesful further progress. There is also the dual interpretation of a choice situation which
is known as demonic, which corresponds to a ∀-quantification. The duality between those
two forms of non-determism shows up in connection with branching time logic (not so
much in LTL). Also the duality is visible in “open systems”, i.e., where one distinguishes
the systems from its environment. For instance for security, the envionment is often called
attacker or opponent. This distinction is at the core also of game-theoretic accounts,
where one distinguishes between “player” (the part of the system under control) and the
“opponent” (= the attacker), the one that is not under control (and which is assumed
to do bad things like attack the system or prevent the player from winning by winning
himself). In that context, the system can try do a good choice, angelically (∃) picking a
next step or move, such that the outcome is favorable, no matter what the attacker does,
i.e., no matter how bad the demonic choice of the opponent is (∀).

After this digression, back to the main course of the section. Let’s just define what it means
that an automaton accepts a word. That also defines the language of an automaton as
the set of all accepted words.

Definition 3.4.8 (Language). The language [[A]] (sometimes also written L(A) of
automaton A = (Q, q0,Σ, F,→) is the set of words over Σ that correspond to the
set of all the accepting runs of A.

In general, there are infinitely many words in such languages. Languages of finite-state
automata and with this acceptance condition correspond to regular languages, languages
expressable via regular expressions.

For the given scheduler automaton from before, one can capture its language of finite
words by (for instance) the following regular expression

start run ((preempt run)∗ | (block unblock)∗) stop .

We use | for “or”, we could also have used +.

In the context of language theory, words are finite sequences of letters from an alphabet
Σ, i.e., a word is an element from Σ∗, and languagues are sets of words, i.e., subsets of
Σ∗. As stressed, for LTL and related formalisms, we are concerned with infinite words
and languages over infinite words.
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Reasoning about runs

We are of course mainly interested in LTL as temporal logic in this chapter. But as a
warm-up, we can use regular expressions to specify temporal properties.

Let’s have a look a the following temporal property

If first p becomes true and afterwards q becomes true, then afterwards, r can
no longer become true

In the context, the desired property is also called a correctness claim. As we know from
the big-picture discussion about refutation, the model checking procedure for LTL works
with the negation of the specification. In our example we can formulate that as

It’s an error if in a run, one sees first p, then q, and then r.

That property can be represented by the automaton from Figure 3.4.

¬p
p

¬q
q

¬r
r

Figure 3.4: Automaton for the negated specification

The accepting states captures that the error condition has been reached. So reaching the
accepting state means one has detected about a violation of the correctness property.

The example illustrates one core ingredient to the automata-based approach to model
checking. One is given a property one wants to verify, like the informally given one from
above. In order to do so, one operates with its negation. In the example, that negation
can be straightforwardly represented as standard acceptance in an FSA. Being represented
by conventional automata acceptance, the detected errors are witnessed by finite words
corresponding to finite executions of a system.

Generally, one cannot expect to find a violation of the specification in a finite sequence. A
property (like the one above) whose violation can be detected by a finite path is called a
safety property. Safety properties form an important class of properties. Note: safety
properties are not those that can be verified via a finite trace, the definition refers to the
negation or violation of the property: a safety property can be refuted by the existance of
a finite run.

That fits to the standard informal explanation of the concept, stipulating: “that never
something bad happens” (because if some bad thing happens, it means that one can detect
it in a finite amount of time). The slogan is attributed to Lamport [22]. That “bad” in
the sentence refers to the negation of the original property one wishes to establised (which
is seen thus as “good”). Note one more time: the original desired property is the safety
property, not its negation.

Still another angle to seeing it is: a safety property on paths is a property has the following
(meta-)property: If the safety property holds for all finite behavior, then it holds for all
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behavior (all behavior includes inifinite behavior). For the mathematically inclined: this
is a formulation connected to a limit construction or closure or a continuity constraint,
when worked out in more detail (like: infinite traces are the limit of the finite ones etc).

How to use automata to reason about infinite run?

Let’s also have a look at a livenes property, say “if p then eventually q.”, respectively its
negation

It’s an error if one sees p and afterwards never q (i.e., forever ¬q).

¬p
p

¬q
q

A violation of that is possible only in an infinite run. Consequently it cannot be expressed
by the conventional notion of acceptance.

A moment’s thought should get the “silly” argument out of the way that says: “oh, if
checking the negation via an automaton does not work easily in a conventional manner,
why not use the original, non-negated property. One can formulate that without referring
to infinite runs and with standard acceptance.”.

Ok, that’s indeed silly in the bigger picture of things (why?). What we need (in the above
example) to capture the negation of the formula is to express that, after p, there is forever
¬q, which means for the sketched automaton, that the loop is taken forever, resp. that
the automaton stays infinitely long in the middle state (which is marked as “accepting”).
What we need, to be able to accepting infinite words is a reinterpretation of the notion
of acceptance. To be accepting is not just a “one-shot” thing, namely reaching some
accepting state. It needs to be generalized to involve a notion of visting states infinitely
often.

In the above example, acceptance could be to “stay forever in that accepting state in
the middle”. That indeed would capture the desired negated property. The definition
of “infinite acceptance” is a bit more general than that (“staying forever in an accepting
state”), it will be based on “visiting an accepting state infinitely often, but it’s ok to leave
it in between”. That will lead to the original notion of Büchi acceptance, which is one
flavor of formalizing “infinite acceptance” and thereby capturing infinite word languages.

There are alternatives to that particular definition of acceptance. In the lecture we will
encounter a slight variation called generalized Büchi acceptance. It’s a minor variation,
which does not change the power of the mechanism, i.e., generalized or non-generalized
Büchi acceptance does not really matter. However, the GBAs are more convenient when
translating LTL to a Büchi-automaton format. It may be (very roughly) compared with
regular languages and standard FSAs. For translating regular expressions to FSAs, one
uses a variation of FSAs with so-called ε-transitions (silent transitions), simply because
the construction is more straightforward (compositional). Generalizing Büchi automata
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to GBAs does not involve ε-transitions but the spirit is the same: use a slight variation of
the automaton format for which the translation works more straightforwardly.

3.4.2 Büchi automata

As mention, Büchi-automata are defined as finite state automata from Definition 3.4.1.
What makes them “Büchi” is the different acceptance condition, that can handle infinite
words or runs. Infinite runs are often often called ω-runs (“omega runs”), and the corre-
sponding acceptance conditio consequently ω-acceptance. The are different versions of the
idea (Büchi, Muller, Rabin, Streett, parity etc.,), but here we present Büchi acceptance
[8] [7].

Definition 3.4.9 (Büchi acceptance). An accepting ω-run of the finite state automaton
A = (Q, q0,Σ, F,→) is an infinite run σ such that some qi ∈ F occurs infinitely often in
σ.

Automata with this acceptance condition are called Büchi automata.

idlestart ready

executing end

waiting

start

run preempt

stop

block unblock

Figure 3.5: Scheduler (2)

Example 3.4.10 (Infinite runs). Consider the automaton from Figure 3.5. It almost the
same than the one from Figure 3.3 earlier except that the accepting state has been changed.

One accepted infinite state sequence is the following:

idle (ready executing)ω

A corresponding ω-word is:
start (run preempt)ω

The automaton is meant to illustrate the notion of Büchi-acceptance; it’s not directly
meant as some specific logical property (or a negation thereof). Nor do we typically
think that transition systems that present the “program” we like to model check work
as language acceptors and thus have specific accepting states they have to visit infinitely
often. Program run, but the Büchi-automata that results from the translation of an
LTL formula do have accepting states meant to check the (negation of the) property of
interest.
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The symbol ω often stands for “infinity” (here and elsewhere). Actually ω in general stands
specific infinity as one can have different forms and levels of infinities. Those mathematical
fine-points may not matter much for us. But it’s the “smallest infinity larger than all the
natural numbers”, which makes it an ordinal number in math-speak and being defined
as the “smallest” number larger than N makes this a limit or fixpoint definition. It’s
connected to the earlier, perhaps cryptic, side remark about safety and liveness, where it’s
important that infinite traces are the limit of the finite ones).

For instance, (ab)∗ stands for finite alternating sequences of a’s and b’s, including the
empty word ε, starting with an a and ending in a b. The notation (ab)ω stands for one
infinite word of alternating a’s and b’s, starting with an a (and not ending at all, of
course). Given an alphabet Σ, Σω represents all infinite words over Σ. As a side remark:
for non-trivial Σ (i.e., with more than 2 letters), the set Σω is no longer enumerable (it’s
a consequence of the simple fact that its cardinality is larger then the cardinality of the
natural numbers).

Sometimes, one finds the notation Σ∞ (or (ab)∞ . . . ) to describe infinite and finite words.
Remember in that context, that the semantics of LTL formulas is defined over infinite
sequences (paths), only.

As mentioned shortly, there is also a variation of Büchi-acceptance, called generalized
Büchi-acceptance. It’s a minor variation of the original definition. Both flavors of accep-
tance conditions are of equivalent expressiveness. When translating LTL-formulas to an
infinite-word automaton, the generalized Büchi-automaton format is more convenient, so
we will use that one. If one prefers plain Büchi-automata, one could, in a second stage,
translate the generalized version into a non-generalized one. But we don’t look into that.

For a σ for of a Büchi-automaton, let’s write inf (σ) for the set of states that occur infinitely
often in σ. With this, we can define the generalized Büchi automata and their acceptance
condition as follows:

Definition 3.4.11 (Generalized Büchi automaton). A generalized Büchi automaton
is an automaton A = (Q, q0,Σ, F,→), where F ⊆ 2Q.
Let F = {f1, . . . , fn} and fi ⊆ Q. A run σ of A is accepting if

for each fi ∈ F, inf (σ) ∩ fi 6= ∅.

Note that not only the acceptance has changed, but also the format of the format of the
automaton. Büchi automata, as standard finite state automata, the acceptance is based
on a set F of states. Here, F is not a set of states, F is a set of sets of states. So the
automata has not multiple accepting states but multiple accepting sets of states.

As mentioned earlier, the motivation to introduce this (minor) variation of what it means
for an automaton to accept infinite words comes from the fact that it is just easier to
translate LTL into this format.

Büchi automata (generalized or not) is just one example of automata for infinite words.
Those are generally known as ω-automata. There are other acceptance conditions (Rabin,
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Streett, Muller, parity . . . ), which we will not cover in the lecture. When allowing non-
determinism, they are all equally expressive. It’s well-known that for finite-word automata,
non-determinism does not add power, resp. that determinism is not a restriction for
FSAs. The issue of non-determinism vs. determinism gets more tricky for ω-words.
Especially for Büchi-automata: deterministic BAs are strictly less expressive than their
non-deterministic variant! For other kinds of automata (Muller, Rabin, Street, parity),
their deterministic and non-deterministic versions are equally expressive. In some way,
Büchi-automata are thereby not really well-behaved, the other automata are nicer in that
way. The class of languages accepted by those automomata is also known as ω-regular
languages.

3.4.3 Stuttering

Next we address an issue not so much from automata theory, but motivated by the use
we make of the concepts modelling systems and model checking them, In the big-picture
dicussion earlier we mentioned that the approach works with two rather similar represen-
tations with nodes and edges and labels, namely automata and transition systems. There
are pretty close, but they also serve different purposes. The transition systems’ role is to
model the execution of programs or system, the automata on the other hand represent an
LTL formula, and the latter has accepting states, whereas “acceptance” is a concept alien
to programs. Instead program may terminate.

So that’s another mismatch, LTL works on infinite runs, and Büchi acceptance, genealized
or not, accepts by definition only infinite runs.

But that’s an easy nut to crack. We cannot allow the system to just terminate, because
we can only logically (resp. by Büchi-automata) handle infinite run. So if our transition
system (massaged into another Büchi-automaton) terminates, we simply let it artificially
continue infinitely by doing nothing. That is known as stuttering. This allows to treat
finite and infinite acceptance uniformely by Büchi-acceptance condition. It avoids coming
up with a more complex alternative acceptance condition that allows to accept finite and
infinite words.

Let ε be a predefined nil symbol and the alphabet/label set extended to Σ + {ε}. So a
finite run terminating by reaching some state without successor becomes, by stuttering,
an inifite ones, where, at some point, infinitely often ε is done. Stuttering (here) is allowed
only at the end, i.e. a run must end in an end-state

Definition 3.4.12 (Stutter extension). The stutter extension of a finite run σ with
last state sn, is the ω-run

σ (sn, ε, sn)ω . (3.18)

Let’s revisit the schedular example again

Example 3.4.13 (Stuttering). The “process scheduler” example from Figure 3.3 uses the
accepting state end now as natural end state with an ε-loop which is also accepting (see
Figure 3.6). Examples of accepting state sequences resp. accepting words corresponding
to an accepting ω-run include the following:
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idlestart ready

executing end

waiting

start

run preempt

stop
ε

block unblock

Figure 3.6: Scheduler with stuttering

idle ready executing waiting executing endω

and
start run block unblock stopω

So far, we have introduced the stutter extension of a (fintite) run. But runs will be
ultimately runs “through a system” or through an automaton. Of course there could be a
state in the automaton when it’s “stuck”. Note that we use automata or transition systems
to represent the behavior of the system we model as well as properties we like to check.
The stutter-extension on runs is concerned with the “model automaton” representing the
system. To me able to judge whether a run generated by the system satisfies an LTL
property, it needs to be an infinite run, because that’s how |= for LTL properties is
defined. The fact that in the construction of the algorithm, also the LTL formula (resp.
its negation) will be translated to an automaton is not so relevant for the stutter discussion
here.

3.4.4 Something on logic and automata

In this section we bridge a mismatch between transition systems and Büchi automata. The
mismatch, mentioned earlier, is that automata are edge labelled and transition systems,
at least the ones we introduced, carry information in the worlds or states. The mismatch
is not large, so bridging it will be easy

Another issue we look at examples how different Büchi automata can represent LTL prop-
erties. Also that is done informally, we don’t show the actual construction. That is for
later.

From Kripke structures to Büchi automata

We have encountered different “transition-system formalisms”. One under the name tran-
sition systems (or Kripke models or Kripke structures), the other one automata.

The Kripke structures or transition systems are there to model “the system” whereas the
automata serve to specify temporal properties of the system.



122 3 LTL model checking
3.4 Automata and logic

On the one hand, those formalisms are basically the same. On the other hand, there is
a slight mismatch: the automaton is seen as “transition- or edge-labelled”, the transition
system is “state- or world-labelled”. The mentioned fact that the transition systems used in
[2] are additionally “transition-labelled” is irrelevant for the discussion here, the labelling
there serves mostly to be able to capture synchronization (as mechanism for programming
or describing concurrent systems) in the parallel composition of transition systems.

As also mentioned earlier, there is additionally slight ambiguity wrt. terminology. For
instance, we speak of states of an automaton or a state (= world) in a transition system
or Kripke structure. On the other hand, we also encountered the state-terminology as a
mapping from (for example propositional) variables to (boolean) values. Similar ambiguity
is there for the notion of paths. It should be clear from the context what is what. Also the
notions are not contradictory. We will see that for the notion of “state” later, as well.

Now, there may be different ways to deal with the slight mismatch of state-labelled tran-
sition system and edge-labelled automata on the other. The way we are following here is
as follows. The starting point, even before we come to the question of Büchi-automata,
describes the behavior of Kripke structures in terms of statifaction per state or “world”,
not in terms of edges. For instance �♦p is true for a path which contains infinitely many
occurrence of p being true, resp. for a Kripke structure whose every run corresponds to
that condition. So, for all infinite behavior of the structure, p has to hold in infinitely
many states (not transitions); propositions in Kripke-structures hold in states, after all
(or Kripke structure are state labelled).

Remember also that we want to to check that the “language” of the system M is a subset
of the language described by a LTL-specification ϕ, likeM |= ϕ corresponds to [[M ]] ⊆ [[ϕ]].
To do that, we’d like to translate LTL-formulas (more specifically ¬ϕ) into automata, but
those are transition-labelled (as is standard for automata in general). So, $[[M]] $ is a
language of infinite words corresponding to sequences of “states” and the state-attached
information. On the other hand, [[ϕ]] is a language containing words referring to edge-labels
of and automaton.

So there is a slight mismatch. It’s not a real problem, one could easily make a tailor-made
construction that connects the state-labelled transition systems with the edge-labelled
automaton and then define what it means that the combination is does an accepting run.
And actually, in effect, that’s what we are doing in principle. Nonetheless, it’s maybe
more pleasing to connect two “equal” formalisms. To do that, we don’t go the direct
way as sketched. We simply say how to interpret the state-labelled transition system as
edge-labelled automaton, resp. we show how in a first step, the transition system can be
transformed into an equivalent automaton (which is straighforward). Thus we have two
automata, and then we can define the intersection (or product) of two entities of the same
kind.

One might also do the “opposite”, like translating the automaton into a Kripke-structure,
if one wants both logical description and system desciption on equal footing. However,
the route we follow is the standard one. It’s a minor point anyway and on some level,
the details don’t matter. On some other level, they do. In particular, if one concretely
translates or represents the formula and the system in a model checking tool, one has to
be clear about what is what, and which representation is actually done.
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Translating transition systems to Büchi automata

We call the “states” here now W for worlds, to distinguish it from the states of the
automaton. We write →M the accessibility relation in M , to distinguish it from the
labelled transitions in the automaton.

Definition 3.4.14 (Translating a Kripke structure into an Büchi-automaton).
Given M = (W,R,W0, V ). An automaton A = (Q, q0,Σ, F,→) can be obtained
from M as follows. The alphabet for the transition labels is given as Σ = 2P . For
the states, set

Q = W + {i} q0 = i F = W + {i}
For the transitions, we set s a→ s′ iff s→M s′ and a = V (s′) s, s′ ∈W and i a→ s ∈ T
iff s ∈W0 and a = V (s).

Note: the translation turns all worlds of the transition system into accepting states of the
Büchi automaton. Basically, the accepting conditions are not so “interesting” and making
all states accepting means: I am interested in all behavior as long as it’s inifinite. The
KS (and thus the corresponding BA) is not there to “accept” or reject words. It’s there
to produce infinite runs without stopping (and in case of an end-state it means, continue
infinitely anyway by stuttering).

Here, the Kripke structure has initial states or initial worlds (W0), something that we did
not have when introducing the concept in the modal-logic section. At that point back
then we were more interested in questions of “validity” and “what kind of Kripke-frames
is captured by what kind of axioms”, things there are important in dealing with validity
etc. In that context, one has no big need in particular “initial states” (since being valid
means for all states/worlds anyway). But in the context of model checking and describing
systems, it’s, of course, important.

Note also, that the valuations V : W → (P → B) attach to each world or “state” a
mapping, that assigns to each atomic proposition from P a truth value from B. That
can be equivalently seen as attaching to each world a set of atomic propositions, i.e., it
can be seen as of type W → 2P . Perhaps confusingling the assignment of (here Boolean
values) to atomic propositions, i.e., functions of type P → B, are sometimes also called
state (more generally: a state is an association of variables to their (current) value, i.e.,
a state is a current content or snapshot of the memory). The views are not incompatible
(think of the program counter as a variable . . . )

Example 3.4.15 (From Kripke structure to Büchi automata). The Kripke structure from
Figure 3.7a is translated to the Büchi-automaton from Figure 3.7b. BTW: the (only)
infinite run of the Kripke structure satisfies (for instance) �q and �♦p).

3.4.5 Describing temporal properties by LTL and Büchi automata

We have two formalisms to describe sets of infinite paths: LTL and Büchi-automata.
Even three, if we count transition systems in. As mentioned in the big-picture discussion,
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{p, q} {q}

(a) Kripke structure

i s0 s1
{p, q}

{q}

{p, q}
(b) Büchi automaton

Figure 3.7: Translation

the situation may be compared to standard word languages, with words of finite length,
which can be described by regular expressions and finite state automata. Finite state
automata and regular expressions are equivalent in that they can describe the same word
languages.

In contrast, LTL and Büchi-automata are not two versions of the same thing, only half
so: for every LTL formula ϕ, there exists a Büchi automaton that accepts precisely those
runs that satisfy ϕ. The reverse direction does not hold, i.e., Büchi-automata are more
expressive.

Here we illustrate how one can use Büchi automata to capture some LTL properties,
without showing the contruction; that comes later. Here, we also mention some other
formalisms for infinite languages, some more expressive than LTL, some less, some incom-
parable.

Example 3.4.16 (Stabilization: “eventually always p”). Figure 3.8 shows an Büchi-automaton
checking the LTL property ♦�p.

s0 s1

>

p

p

Figure 3.8: Büchi-automaton for stabilization

(Lack of?) expressiveness of LTL

As mentioned, the analogy of Büuchi-automata and LTL on the one and and FSa and
regular expressions on the others is not 100%. In the case of finite-word languages, the
two mechanisms of automata and of regular expressions are equivalent. Here, LTL is
strictly weaker than BA.

The Büchi-automata of the following example captures a property that cannot be expressed
LTL.

Example 3.4.17. The example is about capturing the following temporal property:

p is always false after an odd number of steps
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Let’s start by trying to capture that with LTL:

p ∧�(p→©¬p) ∧�(¬p→©p) (3.19)

The formula from equation (3.19) indeed assures that p is false after odd steps, as required,
but it’s not exactly what was informally given! The LTL specifies, with p holding initially,
a strict oscillation between places where p holds and those where p does not hold. But
that’s more than what the informal sentence required, which did not insist that on the
even places, p holds. At any rate, this oscillating behavion can be represented by the
Büchi-automaton from Figure 3.9a.

start

p

¬p

(a) Strict oscillation

start

true

¬p

(b) ¬p after odd steps

Figure 3.9: Büchi automata

The second Büchi-automaton from Figure 3.9b does not impose restriction on the even-
positions and thus corresponds to the original informal formulation. LTL cannot capture
that automaton, though we don’t prove it.

The property can be captured by the following temporal formula:

∃t. t ∧�(t→©¬t) ∧�(¬t→©t) ∧�(¬t→ p) (3.20)

The formula, however, is not LTL. It’s a formula from what is called ∃LTL.

What do do about the mismatch? One can live with the mismatch, of course. That’s
what we do in the lecture: we translate LTL Büchi-automata for the purpose of model
checking, and that’s all we really want.

But both formalisms seems kind of natural, so one can try to repair the mismatch (or at
least analyze the reason of the mismatch).

Concerning Büchi-automata, there exist also so called ω-regular expressions and ω-
regular languages, which are a generalization of regular languages and whose expressive-
ness matches that of non-deterministic Büchi-automata. They look like regular languages,
except one can write rω (not just r∗). There exist a “crippled” form of “infinite regular
expressions” that is an exact match for LTL.

To “repair” the mismatch between ω-regular languages on the one hand and LTL on the
other, one could two things. One can ask, what needs to be taken away from BAs resp.
ω-regular expressions to make them fit to LTL, resp. ask whether there is an automaton
model that exactly fits LTL? Alternatively one can ask: what needs to be added to LTL
to make it as expressive as BAs? Example 3.4.17, in particular the formula from equation
(3.20) hints at a solution for the second approach: It’s a result from [14] which states
that allowing prefix existential quantification over one propositional variable (the t in the
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example) is enough to repair the mismatch. That version if LTL is sometimes called
“existential LTL” or ∃LTL.1

The Spin model checker resp. its input language Promela offers another mechanism that
gives the same expressivity to LTL as ω-regular languages. This mechanism is known as
never claims.

Spin has a translator ltl2ba and one can find translators from LTL to BA on the net as
well, for instance under http://www.lsv.fr/~gastin/ltl2ba/.

Figure 3.10 compares different well-known temporal logics wrt. their expressivity. Con-
cerning LTL, let’s remark that when removing the next-operator ¬, the logic becomes
strictly less expressive. That fragment is of interest when specifying and verifying prop-
erties of asynchronous systems. By that we mean systems concsisting of a processes or
threads running concurrently, where the next step of the system seen globally is in general
done by one of the processes, chosen randomly, and the other processes don’t do anything.
Practically, the choices is done perhaps by a scheduler, that picks among the enabled pro-
cesses on to execute. Typically the scheduler chooses not really randomly, not does it roll
the dice freshly after every indidual step of a process. Normally some pricorities or stategy
is involved (round-robin, maybe), and every process gets time-slots to do quite a number
of steps before pre-empted again. But for modelling, one may chose to abstracting away
from the scheduler, and treating it as doing random scheduling. That has not just the
advantage of simplifying the model and this the model-checking challenge. Additionally,
if one has model-checked a concurrent program as ok under random-scheduling, it works
for any specific strategy a real scheduler may apply.

modal µ-calculus
ω-tree automata

CTL∗

CTL

ω-word automata
Büchi automata
(never claims)
∃LTL

LTL

LTL without ©

Figure 3.10: Expressivity of a few temporal logics

Now, in such a asynchronpus picture, and if © speaks about transitions of the global
system and if on specifies local properties of one process, then ©ϕ make little sense. For
instance, if one process is in a state doing x:=1, it still makes no sense to say locally

1We will not discuss that variant. Unfortunately there is a different formalism with which called existential
LTL (or ∃LTL. That’s a version where the LTL formula is meant not to hold for all paths, like we do,
but is meant to specify that there exists a path that satisfies the temporal property. This form of ∃LTL
we will encounter later in the context of bounded model checking.

http://www.lsv.fr/~gastin/ltl2ba/
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“©(x = 1)”. In the face of non-deterministic, asynchronous scheduling, it’s not clear what
the next global transition will be, and it makes not much to specify what should hold. One
can still do it, but it would require global knowledge, and the argumnt here is specifying
locally, which is less messy. Locally one could say ♦(x = 1) instead of ♦(x = 1), assuming
that the scheduler is fair (but otherwise free to choose randomly).

3.4.6 Automata products

In the big-picture discussion about model-checking as refutation, one of the step is to
calculate the intersection

[[M ]] ∩ [[A¬ϕ]] (3.21)

The intersection or conjunction construction is done on the corresponding automata. So,
given two automata, we need to construct an automaton that represents the intersection
of the corresponding languages (or the conjuction of the corresponding properties).

In principle, such constructions are known from standard automata. It also called the (or
a) product construction as the states of the joint automaton consists of pairs of states
from the contibuting automata.

The construction for Büchi-automata is more complex than for standard FSAs, and the
complication concerns, not suprisingly, the accepting states. For standard automata, and
accepting state of the product automaton is simply tuples of the original automata: a
finite word in the intersection is accepted if both component automata reach one of their
respective accepting state, it’s very straightforward. For Büchi-automata, it’s no longer
that easy.

Indeed, in this section we won’t present the general product construction for Büchi-
automaton, because we don’t need it in its full generality. We are after intersection in the
situation of equation (3.21). In particular, theM is the Büchi-automaton that corresponds
to the transition system under investigation. What makes it special is that, as Büchi
automaton, all its states are accepting (and never gets really stuck since it’s stuttering).
In this situation, the only contributing factor to the acceptance of the product is the Büchi
automaton from the formula. That’s as it should be anyway, the specification determines
whether property ϕ holds or not, the system M does what it does, and the accepting
states of the product are solely determined by the formula.

Two kinds of products

In fact, the section discusses two kinds of automata constructions, i.e., composition opera-
tors on automata, called synchronous and asynchronous product. Both serve two different
purposes. The synchronous product is the one we just sketched and will capture language
intersection. It corresponds to the standard product construction known from standard
FSAs. As also said, we only cover the product or intersection between two Büchi-automata,
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where one is special insofar that it comes from turning the program into such an automa-
ton. In that sense, the way the synchronous product used here is asymmetric (normally
products are symmtric, i.e., commutative).

The asynchnonous product here comes from the underlying compitation model. The pre-
sentation here is based on [20] and thus influenced by the choices as made in the Spin
model checker. In Spin, systems consists typically of a number of processes running in
parallel or concurrently. The input language of the Spin model checker, called Promela,
resembles C. Processes run concurrently, communicate via shared variables and via chan-
nels. The semantics is a typical interleaving semantics. If we ignore synchroniation by
channels, processes do their steps independently, i.e., it’s an asynchronous execution
model.

That kind of behavior is called asynchronous product here in the lecture (where we
consider the system processes as automata). As said, when thinking in terms of processes
or threads, one would not use the word “asynchronous product” but rather say, the pro-
cesses run in parallel or concurrently and that in an indepedent or asynchonous manner
(though synchronization when needed can be achieve by channels or locks. . . ).

There are other forms of concurrency, for instance for systems with a global clock, where
there processes run in lock-step. In that case, the processes run ’synchronlously’ in par-
allel (with the clock as global synchronizing mechanism). And in such a setting, parallel
composition reps. the product would be synchronous

In our setting here, processes run under an interleaving model (“asynchronously”) and
the composition of the system with the “formula” is done synchronously. The automaton
representing the formula is there to observe or monitor the system, and this needs to be
done fully in-sync with the model.

While talking about processes in Spin/Promela: as said, they don’t run under a global
clock as synchronizing mechanism. Instead, they can synchronize and communciate via
channels. In our presentation, channels won’t play a role. Nonetheless, automata equipped
with buffered channel communication between them are a well-established model for pro-
tocol specification. Spin’s programming or modelling language is basically processes +
channels. That’s a popular foundation for protocol verification. Formal models in that
direction are known under various names and different notations. One name is extended
finite state automata where extended means “extended by communication buffers” (mostly
FIFO buffers).

Asychronous product

Let’s start with the asynchnonous product, here of two automata. In the product, a step
of the combined automaton consist of a step of one automaton where there other one does
nothing
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Definition 3.4.18 (Asynchronous product). The asynchronous product of two au-
tomata A1 and A1, (written A1×A2, or A1 ‖ A2) is given as (Q, q0,Σ, F,−→) where

• Q = Q1 ×Q2,
• q0 = q1

0 × q2
0,

• Σ = Σ1 ∪ Σ2, and
• F = {(q1, q2) | q1 ∈ F1 or q2 ∈ F2}.

q1 →1 q
′
1 Par1

(q1, q2)→ (q′
1, q2)

q2 →2 q
′
2 Par1

(q1, q2)→ (q1, q
′
2)

The product is defined for the binary case, i.e., the product of two automata. The definition
is symmetric and associative, i.e. A1×A2 = A2×A1 and A1×(A2×A3) = (A1×A2)×A3.
The automata left and right of the equations are equal in the sense if being isomorphic.
With associativity and commutativity, we can make use of n-ary product, i.e., the product
of n automata, for which one can write ∏

Ai. We could establish that there is also a neutral
element wrt. the product, and then the ∏n

i=1Ai is also defined for n = 0 —the empty
product should correspond to the neutral element— but let’s not bother).

The core of the above definition is the way the steps are defined. The composed automaton
can make a step, of either the left or else the right automaton can make a step.

Other ingredients of the definition are more a matter of taste. For instance, we have based
the definition on automata with one initial state. One can easily do the “same” product
construction in case one has automata with multiple initial states.

Another point is the alphabet: here we take the union of the alphabets. Some presentations
would say one can compose only automata over the same alphabet (but also that is a non-
central point as one can always “extend” the Σ1 and Σ2 to a common alphabet, before
doing the composition).

More subtle is the definition of the final states. Remember also that the format of the
automaton does not distinguish between standard automata and Büchi automata. The
distinction is not based on the “format” or syntax of the automation, it’s based in the
interpretation of the automaton, in particular the interpretation of the acceptance set.

But for us, we don’t care here much: remember that the automata are actually transformed
from the system programs or processes. Those don’t really have accepting state, resp.
after the transformation from transition system or Kripke structure into an automaton,
all states are accepting (which is a way of saying, that acceptance does not really matter).
The good news is: if A1 and A2 are of that form that all their states are accepting, then
that also holds for A1 ×A2 in the above definition.

Let’s have a look as some toy problem represented implemented as two processes running
asynchronously.



130 3 LTL model checking
3.4 Automata and logic

Example 3.4.19 (3n + 1 problem). Assume 2 non-terminating asynchronous processes or
automata A1 and A2 and a shared variable x. A1 tests whether the value of x is odd, in
which case updates it to 3 ∗ x + 1. A2 tests whether the value of a variable x is even, in
which case updates it to x/2.

The question is: Does the corresponding function “terminate” for all inputs x? Let’s
formulate “termination” as the following LTL property

�♦(x ≥ 4) or negated: ♦�(x < 4) (3.22)

In the problem, “termination” is meant reaching the endless cycle 4→ 2→ 1→ 4 . . ..

The “3n + 1” problem is a long-standing open problem. It’s known under different
names (Collatz’s problem, Hasse-Collatz problem, Ulam’s conjecture, Kakutani’s prob-
lem, Thwaites conjecture, Hasse’s algorithm, or the Syracuse problem). The problem is
not intended of what model checking can do or is good at. It’s not even intended to
illustrate a typical way asynchronous products are used in practice. Remember that the
asynchronous product is intended to model concurrency. The problem, however, is not
concurrent.

What makes it also atypical for standard model checking is that it’s an infinite problem.
The formulation makes a statement for arbitrary n, and that’s intended for infinitely
many natural numbers (the problem is not meant as saying the function terminates for
all numbers up-to MAXINT . . . ). The dependence on some input or some other parameter
makes it a parametrized problem and parametrized model checking is a sub-genre that tries
to come up with techniques dealing with parametrization. The parameter can be an input
(like for the 3n+ 1-problem), but more conventional would be to check some property for
a system P1 ‖ . . . Pn consisting of an arbitrary number n of copies of the same system,
where all the P1 are identical (perhaps up-to their process identity). Think of using model
checking mutual exclusion not for an implementation of the the 5-philophers problem but
for the n-philosophers problem.

Remarks about the notation in the example and their interpretation The asynchronous
product is given actually slightly (but not conceptually) deviating from the mathematical
definition given above. The definition given before was for automata, but now, we are
considering “processes” or Kripke structures or transition systems. But also that is not
100% correct according to the earlier definition or at least not at first sight. Transition
systems were introduced as “graphs” where the states give values to atomic propositions.
That’s a very low level way of seeing things.

The example make use of transition system which allow more convenience in notation (one
could call it “applied transition systems” or “symbolic”). It’s still ultimately the same,
but we allow to have programming variables (x in this case) which can be changed and
checked. We don’t have just a set of proposistional variables any more, but predicates over
the programming variables (like even(x) and odd(x)). As far as the logic is concerned,
that seems to go into the direction of “first-order LTL” (having sorts and predicates and
variables), but we are not actually doing that, for instance we don’t introduces ∀ and ∃,
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which gives first-order logic it’s actual power). The extension is more to the transition-
system side of things and odd(x) is not so much seen as a predicate of the logic, but
a boolean expression or guard as used in the underlying programming languages. On
the LTL side of things, odd(x) can be seen as a proposition which is either true or not
depending on the current value of x. So the interpretation of the transition systems and
their behavior and how it connects to LTL should be fairly transparent.

The transition systems here also “deviate” from the core definition in that the transitions
are labelled. The labels are not primarily meant as being symbols from an alphabet that
the LTL speaks about. LTL speaks about the states. The transition labels are here
represent actions that help to specify what the (“symbolic”) transition system does when
taking the edge. The interpretation of the label x := 3x+ 1 is fairly obvious, the intension
is that the value of x is accoringly modified when going from the source-state to the target
state. The other kind of transition is marked by a boolean condition or guard (odd(x) or
even(x)). The intention is that it’s a conditional transition that can be taken if the guard
is true in the source state.

Spin, resp. Promela allows that kind of statements. The language called Promela quite
resembles C at the surface (one can also refer to native C), but there is one point where
the semantics of Spin deviates significantly from C. Writing in C the sequence
( x%2); x = 3x+1; . . .

simply calculates the remainder of x modulo 2, then forgets the outcome and updates the
value of x according to the expression on the right-hand side of the assignemt. In other
words, the above snippet can be simplified to x = 3x+1.

In Spin, in contrast, the first expression is interpeted as a so-called guard: the expression
x%2 is calculated and the outcome determines whether to continue or not. In the tradition
of C, in case the outcome is 0, it’s interpeted as false, if different from 0, it’s seen as
true. That means x%2 corresponds (in a C-typical formulation) to the predicate or
guard odd(x). In case the guard evaluates to true, it does not do anything (as in C), in
case it evaluates to false, it blocks and prevent the rest of the process from proceeding.
So, it acts as a synchronizing construct:, the transition is enabled or not depending on
the “circumstances”. Of course, the circumcstances, i.e., the value of x, can change by
interference from a second process, at which point the transition becomes enabled and the
process can thereby proceed.

This explanation should be enough to understand the example. A few words on guards
in concurrent programs might still be of general interest. Syntactically, the solution in
Spin is a bit obscure one may say. It basically says, if one uses an expression in place of a
statement, then the expression has synchronizing powers (like stopping the execution of the
process). That’s a truly radical change of interpretation of expressions! Synchronization
is at the core of concurrent programming; hence it’s probably a bad idea to hide some
key ingredient, conditional guards, in reinterpreting expressions (“BTW, expressions now
mean sometimes something really novel and powerfull compared to C, even if they look
the same”). in defense one could say, a decent C programmer would probably not use
expressions as assignments anyway, bit still.

Other languages would make the special nature of guards more obvious, namely by intro-
ducing special syntax for it. If b is a boolean expression, then if one wants to use it with
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synchronizing power, the programmer would have to write special syntax, writing perhaps
await(b) or similar, making that transparent.

For people experienced in concurrency programming, there is another concern wrt. guards
like odd or similar (not really present in the quite simple example). The previous discussion
concentrated on “syntactical” issues or language pragmatic (like questioning the wisdom
of avoiding special syntax). The point now may be even more serious. In the transition
systems below (and in the code snippet above), there are two steps, namely first the guard
is check, for instance odd(x) and, in case the guard had evaluated to true and after taking
the guard-labelled transition, then the assignment is done. The problem is: the guard itself
has no effect (guards and expression are supposed to be side-effect free); it is intended to
enable (or not) the subsequent effect. The problem is: whether or not the guard is true
is checked but that may change after the odd transition and before taking the subsequent
x := 3x + 1 transition. In other words, the two transitions are not atomic which may in
general lead to problems. On a related note: it’s also questionably whether the assignment
x := 3x+ 1 is guaranteed to be atomic.

To be useful as concurrent programming languare or language, Spin offers the possibility
enforce atomicity. Sping supports slightly different levels of guaranteeing atomicity, but
the details don’t concern us here.

Basically one can group the two steps togther, [odd(x);x := 3x+ 1] where we use brackets
[ and ] to denote that the execution should be atomic resp., without interleaving. Spin
does not use brackents but would use keywords like atomic{...} or d_step{...}.

In any case: the shown pattern is rather common: in an atomic section, the first one is the
guard, and the rest is the effect. It is not so comming (and a bit tricky) to use guards in
the middle of an atomic section. Since that pattern is so common, other languages would
offer specially syntax for it await(b){statements}) and there are different names for
it (conditional critical region etc). Also related in the notion of guarded commands. In
transition systems, instead of having two separate transation, one would cound then have
labels of the general formal g.a→ , where g is the guard and a the action or effect. In our
case, one label could be odd(x) . x := 3x+ 1.

Anyway, atomicity is not really a problem in our particular (not very typical) example, as
the 3n+ 1-problem is not really concurrent anyway.

After all the background information, back to the example and the transition systems for
them

Example 3.4.20 (3n + 1-problem: asynchronous product). The program informally de-
scribed in Example 3.4.19 can be represented by the transition systems from Figure 3.11.
In the product automaton, the state s11 is /unreachable/. When starting at the initial
state, the dotted arrows can never be taken.

Pure automata or transition systems We have made use of the more high-level version of
the transition systems, referring to variables like x and transitions with labels that have a
“semantics”. Besides that, the transition system description as “symbolic”, not concrete as
it referred to x and not a concrete value of x. So, the description was still a “parametrized
problem”. We are here not looking into parametrized problems. We can only model check
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s0start s1

s0start s1

odd(x)

x := 3x+ 1

even(x)

x := x/2

(a) A1 and A2 separately

s00start s01

s10start s11

odd(x)

x := 3x+ 1

even(x)x := x/2

odd(x)

x := 3x+ 1

even(x)x := x/2

(b) A1 ×A2

Figure 3.11: 3n+ 1-problem transition systems: asynchronous product

concrete (non-abstract, non-symbolic) models. So we need to pick a concrete initial value
for x. Example 3.4.21 below chooses x = 4. This leads to what Holzmann calls a pure
transition system. Now, the value of x becomes part of the “transition-system state”. So
the “state” or world now consists of the control-flow state (for instance initially (s0, s0)
written also s00) together with the state of the memory, i.e., the value of x.

Example 3.4.21 (3n + 1-problem: Pure transitition system). If we start the transition
system of the 3n + 1-problem from Example 3.4.20 with a value of 4, we obtain the
following concrete or pure transition system from Figure 3.12.

s00, 4start s01, 4 s00, 2

s01, 1 s00, 2

s10, 1

e /2

e

/2
o

3_ + 1

Figure 3.12: Pure automaton: terminal loop

In the states, (s00, 4) is supposed to represent a state where both of the original automata
A1 and A2 are in their respective initial state s0 and where x has the value 4.

The edge labels can be ignored; they are needed only for the non-pure representation,
in the pure transition system they are just kept for readability. In particular: the LTL
formula specifying termination does not speak about those labels.

We make “short labels” where e and o stands for even(x) and odd(x) in case of the
transitions corresponding to guards, and the action labels are similarly shortened. As
said, for us, the labels are not really part of the pure transition system anyway. For
example, even(x) is true in state (for instance) (s00, 4) anyway (with x understood as
carrying the even value 4). So that fact is just captured by a transition (s00, 4)→ (s01, 4)
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(and the label is more a reminder for the ready why there is that transition). Since, in that
state, the guard odd(x) is false, there are no outgoing transitions marked with odd(x): true
guards are represented by transitions in the pure representation, false guards represented
by the absence of a transition.

Synchronous product

As said, we define the synchronous product for 2 Büchi-automata in a special case, where
for one of the automata, all its states are accepting. That is the case we are interested in
here, where one of the BAs, the one describing the system, is translated from the transition
system or Kripke structure. In that translation, all states are marked as accepting, so we
can focus on that special case.

Indeed, the general case for two arbitrary BAs is slightly more complex. The slightly
tricky part would be how to define the accepting states of the product. Apart from that,
it’s straightforward.

The general intention of such a “product” construction is that he composed machine
accepts the intersection of the languages of its two constituents. That’s conceptually
achieved that both automata run in lock-step. For standard (non-Büchi) FSA, a commong
word is accepted, if both A1 and A2 reach a respective accepting state. That is easy.

For BAs, we have repeated reachability of accepting states, it becomes more tricky: each
A1 and A2 has to reach at least one of its accepting states infinitely often. But it’s not
that they re-visit their respecting accepting state always at the same time! That makes
the general construction a bit more tricky (but not really challenging; one can figure
it out oneself). If one of the automata, say A1, has only accepting states, things get
more easy: one can basically ignore A1, and base acceptance of the product construction
in the accepting states of A2 alone. That’s also intuitively what we want to do in model
checking. The acceptance condition of A2 represents a LTL requirement we want to check.
The other automaton just “executes”, there are no good runs or bad run in A1 as such,
the goodness/badness of the runs is judged by the acceptance conditions in A2.

It should be noted that in Holzmann [20] the product automaton for NBAs is defined
incorrectly (and in previous years, that error showed up also in our slides). As another
side remark: for generalized BAs, the construction of the accepting conditions for the
sychronous product is slightly more elegant compared to standard BAs.

Definition 3.4.22 (Synchonous product (special case)). The synchronous product
of two finite automata A1 and A2 (written A1 ⊗ A2), for the special case where
F1 = Q1, is defined as finite state automaton A = (Q, q0,Σ, F,→) where:

• Q = Q1 ×Q1
• q0 = (q01, q02)
• Σ = Σ1 × Σ2.
• −→ = −→1 × −→2
• (q1, q2) ∈ F if q2 ∈ F2
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There is a small final piece we need to take care of, that is stuttering. We discussed the
issue already. LTL works on infinite paths, so it must be prevented that that transition
system just stops progressing. That’s easy to achieve, just let a terminated system continue
doing extra do-nothing steps. That is called stuttering. The following Definition 3.4.23
adds stuttering to the resulting Büchi-automaton (not the transition system).

Definition 3.4.23 (Stutter closure). Given a finite-state automaton A (Büchi or
otherwise), the stutter-closure of A corresponds to A (same states, labels, same
initial and final states) except that some extra ε-labelled self-loops added to the
transitions for each state without outgoing transition.

Example: synch. product for 3n+ 1 system and property

The picture is from Holzmann’s lecture material.

Example 3.4.24 (3n + 1-problem: product). For the 3n + 1-example of this section, the
product of the automaton from Figure 3.12 with the BA for the LTL property of equation
(3.22) from Example 3.4.19 is shown in Figure 3.13.
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Figure 3.13: Product of system automaton and automaton representing the specification

3.5 Model checking algorithm

We have now a number of things in place: the general idea of LTL model checking and
the definition of products. But two key technical ingredients are missing. That’s how to
translate and LTL-formula to an Büchi automata and how to check for emptyness of a
Büchi automaton. Those are the more challenging parts of the whole construction, and
we cover them to some extent in this section.
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3.5.1 Checking for emptyness

One problem to solve is: given an Büchi-automaton, check if its language is empty. For
standard automata over finite words, the problem is straightforward: start at the initial
state and see if one of the final states is reachable. A simple search will do, like depth-first
search or some other strategy.

For Büchi-acceptance, the problem gets more complex, but not dramatically so. It involves
checking whether some acceptance state can be reached infinitely often. Details depend
on whether one deals with plain Büchi-automata or the generalized ones (or some other
kinds infinite word automata, which we have not covered).

So, one-time reachability is not enough, one needs to check for some form of repeated
reachability: from the initial state, reach an accepting state, and then again, and again
. . . The corresponds to reach an accepting state, and then see if there exist a cycle in the
graph starting from that. Because of that shape, it’s sometimes illustrated by saying one
is looking for a lasso.

One could thus go for a lasso-hunting expedition, hunting for lassos, of course, not hunting
with lassos. . . . When done properly it would work. But as so often, an initial plausible
idea, even if working, leaves room for algorithmic improvement. Here, looking for reachable
states that are the starting and end point of a cycle one reachable state after the other
will be hugely wasteful. One will re-discover and explore paths through the graph over
and over again.

A better idea is based on the notion of strongly connected components. It a concept from
graphs and may be known from lectures like “Algorithms and Data Structures”.

Definition 3.5.1 (SCC). A subset S′ ⊆ S in a directed graph is strongly connected if
there is a path between any pair of nodes in S′, passing only through nodes in S′. A
strongly-connected component (SCC) is a maximal set of such nodes, i.e. it is not possible
to add any node to that set and still maintain strong connectivity.

There are efficient algorithms calculating those, for instance one based on doing depth-
first search two times, the second time backwards and in a particular order, but we won’t
repeat them here.

Example 3.5.2 (SCC). Consider the graph of Figure 3.14. Subsets which are strongly-

Figure 3.14: Strongly connected component

connected are S = {s0, s1}, S′ = {s1, s3, s4} and S′′ = {s0, s1, s3, s4}. From those, only
S′′ is a strongly connected component.
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A strongly connected components is some form of “cluster of cycles”. As long as one stays
within the component, one keeps on cycling in the cluster, if one leaves it, one enters
another clusters and there is no way back.

Strongly connected components can be use address the emptyness problem of Büchi-
automata. It’s based on the following observation. If one considers an infinite run through
a system with finitely many states, it’s unavoidable that some states are visited infinitely
often. That is clear.

One can formulate something stronger. Assume an infinite run σ through such a system,
there comes point in time in the run, from where on all subsequent states are visited
infinitely often.

That being so, in that run, the mentioned states that visited infinitely often in a suffix of
σ are states which are obviously strongly connected.

So, that’s the core observation:

given a Büchi automaton A = (Q, s0,Σ,→, F ) with accepting run σ, then, there
is some suffix σ′ of σ s.t. every state on σ′ is reachable from any other state on
σ′. In other words, that set of states is strongly connected and is is reachable
from an initial state and contains an accepting state.

Checking non-emptiness of [[A]] is equivalent to finding an SCC in the graph of A
that is reachable from an initial state and contains an accepting state

There are different algorithms for find SCCs, for instance Tarjan’s version based on depth-
first search, or the nested depth-first search version implemented in Spin.

If the language [[A]] is non-empty, then there is a counter-example. Moreover, the counter-
example can be represented in a finite way. It is ultimately periodic, i.e., it is of the form
σ1σω2 , where σ1 and σ2 are finite sequences

3.5.2 Translation LTL to Büchi-automata

The translation we show or at least sketch here is from LTL to Generalized Büchi automata
(GBA), not to the plain version of Büchi automata. It follows the presentation and
terminology of Baier and Katoen [2]. That can be compared to Thompson’s construction
for regular expressions (as discussed earlier). As Thompon’s construction, it’s a structural
translation, i.e., given by induction on the structure of LTL.

The crucial idea, abstractly, is to connect the syntax and semantics. One can compare
that Hintikka-sets or similar constructions for FOL.

Before we do the construction, let’s have a look at a few LTL examples and how they can
be represented by Büchi automata.
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¬green green green

¬green

Figure 3.15: Infinitely often green

Example 3.5.3. We have seen the example already, under the name recurrence. The infinite
occurrence of a property, here green, is captured by the formula �♦green. The correspond-
ing and straightforward Büchi automaton is given in Figure 3.15. The example is a good
illustration on the Büchi-acceptance: the infinite occurrences of green is directly connected
to the infinitely many visits to the accepting state of the automaton. prototypical

Example 3.5.4 (Response). Also this kind of property we have seen already, in Example
3.2.8. Response can be captured in LTL as:

�(request → ♦response)

Let’s abbreviate it to �(a→ ♦b). The Büchi-automaton accepting that response property
is given in Figure 3.16.

¬a ∨ b a ∧ ¬b ¬b

b

Figure 3.16: Response

Example 3.5.5 (Stabilization). Stabilization (or persistence) can be captured in LTL as:

♦�a

The Büchi-automaton accepting that response property is given in Figure 3.17.

>
a

a

¬a
>

Figure 3.17: Stabilization

The last example captures the dual property from Example 3.5.3. The Büchi automaton
(perhaps) feels also slightly different from the others . You can pause before reading on
to reflect what’s different.
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How does the stabilization automaton works anyway? It start’s at the initial state, it tries
to watch out when the a stabilizes, i.e., to detect the point when that happens. Initially,
there’s a don’t-care self-loop, marked by >, which means it can be always taken. If an a is
detected, the automaton can move on to the middle state, and if from that point on, there
are only a’s, the word is accepted. If it so happens that, after proceeding to the middle
accepting state, ¬a occures, it is forced to proceed to the third and non-accepting state
and stay there forever, thereby rejecting the word. Note, the previous examples never got
stuck in this form in an non-accepting states, there was always the hope for an edge back
to an accepting state.

The rejecting behavior from above, moving in into the middle state and then moving
out at the next occurence of a ¬a, does not mean that word being scanned violates the
property.

It’s just that in its initial state, the automaton has misjudged the situation: seeing an a,
instead of staying in the initial state, the automaton took the a as a sign of the beginning
of the stabilized sequence of a. Later it may turn out that this was premature, and
staying longer in the initual state will lead to acceptance (in case the sequence satifies the
stabilization property). Only it’s not knowable how long to wait until exiting the initial
state. The definition of acceptance does not care about that: a word is accepted if there
exists an accepting run, but it does not promise that, given an infinite word, there is
exactly one run.

So, one crucial difference distinguishing this Büchi-automaton from the two other ones is
that it is non-deterministic. The situation is worse. For that particular LTL-property
and for this particular non-deterministic Büchi-automaton, there is no equivalent deter-
ministic one. We will not prove that, but the discussion around the example my give a
feeling that there’s not hope for deterministic acceptance for stabilization.

Basic idea of the translation

Here, we don’t give construction yet, but some general remarks and some “insightful”
property.

The translation translates a minimal version of LTL, i.e., containing only © and U as
only temporal operator. The most tricky part in the construction, not surprisingly, is how
to deal with the until-operator. Until-operators can encode properties like recurrence and
stabilizations just discussed. Such properties need properly arranged accepting states,
either to be infinitely visited or avoided forever. For each until occurring in the formula to
translated, one needs such an arrangement. The translation is easier, if one does not work
with plain Büchi automata with one set of accepting states. It’s easier to use generalized
Büchi-automata, so one can do one set of accepting states per until. And then in a later
step, one can translate that automaton to a standard Büchi automaton. GBAs were
defined in Definition 3.4.11.

Let’s refer to the generalized Büchi-automaton for a formula ϕ by Gϕ. To get a grip in the
construction, we need also get a mental picture: what are the states of the automaton,
what do they represent, and how ow are they connected by transitions; we deal with
acceptance later.
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One key idea in this construction is to connect the syntax with semantics, so to build the
model “using” formulas. For LTL, it means the states consist of sets of formulas. That is
a very general idea, and actually, to use syntactic material like sets of formulas to build a
semantic model can also be found elsewhere. For instance, completeness of proof systems
like for first-order logic can be established that way.

But, as said, the idea is pretty general and thus vague, so what does that mean for us?
What we want is a construction such that the states consists of all formulas that hold
in that state and the transitions or edges between the states lead from one state to the
successors that reflects the changes in the set of formulas that hold. That will basically
reflect the interpretation of the ©-operator.

We said, the states represent all formulas that hold in that state. We should qualify that
a bit, it’s about all relevant formulas. If we construct the automaton for Gϕ, then only
formulas that have something to do with ϕ need to be considered, which will be ϕ, all its
sub-formulas and negations thereof.

Let P be the (finite) set of propositional variables of interest, i.e., those mentioned in ϕ.
The alphabet Σ of the Büchi-automaton then is sets of such propositinal atoms, i.e,

Σ = 2P .

Let’s write A, A′, Ai ∈ Σ etc. for such sets. Let’s look at in infinite sequence σ =
A0A1A2 . . . such that σ ∈ [[ϕ]] resp.

σ |= ϕ . (3.23)

We commented earlier that the terminology concerning states, paths etc. shifts a bit (and
we commented also that this should be unproblematic.) We called the models of LTL
formulas paths (and used the symbol π for it, where, to add perhaps to the confusion,
the pieces of the paths where called states (see Definition 3.2.1). Here, the sequence from
equation (3.23) is of the appropriate form.

The infinite sequence σ corresponds to a word accepted by the automaton Gϕ we want to
construct. As such it corresponds to a word following the edges of the automaton, labelled
by Σ. However, it also corresponds to a sequence of states of the automaton: the states
are built up from sets of (relevant) formulas that are supposed to hold in that state, and
that inclused propositional atoms.

Now, how about the states of Gϕ then? We said that states are sets of formulas, and the
automaton is constructed in such a way that the formulas in the states are those which
hold in baofϕ. And that’s not just propositonal atoms, but also compount formulas, in
particular, temporal formulas. That means, the sequence σ = A0A1A2 . . . of (3.23) cannot
be not directly the sequence of states. It corresponds to that state sequence only as far as
the propositional atoms are concerned.

Given the word Ai from above, let’s consider an infinite sequence of Bi so that each Bi
extends the corresponding Ai (by subformulas of ϕ). I.e., Bi ⊇ Ai. Let’s refer to that
extension of σ by σ̂ = B0B1B2 . . ..
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The intention for that sets Bi, ultimately the states of the automaton is that they contain
exactly the language of that state. That is strong requirement. It also implies that for
each formula ψ, either ψ is contained in the state or not. That’s a key ingredient of the
mention principle to build the model, here the states, out of the syntax, sets of formulas.

The language of a state is meant in the standard way: all the infinite words that are
accepted when starting at that state as initial state. With that in mind, we can state the
following about the sequence from equation 3.23, connecting the automaton-states and
their formulas with the rest of the sequence

ψ ∈ Bi iff Bi, Bi+1Bi+2 . . .︸ ︷︷ ︸
σi

|=′ ψ (3.24)

ψ ∈ Bi iff Ai, Ai+1Ai+2 . . .︸ ︷︷ ︸
σi

|= ψ (3.25)

The suffix-path σi, which satisfies ψ exactly when it is mentioned in Bi (and additionally
the intention is that it is a word in the language of the state Bi. The σ̂, a state sequence,
corresponds to an accepting run in Gϕ

The pool of relevant formulas: the closure of ϕ As said, the states of Gϕ are built
for sets of formulas. However, it’s not all possible combinations of all possible formulas.
There are restrictions on the sets of formulas. One of the restrictions is that one focuses
on formulas that can conceivably play a role in an automaton checking ϕ. Since there are
only finitely many subsets of that formula, thus results in a finite-state automaton.

Given a formula ϕ, the pool of formulas taken into account is ϕ and all its subformulas
and negations thereof. We write closure(ϕ) for that set.

Definition 3.5.6 (Closure). The closure of an LTL formula ϕ, written closure(ϕ),
is the set of all subformulas of ϕ and their negation (where ψ and ¬¬ψ is identified).

Meaningful sets of formulas, only: maximal consistency. Considering elements from
the closure of ϕ is only one restriction. Not all elements from 2closure(ϕ) make sense
considering the purpose of the states formed by sets of formulas. As said, the sets or
states B ⊆ 2closure(ϕ) of the automata are intended to contain exactly all the formulas
from the closure that are in the “state-language” of that state, as formulated in equation
(3.25), which involves words with elements Bi from 2closure(ϕ). Of course, the official
semantics of automata speaks about words with letters from Σ = 2P following the edges,
not words over 2closure(ϕ) but the construction couples them tightly together, for instance
in that Bi ⊇ Ai (among other things).

Coming back to the restriction: there is no use of meaningless sets of formulas as states.
Literally meaning-less in that they have no interpretation or semantics. For propositional
atoms, for instance, it makes no sense to have a state B which contains both p and ¬p,
which would be a state with the intended interpretation that both p and its negation holds
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there. Such contradictions neeed to be avoided not just for propositional variables, but
for all formulas. So it’s required for states B that they don’t contain both ψ and ¬ψ at
the same time. That assures that for each state, there exists a variable assignment for the
propositional variables that make the set B true, at least the propositional, non-temporal
part. Such a compositionally non-contradictory set is called consistent.

Is that all required for meaningful and useful states? Not yet. We have restricted ourselves
to sets of formulas from closure(ϕ), but we also want that for all such formulas ψ, either
ψ or ¬ψ, so that by looking at the state, the logical status of the formule is determined
by whether the formula it’s mentioned in the, or its negation.

So the sets of formulas constituting the states of Gϕ or not just consistent subsets of
closure(ϕ), they are maximal: Since in the construction, each subformula of ϕ is either
contained in the state or else ¬ϕ, one cannot add any further formula from closure(ϕ)
without violating consistency. So, states are maximally consistent sets of formulas
from closure(ϕ). The book [2], on which the material here is based, calls those sets
elementary sets, but I think calling them maximally consistent is preferrable.

We have discussed at some length the shape of the states of the automaton to construct.
That’s enough to give meaning to the propositional, non-temporal part of the formula. Of
course, the interpretation of formulas of the form ©ψ semantically is not decided locally
at one state, it speaks about the next states. So, if a formula ©ψ contained in a state
(and thereby intended to hold there) is actually true, depends on whether that state is
added by edges only to states which mention ψ. So, for temporal properties, one has
to focus on the edges properly (which will be done later), but as far as the constuction
of the states are concerned, we are done, as states are for the interpretation of local
and propositional aspects, whereas the edges are (additionally) take care of the temporal
aspects. For ©, that is true, the interpretation of ©ψ is purely non-local, so there is no
restrinction concerning ψ formulas, expect the propositional ones discussed, namely that
already propositinally, that exacly ψ or else ¬ψ must be included in the state,

But what about the other temporal operator, the until? As temporal operator, it has no
local aspects to take care of in the construction of the states, or has it? The until-operator
is the trickiest to translated and actually, there is a local aspect of until, and it is the
following: A formula ϕ U ψ holds in the current state if ψ holds. That also means, the
set of formula can contain local contradictions involving until, for instance if it contains
both ψ and ¬(ϕ U ψ).

Definition 3.5.7 (Propositional consistency). A set B is consistent wrt. proposi-
tional logic (and relative the closure of ϕ) if

1. ψ ∈ B implies ¬ψ /∈ B.
2. ⊥ /∈ B.

Definition 3.5.8 (Closed wrt. propositional entailment). A set B is closed under
propositional entailment if

1. ϕ1 ∧ ϕ2 ∈ B iff ϕ1 ∈ B and ϕ2 ∈ B.
2. if > ∈ closure(ϕ) then > ∈ B
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Definition 3.5.9 (Local consequences of until). A set B is closed under local
entailments wrt. the until operator (and relative the closure of ϕ) if

1. ϕ2 ∈ B implies ϕ1 U ϕ2 ∈ B
2. ϕ1 U ϕ2 ∈ B and ϕ2 /∈ B implies ϕ1 ∈ B.

Definition 3.5.10 (Maximality). A set is maximal (relative to the closure of ϕ),
if for all ψ ∈ closure(ϕ)

ψ /∈ B implies ¬ψ ∈ B .

The following definitions just combines the previous one into one:

Definition 3.5.11. Given a LTL-formula ϕ. A set B is maximally consistent (or elemen-
tary) wrt. ϕ if it is propositionally consistent, closed under propositonal entailment and
locally entailed formulas wrt. until, and if it is maximal.

After all this explanations and definitions, let’s illustrate it by an example. The example
illustrates the concept of closure, also of maximal sets of formulas, in particular maximally
consistent extensions as the Bi’s extending the Ai’s in equation (3.25).

Example 3.5.12.
ϕ = a U (¬a ∧ b) (3.26)

The closure of that formula is

{a, b,¬a,¬b,¬(¬a ∧ b),¬a ∧ b, ϕ,¬ϕ} . (3.27)

The following combinations are maximally consistent

B0 = { a, b, ¬(¬a ∧ b), ϕ }
B1 = { a, b, ¬(¬a ∧ b), ¬ϕ }
B2 = { a, ¬b, ¬(¬a ∧ b), ϕ }
B3 = { a, ¬b, ¬(¬a ∧ b), ¬ϕ }
B4 = { ¬a, ¬b, ¬(¬a ∧ b), ¬ϕ }
B5 = { ¬a, b, ¬a ∧ b, ϕ }

The first two columns cover all 4 consistent combinations of involving a and b, respectively
their negation. Per combination, the third column is fixed: having chosen the truth values
for a and b fixes the truth value of ¬a ∧ b, i.e., whether ¬a ∧ b is added or its negation
¬(¬a ∧ b). The last column is for ϕ, a temporal formula mentioning until. There, based
on the conditions from Definition 3.5.9, a choice for a and b may determine wether ϕ is
added or ¬ϕ. This is the case for B4 and B5.

For B4, since ¬(¬a ∧ b) holds and additionally ¬a
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Example 3.5.13. Let us the formula ϕ = a U (¬a ∧ b) again and its closure from equation
(3.26).

Let’s look at a small satisfying path or run for that until.formula. In the transition system,
we assume that a holds in the initial state, b holds in the second. Let also a hold in the
second state, though the semantics of until does not inist on that. At that point the
execution already satisfies the formula, but for the sake of illustrating the concepts here,
let’s assume a third state where b holds.

The is shown in the following sequence:

σ = {a}{a, b}{b} . . . = A0A1A2 . . . (3.28)

The sets Ai are originally, in the transition systems, the propositions that are supposed
to hold in the states of the transition system. In the Büchi-automaton, it refers to a word
accepted by the automaton via following the edge labels (see 3.18).

B0start B1 B2 B3B3 . . .{a} {b, a} {b} . . .

Figure 3.18: Run of the Büchi automaton

The states B0, B1 . . . mentioned in the run are states of the Büchi-automaton and thus
maximally consistent sets, as explained. Additionally, as indicated in equation (3.25), the
Bi ⊇ Ai, i.e., each Bi is a maximally consistent extension of the corresponding Ai. For
example for B0, one could have:

B0 = {a,¬b,¬(¬a ∧ b), ϕ} (3.29)

B0 must contain a, it cannot contain ¬a, and for the other subformulas, ¬a ∧ b is added
in negated form, and ϕ as is.

Construction of GNBA: general

• given P and ϕ
• given ϕ, construct an GNBA such that

L(B) = words(ϕ)

• 3 core ingredients
1. states = sets of formulas which (are suppsed to) “hold” in that state
2. transition relation: connect the states appropriately,
3. transitions labelled by sets of P.

• labeled transition connected states to match the semantics: for ©ϕ:
go from a state containing©ϕ to a state containing ϕ. Label the transition with the
APs from the start state.
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Transition relation
δ : Q× 2P → 2Q (3.30)

• if A 6= B ∩ P: δ(B,A) = ∅
• if A = B ∩ P, then δ(B,A) is the set B′ such that

– for every ©ψ ∈ closure(ϕ):

©ψ ∈ B iff ψ ∈ B′

– for every ϕ1 U ϕ2 ∈ closure(ϕ):

ϕ1 U ϕ2 ∈ B iff ϕ2 ∈ B or
(ϕ1 ∈ B and ϕ1 U ϕ2 ∈ B′)

Accepting states

Fϕ1Uϕ2 = {B ∈ Q | ϕ2 ∈ B or ϕ1 U ϕ2 /∈ B} .
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4.1 Introduction

This chapter covers another prominent temporal logic, computation tree logic or CTL.
Material is taken from the books [2] or [12]. CTL is pretty established, so there is not
much difference in the essence independent from where one looks.

The logic shares quite some commonalities with LTL, for instance, we will encounter
temporal operators like like © and U and the other ones again.

But CTL is also quite different from LTL. LTL treats time as linear and at the core the
satifaction relation of LTL formula is defined for infinite liniear sequences (traditionally
called paths in LTL).

In contrast, CTL is a branching time logic. It’s not the only one, but a well-known and
simple one. Formulas of CTL (and other branching-time logics) are not interpreted on
paths, but on trees, hence the name (LTL is linear time logic or linear-time temporal
logics, CTL does not stand for computation time (temporal) logic, but computation tree
logic).

In the branching-time view of systems, the behavior of a system is not a linear, resp. a
set of linear runs or paths, it’s a tree (the computation tree). The tree has points where
it branches, these are points where decisions are made one way or the other, caused by
non-determinism or input from outside etc.

A transition system can be unfolded into the computation tree of its behavior. That is
shown in Figure 4.1b. The nodes in the tree carry more information, like propositions
that hold or do not hold at that point, analogous as was done for the paths in the context
of LTL.

If one were to check properties of a transition from Figure 4.1a with LTL or another
linear-time logic, the system would satisfy the property, if all runs or paths starting from
the initial state would satisfy it. A tree as the one from Figure 4.1b as the unfolding
of the transition system of course also contains all those paths. Additionally it contains
information about branching, i.e., the points where decisions are made in the execution.
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s0start s1

s2s3

(a) Simple transition system

s0

s1
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(b) Unfolding

Figure 4.1: Transition system and prefix of its infinite computation tree

But what difference does that make, if any? Figure 4.2 shows two simple (edge-labelled)
transition systems of automata. Their respective behavior (as far as the labels on the
edges are concerned and ignoring prefixes) can be written as a(b+c) and ab+ac in regular
expression syntax.

start

a

b c

(a) a(b+ c)

start

a

b

a

c

(b) ab+ ac

Figure 4.2: Branching

In a linear picture, both transition system show two (complete) executions, namely {ab, ac}.
Ignoring details like that LTL works about infinite paths (and that our transition systems
were primarily state labelled, it means that both systems are equivalent as far as LTL is
concerned. Similary, the regular expressions ab+ac and a(b+c) describe the same regular
languages. Regular expressions represent are word languages, not tree languages. . .

Apart from that fact that the two automata have the same traces, not many would spon-
tenously say that the machine from 4.2a is the “same” (equivalent, isomorphic. . . ) as the
one from Figure 4.2b.

In both system, there is a choice, which ultimately leads to ab or ac in one linear run, but
the difference is where resp. when the choice is made, in the initial state, or in the middle,
after having done a. This kind of information is present in the branching view but absent
in the linear one.

That information about branching can be quite crucial. Ultimately, the transition systems
represent often reactive systems in our context, i.e., systems, parallel or otherwise, that
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interact with each other and/or the environment. The labels, in that context, play the
role of characterizing the interaction. Often, the interactions are classified in input and
output. So instead of uninterpreted letters like a, b, c . . . as in the example, one has
notations representing input and output. One notation one often finds is writing a? for
input (like reading from channel a, obtaining input from port a, reading a value from a
variable a . . . ) and a! for corresponding output.

The issue is somtimes illustrate by the example of a vending machine for coffee and tea.
The interaction with the environment, i.e. the customer, is that the customer drops a
coin, then makes a choice by pressing a button for either coffe or tea, and then the vending
machine serves a hot beverage. From the perspective of the machine, receiving the coin
counts as input as well as pressing the coffee or tea button. Using names more suggestive
than a, b, and c, two possible realizations of a trivial vernding maching are shown in Figure
4.3. The serving of the hot drink could be seen as out output, but it’s not modelled in
the simple example. One obviously could add additional fitting output-transitions for the
serve steps at the end.

coin?

coffee? tea?

(a)

coin?

coffee?

coin?

tea?

(b)

Figure 4.3: Coffee and tea vending machine

The two versions of the vending machine feel drastically different. The first from Figure
4.3a is probably the version the customer would expect: throwing in the the coin first, and
then, with the second interaction, pressing either the button for coffee or for tea makes
the choice. In the second representation of Figure 4.3b, inputting the coin makes the
decision already, thought the customer has no word in it. That’s an example of internal
non-determinism: the decision between coffee and tea is done internally by the transition
system. After the decision is made the customer can interact by either only pressing the
coffee button or else the tea button. The alternative transition is not possible, it’s not
enabled. One could see it that the correspond button is blocked. So in the left-branch, the
user can only “choose” coffee, and is afterwards served coffee (not modelled by an output
transition).

In that sense the two transition systems behave pretty differently. The first one could be
seen as deterministic, at least choices are made externally. In the field of control-theory,
one could also see the first as more controllable, the second less so.

From the perspecitive of LTL or linear time logics, there is no difference between the
two versions: they satisfy the same formulas. So one can specify the user interaction or
user interface of such a vending machine as detailed as one wants, still a version exhibing
behavior like the one from Figure 4.3b, making choices on its own satisfies a specification
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perfectly. So even if the version of Figure 4.3a is the intended one, the other one is correct
as well, and perhaps can be verified to be correct. Though customers will neither like the
machine much nor the argument that’s it’s mathematically correct. . .

In CTL as branching logic, one will distinguish between the two behaviors. Let’s have first
another look at how satisfaction is defined in LTL. At the core, the satisfaction relation
is define between paths and LTL formulas. But one “lifts” that core definition to define
when a transition system resp. a state satisfies a formula, by saying, that a state satisfies
a formula if all paths starting in the state satisfies the formula. A formula ϕ talking about
states is thereby implicitly universally quantified. So one could write more explicitly.

s |= ∀ϕ iff π |= ϕ for all paths π starting in s (4.1)

Since all LTL formulas, when interpreted over a state, are universally quantified (and
quantified at the beginning) there is no need to mention the ∀ and it’s left implicit. In
summary, LTL formulas speaking about states can be seen as of a prefix-quantified form
∀ϕ, where ϕ does not contain further quantifiers and speak about a path.

CTL genealizes that, in that it also uses existential quantification and also allows quan-
tification inside the formula. As we will see in the syntax, there will be a distinction
also between path formulas and state formulas, the latter ones are those starting with a
quantifier, specifying that all paths starting in the state satisfies a path formula or that
there exists a path with the specified path property.

With being able to have a quantifier not just at the beginning of the formula, but allows
nested inside some formula, talking about a situation that occurs after steps, allows to
talk about when choices are made.

For instance, without giving the actually formula here, one could specify, that for all states
reachable after a coin-transition, there exists a coffee-choice transition and there exits a
tee-choice transition. That rules out that the coffee-choice or tea-choice is blocked after
inserting the coin in the vendor example

LTL vs CTL? With the exposition so far, it seems plausible, maybe even almost obvious,
that CTL is more expressive than LTL. CTL seem to have more formulas it seems so it
should be more expressive. That’s actually not the case. A The way the syntax of CTL
is defined restricts slighthy how path formulas can be combined. As a consequence, CTL
formulas are not actually a superset of LTL formlas.

As a further consequence, CTL is not more expressive than LTL, both logics are incompa-
rable concerning expressiveness. Examples showing that may require some thinking over,
it might not obvious even after we have clarified the syntactic restictions in CTL. Later, we
will also talk about CTL∗, which lifts those restrictions and that logic is more expressive
than both LTL and CTL.
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4.2 Syntax and semantics of CTL

Let’s start by fixing the syntax. As for LTL, we assume the non-temporal part of the logic
to be propositional, with p, q . . . from a set of propositional atoms P

Definition 4.2.1 (CTL syntax). The syntax of CTL is given by the grammar from Table
4.1, where p represents propositional atoms from p.

Φ ::= > | p | Φ1 ∧ Φ2 | ¬Φ | ∃ϕ | ∀ϕ state formulas
ϕ ::= ©Φ | Φ1 U Φ2 path formulas

Table 4.1: CTL syntax

Formulas Φ are called state formulas and ϕ are path formulas. Both forms are strictly
separate and defined mutually recursive.

The shown syntax is rather restricted, in particular it contains only© and U . As in LTL,
those two operators are enough to express all the other familiar ones, like ♦ and �. Path
formulas refer to paths, and the interpretation of “next” and “until”, i.e. of © and U
corresponds to their LTL counter-part. The exact definition will follow later.

In the grammar we also get a feeling for the aforementioned restriction of CTL (compared
to CTL∗). A path formula consists of a top-level temporal operator, and one or two
state formulas as immediate sub-formulas. In other words, the grammar does not allow to
have apply a temporal operator to a path-formula. Similarly, the quantifiers ∀ and ∃ for
state formulas are followed by a path-formula, which means, a temporal operator inside a
formula is immediately preceded by one of the quantifiers. This restriction of the syntax
leads to a subtle restriction in expressiveness, which renders CTL as not more expressive
than LTL, but incomparable in expressiveness.

As a not so important side remark: because of that restriction, both ∀ and ∃ is covered
by state formulas, referring to all paths starts in a given state, resp. to some path start-
ing there. Conventionally, universal and existental quantification are each other’s duals,
However, CTL does not allow to exploit that duality, because there is is no negation on
path formulas, it’s only supported for state formulas.

Let’s look a few examples, often they will have some counter-part in LTL.

We have seen in LTL, how to express that some property holds infinitely often for a path.
One can express the analogous property in CTL as a state formula that requires that a
property holds infinitely often on all paths. In the following example, for instance that a
traffic light is green infinitely often.

Example 4.2.2 (∞). The property, for instance of a traffic line that it is “infinitely often
green”, and that for all possible behaviors, is captured by the state formula ∀�∀♦green.
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Example 4.2.3 (Mutex). The safety property that a system never is in a state where two
processes are in a critical section at the same time can be captured by the state formula

∀�(¬crit1 ∨ ¬crit2) . (4.2)

The example assumes two processes and crit1 holds if process 1 is in the critical section,
analogously for crit2 for the other process.

For parallel or concurrenct systems, an important general is progress. In the treatment of
LTL, we did not explictly point to a LTL formula say “this is progress”. It depends always
a bit on what progress means. Generally it means that the system or one participant does
not get stuck. In that sense, it’s a liveness property stating that eventually something
good happens in that the system continues. Mutual exclusion protocols are often given
in an “repetetive” way: the processes don’t just try to enter a critical section once, but a
process, having entered its critical section and after (hopefully) leaving it again, it tries to
enter again, in a big loop, and so for all processes. In such a set-up, progress for a process
could mean that means it is in it’s critical section infinitely often. If also mutual exclusion
from Example 4.2.3 hold, it means the two processes enter and exits the critical section
infinitely often. With mutual exclusion, it may be that both processes enter the criticial
section at the same time, and then get stuck or deadlock, in which case one should not
call the behavior progressing. . . The required behavior is also connected to fairness.

Example 4.2.4 (Progress). The safety property that a system never is in a state where two
processes are in a critical section at the same time can be captured by the state formula

(∀�∀♦crit1) ∧ (∀�∀♦crit2). (4.3)

All the examples could easily have been expressed in LTL as well. In particular the
example with infinitely many occurrences from Example 4.2.2 and the variation thereof,
the progress Example 4.2.4. The CTL formula ∀�∀♦p is of course no LTL formula.
However, it can equivalently expressed by

∀�♦p .
And that’s how LTL formulas are interpreted on states. Not that this formula is not an
CTL formula, it violates the discussed syntactic restrictions (but, as said, ∀�∀♦p expresses
the same and is syntactically correct CTL).

What makes that possible is that the formula is prefixed by ∀-quantifiers, not just two,
but also the � is a quantification over all points in a path.

For a formula like

∃�∃♦p , (4.4)

such a rearrangement does not work. The quantifiers involved are “exists-forall-exists-
exists”. So there is a quantifier change and the formula cannot be rearranged to
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∃�♦p (4.5)

The latter one is not LTL, at least not the standard variant that is interpreted in states
over all paths, but it expresses the property that p holds infinitely often on some path.
The CTL formula from equation (4.4) expresses something different.

As it turns out, infinite occurrence on some path, captured by equation (4.5), is an example
of a property not expressible by CTL. The formula from equation (4.4) seem almost to
express that, but it’s not the same, in a subtle manner. One can show that the two
formulations from equations (4.4) and (4.5) are not equivalent. That’s done by a concrete
example which satisfies equation (4.4) but has no path with infinitely many occurrences of
p. We will show the example later, but you may try to figure out one example yourself.

The following is an example of a response property, like the one we had for LTL.

Example 4.2.5 (Response). For all behaviors, each request sooner or later will entail a
response:

∀�(request → ∀♦response). (4.6)

Example 4.2.6 (Restart). Let start characterize the start state or start states of a system.
The the following CTL formula expresses that the system never gets ultimately stuck in
some dead-end, in that it’s always possible to reach back the inital state(s):

∀�∃♦start. (4.7)

The last property is one which is intrinsically branching. It cannot be expressed in LTL.

4.2.1 Satisfaction relation

Now to the semantics, i.e., the satisfaction relation. Generally, the definition should
present not much surprises. Since the syntax distinguishes between path an state formu-
las, |= is defined for states as well as for paths, and both definitions are mutually recur-
sive.Given a transition system, let’s refer to all paths starting in a state s by paths(s).

Definition 4.2.7 (Satifaction relation).

s |= p iff p ∈ V (s)
s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2
s |= ∃ϕ iff π |= ϕ for some π ∈ paths(s)
s |= ∀ϕ iff π |= ϕ for all π ∈ paths(s)

(4.8)

π |= ©Φ iff π1 |= Φ
π |= Φ1 U Φ2 iff ∃j ≥ 0.(πj |= Φ2 and ∀0 ≤ k < j.πk |= Φ1)

(4.9)



4 Computation tree logic
4.3 CTL model checking 153

4.3 CTL model checking

This section covers algorithm(s) for model checking CTL. The presented technique is
rather different from the one for LTL, in particular it will not conceptually be based on
refutation.

CTL model checking is also often discussed in connection with symbolic, BDD-based
model checking. We will do that afterwards, in this section we discuss the conceptual
algorithm.

4.3.1 Existential normal forms

It is often advantagous to focus on some core set of operators. We did similarly for
LTL, using a restricted set of non-temporal operators and only© and U for the temporal
aspects. We do the same here. The advantage of such a focus is there are less algorithms to
explain and understand. The remaing ones are syntactic sugar and can be model-checked
indirectly thereby.

In practive, that may not be the best course. One sure has less model checking routines
to implement, but as far as efficiency is concerned, one may be better off to take the effort
and implement specific routings for operators left out from the core language.

One can choose the operators for the core calculus quite differently. One choice could
be use negation ¬ only on proposional atoms, but not on compound operators. That’s
called positive normal form. We will use a different selection, one that allows negation on
compound formulas. But we restrict ourselves on considering only ∃ as path quantifiers.

Definition 4.3.1 (Existential normal form). CTL state formilas in existential nor-
mal form are given by the following grammar:

Φ ::= > | p | Φ1 ∧ Φ2 | ¬Φ
| ∃ © Φ | ∃Φ1 U Φ2 | ∃�Φ |

(4.10)

Remember that in LTL, © and U where are complete set of operators, as far as the
temporal part is concerned. Here, we have to include an additional operator, �. You may
reflect on why it was not needed in LTL but necessary now.

We will not make use of the positive normal forms, so we don’t cover the concept. But
positive normal forms exists also for other logics, not just CTL, so we can reflect a bit on
which criteria one should base a selection of operators or a normal form. We mentioned
already that presentation-wise, it is advantagous to restrict to a reduced set, and that for
implementation, a too reduced selection is at least double-edged.

In many contexts, not having to deal with negation for compound formulas is advan-
tagous; that’s why positive normal form are not uncommon. In many constructions,
complementation is tricky. It may lead to a blow-up in the representation or is hard to
do, or both. Remember in that context, that for LTL model checking, the construction
was not building an automaton Aϕ and then complementing it. It would be possible, but
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unwise, since the construction is hard and at least the original construction by Büchi is
double-exponential (there are better ones know in the meantime). That’s why we avoided
automaton complementation by constructing A¬ϕ directly. Of course, we did not make use
of a positive normal form of LTL, but for the construction based on maximally consistent
sets of formulas etc. negation posed no problems.

When doing model checking for CTL, when using a normal form that allows negation, we
need to keep an eye on whether will not be costly in term of efficiency. As indicated, CTL
model checking is often done what is called “symbolically” and based on BDDs. That
is a particular “Boolean” representation of the transition system and information that
is tracked by the model-checking implementaint. BDD stands for specific binary trees,
and the particular form used (as ROBDDs), it is also a kind of normal form (for boolean
formulas). The model checking algo with have to deal with negated, compound formulas,
and when using BDDs, negation needs to be done efficiently for that representation (and
for other formulas as well). Luckily, negation will be particularly efficient . . .

4.3.2 Bottom-up treatment of compound formulas and sat-sets

Now we have agreed on the syntax (ENF), now how to do the model checking? The ENF
contains only state-formulas, not path formulas (resp. the path formulas are implicit in
the formulation of the grammar). The algorithm will have to check thus statisfaction wrt.
state formulas only.

To check that T |= Φ, the algorithm will proceed bottom-up through the formula Φ, i.e.,
it starts by treating the leaves of the formula, and then proceeds bottom-up until it has
to finished treating the whole formula.

It does so by working with the interpretation of the (sub)-formulas as the set of states
that satisfies is. So when we said, the alorithms “treats” a sub-formula Φ′ of Φ, means it
calculates the set {s ∈ S | s |= Φ′}. A crucial part symbolic model checking is that this
list is not treated as an enumeration of indiviual states, i.e., the approach does not solve
s |=? Φ′ for each individual state. That would be explicit state model checking. They
key for a symbolic treatment for sets sat(Φ′) is capture them “formulaically”. which
will here be propositionally. It’s likewise important that this symbolic representation is
compact and can be manipulated efficiently when running the algorithm. Ultimately, the
propositional representation will be based on a form graph or tree like representation
of boolean functions called binary decision trees (BDDs); more about that later. Let’s
summarize the approach first

The basic strategy of T |= Φ
1. calculate sat(Φ) recursively over the structure of Φ
2. T |= Φ iff I ⊆ sat(Φ).

As mention earlier, the recursive strategy treats the formulas bottom-up. So when the
algorithm treats a compound (sub-)formula, say an until formula Φ1 U Φ2, the sets sat(Φ1)
and sat(Φ1) have already calculated. They can be treated by the algorithm as propositions.
The recursive algorithm will contain a case-swich for each syntactive form (in ENF), but
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in the bottom-up strategy, in each case, the ask will be to treat the corresping constructor
applied on propositions. For instance, the U -case requires a treatment for A1 U A2,
with A1 and A2 propositions representing the results of determining the sat-sets of the
immediate subformulas Φ1 and Φ2.

Example 4.3.2. Consider the transition system of Figure 4.4 and the CTL property from
equation (4.11). The “names” of the states are considered also as propositions, for instance,
the initial state is called born which is interpreted that in this state, the proposition born
holds, but in the other states not.

Figure 4.4: Transition system

∀♦dead. (4.11)

Example 4.3.3. Consider again transition system of Figure 4.5. This time, let’s look at
the CTL property from equation (4.11):

∃© hungry ∧ ∃(eat U ¬dead). (4.12)

Figure 4.5 shows the syntax tree of the formula. Additionally, the sat-sets are indicated
for most nodes.

Figure 4.5: Bottom-up calculation of sat-sets

Since all initial states —there is only one— of the transition system are contained in the
sat-set of the formula, the transition system satisfies Φ.

As mentioned, the model checking algorithm calculates the sat-sets bottom-up in such
syntax trees. The figure does not illustrates that calculation, only its results.
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To get a feeling of how it works, consider, for instance, the node for ©hungry and its
child node hungy. That sat-set for the proposition hungy is the singleton set {hungy} of
states from the transition system from Figure 4.4. The set for the parent node ©hungry
is calculated from the sat-set {hungy} for the child-node by following the edges in the
transition system backwards; in this particular example, there is only transition to follow
backwards, the edge from born to hungy. So the algorithm will treat the ©A-case for a
proposition A, given sat(A), by calculating pre(sat(A))

The treatment for U is similar insofar that it involves following the transitions backwards.
Instead of a single-step calulation of predecessors, it will involve an iterated calculation
of predecessor set, in a iterated backward-exploration of the transition system. Such a
calculuation can be understood as the calculation of a fixpoint.

input : f i n i t e t r a n s i t i o n system T and Φ
output : T |= Φ

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for a l l i ≤| Φ | do

for a l l Ψ ∈ sub(Φ) with | Ψ |= i do
compute sat(Ψ) from sat(Ψ′) (∗ max . genuine Ψ′ ⊆ sat(Ψ) ∗)

od
od
return I ⊆ sat(Φ)

Listing 4.1: Basic algorithm

input : f i n i t e t r a n s i t i o n system T and Φ
output : T |= Φ

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
switch Φ

> => return S
p => return {s ∈ S | p ∈ V (s)}
¬Φ => S \ sat(Φ)
Φ1 ∧ Φ2 => return sat(Φ1) ∩ sat(Φ2)
∃© Φ => return pre(sat(Φ))
∃(Φ1 U Φ2) => ``lfp for ∃ U ' '
∃�Φ => ``gfp for ∃� ' '

Listing 4.2: Recursive algorithm

4.3.3 Characterization of sat & fixpoint calculations

Next we have to fill in the blanks in the algorithmic skeleton of Listing 4.2. We will do so
by characterizing the different cases for the sat-calculation, i.e. the different cases of the
switch-construct. Some of the cases don’t require much further explanation, as they are
basically covered in the code of Listing 4.2.

Not surprisingly, the trickiest cases are those for U and �. The one for ∃© is quite
straightforward. One simply needs to explore “backwards”, calculating pre. Later though,
we will express that slightly differently. But for now, we will focus on the last two cases.

In Listing 4.2, it’s mentioned that those cases are treated by calculating a fixpoints, th
greatest fixpoint resp. the least fixpoint, gfp and lfp.
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Fixpoint calculation for ∃♦

That requires some elaboration, I assume. The following illustrates the fixpoint idea not
for ∃(A1 U A2), but for ∃♦A, which is a special case of that, with A1 = >. That’s slightly
easier to present, as the formulas has only one subformula not two. It’s probably also
easier to understand than the ∃�A case, which is why we do the exposition about fixpoint
calculation using ∃♦.

Before we get into the fix-point business, we can think how to solve the model-checking
problem for

∃♦A
with A given. It’s very easy, actually. sat(∃♦A) correspond to all states from which a state
in A can be reached. That can be calculated in a natural way by a backward exploration
starting at A. Forward or backward, no matter, a graph can be explored in different
ways. Depth-first for instance, or breadth first, or something more fancy. One can also
leave the strategy open, resp. follow the most unspecified stategy possible, following edges
randomly, here pre-edges. See Listing 4.3.
T := sat(B) ;
while pre(T ) \ T 6= ∅ do

let s ∈ pre(T ) \ T ;
T := T ∪ {s} ;

od ;
return T ;

Listing 4.3: Backward exploration for ∃♦A

The algo starts with A, resp. the corresponding sat-set. In each round, following some
edge backwards it picks a state that has not been explore yet, and adds that state to the
set T of explored ones. If no such state exists, it stops. At that point T contains the
desired sat-set.

Let’s remark two or three things, maybe obvious ones. The first is, that T is properly
enlarged in each round. Because if no new state can be fround be the exploration, the
algorithm stops. This, secondly, implies that the algorithm terminates, because we assume
finite-state systems. That’s also a triviality: one can for sure do graph searches or graph
explorations on finite graphs. Thirdly, the sketched exploration adds one state in each
round, i.e., the iteration treats states individually. That’s not in our interest of doing
symbolic model checking.

The last point we will address a bit later, let’s continue with a discussion of what that
pretty simple algorithm has to do with fixpoints.

For the sake of this discussion, let’s massage the code from Listing 4.3 a bit. As said, in
each round the set T is increased by one state. Let’s capture that effect in one operator,
say F .

To do so, call pick a function that when applied to a non-empty set, gives back a random
element from that set; it’s undefined on the empty set. pick∅ the function that, when
applied to a non-empty set, gives back a singleton-set with one element randomly chosen,
but when applied to the empty set, gives back the empty set. With this function, we can
equivalently write for the loop-body of Listing 4.3 as T := T ∪ {pick(pre(T ))}. There
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is always a state s that can be picked and pick is well-defined, as that’s checked in the
loop-condition. We can thus write for the loop body

T := T ∪ pick∅T .

The loop condition T \ pre(S) 6= ∅ can be equivalently expressed as

T ⊃ T ∪ {pick(pre(T ))} or T 6= T ∪ {pick(pre(T ))} .

T := sat(A) ;
while T 6= T ∪ {pick(pre(T ))}
T := T ∪ pick(pre(T )) ;

od ;
return T ;

Listing 4.4: Backward exploration for ∃♦A

At the exit of the loop, we have therefore

T = T ∪ {pick(pre(T ))} . (4.13)

i.e., each iteration step i increases the current set Ti properly to Ti+1 = {pick(pre(T ))},
adding one randomly picked state not yet explored. That’s done until no new such states
are found, and that is captured by the equality from equation (4.13).

IF we write F for the function F (X) = pick∅pre(X)∪X, the different incarnations T0, T1
etc. are given as T0 = sat(A), T1 = F (T0), T2 = F (T1) = F 2(T0), etc. i.e.,

T0 = A
Tj+1 = F (Tj) where F (X) = pick∅(pre(X)) ∪X

(4.14)

The Ti’s from Unlike the algorithm code, the definition from equations (4.14) correspond
to the value of T in the different iteration rounds, though the formulation in equation
(4.14), unlike the algorithm, does not specify when to stop, by for instance saying that j
has a value from 0 . . . k.

If the loop stops after, say, k iterations, it means with the loop’s exit condition from
equation (4.13) that Tk+1 = F (Tk) = T . Additionally, it’s immedeate to see that not only
Tk = Tk+1, but also Tk+1 = Tk+2 = Tk+3. So, once an application of F to the current
value of set T does not increase any more (and the loop stops), no further applications
would increase it later, perhaps after further iterations without any increase.

A = T0 ⊂ T1 ⊂ T2 ⊂ . . . ⊂ Tk = Tk+1 = Tk+2 . . . (4.15)

It’s also said that the iteration or the chain of Ti’s stabilizes at the point where Tk+1 = Tk
for the first time, and it’s characteristic that, once stabilized, it will remain at that point
forever. Thus it makes perfect sense to make stabilization the exit condition for the
iteration.
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For all elements Ti in the chain, we know that

A ⊆ Ti, and Ti ⊆ Tj+1 . (4.16)

Equation (4.15) is more explicit about that for indices lower than k, it’s Ti ⊂ Tj+1, for
those higher it’s Ti ⊂ Tj+1, but the ⊆-relations from equation (4.16) are stating something
correct, nonetheless. Actually, without knowing the concrete k where the iteration sta-
bilzise, that seems to be best we can say about how the Ti’s hang together. Actually, also
the code of the algorithm does not operate with a concrete k: it’s based on a while-loop,
iterating until stabilization not on a for-loop.1

The sets Ti are representing the status of the interation in the different rounds, but based
on the observation from equation 4.16, we could more abstractly (without mentioning any
looping construct) require

Goal (a): Find me a set T such that (a) it contains A and such that (b) F (T )
does not make it larger.

There will later be a refinement of that goal, but anyway, the current version can be
captured by the following two in-equations, inequations in the sense of ⊇

T ⊇ A
T ⊇ F (T ) where F (X) = pick∅(pre(X)) ∪X

(4.17)

That can be seen as (in-)equation system, where T is the variable over which the equation
system is formulated. Actually, it’s a recursive equation system; at least the second (in-
)equation is recursive in T . Solving it corresponds to the goal stated just above.

That’s all fine and good, but what has it to do with fix-points? Well, at the stabilization
point, say Tk, we have Tki

= F (Tk), and that means Tk, calculated iteratively solves it.

We can also combine the two in-equations from equation (4.18) into a single line.

T ⊇ F ′(T ) where F ′(X) = pick∅(pre(X)) ∪X ∪A (4.18)

Now we have one single, recursive (in).equation, and we know that Tk solves it, i.e.,
Tk ⊇ F ′(Tk), actually, as explained, Tk = F ′(Tk). In other words

Tk is a fixpoint of F ′, i.e., it solves T = F ′(T ).

I.e., we have found a solution not only of equation (4.18) using ⊇, but also of the corre-
sponding constraint using equality (and using X instead of T , to stress that it’s a variable
of the equation):

X = F ′(X) (4.19)
1For-loop in the sense of an loop with a fixed number of iterations, like for i = 0 to k, not in the
sense of loops using the for-keyword in Java.
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After all this massaging, we have cast goal (1) into the form of a fixpoint equation,
resp. an “fixpoing inequation” in equation (4.18). The technical term for the latter is
pre-fixpoint; there are also post-fixpoints, where ⊇ is used the other way around, but
here, for the shown construction for ∃♦, we are into pre-fixpoints. Actually, for the dual
of “eventually” temporal property, the �, it works the other way around and operates a
post-fixpoint (and a fixpoint).

We said, that the Tk calculated by the algo is both a pre-fixpoint as well as a fix-point of
F ′, i.e, it solves both equations (4.19) and (4.18). Obviously, each fix-point is at the same
time a pre-fixpoint as well (and also a post-fixpoint, for that matter). But the fixpoint
formulation with = and the pre-fixpoint formulation with ⊇ are not the same constraint:
the former imposes stricter requirements on the set of solutions, in other words, there are
pre-fixpoints which are not also fixpoints.

Actually, that fact us not really important. It’s true that equations (4.19) and (4.18) are
not expressing the same constraints and one has more solutions than the other, but they
do have the same solution(s) where it matters.

That has to do with one missing piece of the story. So far, we have covered only what we
called goal (a), which we have turned into a (pre-)fixpoint requirement, and we said Tk
solves both formulation. But indeed, Tk not only satisfies Tk = F ′(Tk) and Tk ⊇ F ′(Tk),
in the chain from equation (4.15), k is the first point where that happens. In other
words, Tk is the smallest set from the chain that solves the fixpoint resp. the pre-fixpoint
formulation.

Actually, it’s not just the smallest set in the chain with that property, one can prove that
it’s generally the smallest fixpoint as well as the smallest pre-fixpoint (not just in the
particular chain-construction). So, while the pref-fixpoint formulation has more solution,
as far as the smallest solutions are concerned, and that’s what we are after, both formula-
tions are indeed equivalent. Additionally, one can prove that there the smallest solution is
unique. Thus, it’s the (unique) smallest solutution for goal (a) that we are after as the
set sat(∃♦).

Goal (b): Find the smallest set T satisfying goal (a).

That may seem a long and winded explanation for something quite simple, namely how
do a (backward and random) graph exploration to determine sat(A). That may be so, but
also semantics resp. algorithms for ∃ U and ∃� can be explained and justifiedsimilarly
(the one for ∃� calclating greatest (post-)fixpoints, gfp’s). Also other temporal operators
left out of the restricted ENF syntax are given as fixpoints (some as least (pre-)fixpoints,
some as greates (post-)fixpoints). With the slightly longish explations in case of the
simpler ∃♦ setting, boiling down to a very straightforward graph exploration, we can keep
the presentation of the slighty more complex cases short. But before that, there is another
issue to address. With all the talk about fixpoints and how to solve them, we lost sight of
another aspect of CTL model checking, namely that it’s a well-known example of symbolic
model checking.
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Explicit state vs. symbolic model checking

The skeleton recursive model checking algorithm from Listing 4.2 is working with sets of
states, the sat(lstateform)-sets. As explained, the two last and most complicated cases
case switch are doing fixpoint iteration, calculating some gfp or lfp.

If we look at the way it has been explained,the basic step picks one individual state s in
each round, adding it to the set T of explored states.

That’s the way, explicit-state model checking works. In the spirit of symbolic model
checking, it’s better to explore the graph by adding whole sets of states in each iterative
step. That can easily be written down. Instead of the iteration from equation (4.14), using
pick∅(pre(X)), we simply add all states of pre(X) in one swoop:

T0 = A
Tj+1 = F (Tj) where F (X) = pre(X) ∪X

(4.20)

Likeise, the code from Listing 4.4 is readily adapted to the one of Listing 4.5.
T := sat(B) ;
while T 6= T ∪ pre(T ) do
T := T ∪ pre(T )

od ;
return T ;

Listing 4.5: “Breadth first” backward exploration for ∃♦A

The latter seems even even simpler than the one from before, so why did we not start the
fixpoint explanation with this one? Indeed we could have done that, everything would have
worked analogously. Nonetheess, we started the exposition with the explicit-state version
for two reasons. One is, showing both versions may rub in the difference between symbolic
model checking on the one hand and explicit-state model checking on the other. Secondly,
the graph explication here can be seen as a specific explication strategy, namely breadth-
first exploration. The previous one is a random exploration. The random exploration can
also be seen as the most “general” strategy, a strategy that covers all specific exploration
strategies, like breadth-first, depth-first and other traversal strategies. If one can convince
oneselve that even this random strategies has good properties (like doing the job, and
terminating), then all other strategies, being included in the non-deterministic one, also
have those properties (and one does not have to re-consider the correctness or termination
question for all possible more concrete strategies). Of course, in practise, some strategies
and heuristic may be more efficient than others, but that’s an optimization question, not
one whether the strategy works at all.

Talking about optimization: who actually said that bread-first exploration is better than
some alternatives? Indeed, explicit state model checking, say for LTL, is often based on
depth-first search, the memory footprint of breadth-first search is mostly not managable.
Also with the code from Listing 4.5, if the step

T := T ∪ pre(T ) (4.21)
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is nothing else but an innler loop through pre(T ), like

forall s ∈ pre(T ).do T := T ∪ {s}

we have not gained much except that it’s not breadth-first instead of a random explo-
ration, and that’s of dubious value in itself. To make sense, the step from equation (4.21)
but be done efficiently, and that implies, not by interating through the predecessors indi-
vidually.

Indeed, it’s crucial for symbolic model checking not just “have” sets returned as result,
as sketched in the code of Listing 4.1, but all steps of the algorithms should be calculated
more or less efficently on those sets, and more often a step is to be executed, the higher the
pay-off if that steps is efficent. Certainly, the exploration steps for the temporal formulas
are done repeately, so in particular the calculation of pre(T ) should be effcient. Likewise,
checking for equality is needed for finding out f the desired has been reached, and union
T ∪pre(T ) will be needed in the inner loops of the algorithm. In the next section we cover
how that can be achieved. It will be based on a propositional encoding, conceptually
working with (a particular representation of) boolean functions, known as binary decision
diagrams, BDDs. The BDDs will be a particular form of binary DAGs, but to connect
them to the algorithms, it’s more conventent not explain the encoding directly in terms of
the BDDS, but rather in propositional formulas.

Now that we have explained in some depth the nature of the exploration for ∃♦ as solving
a (pre-)fixpoint inequation in an iterative manner, we give the correponding characteriza-
tions for ∃ U and ∃�. The until-case is a slight generalization of the “eventually” case.
The case for ∃� is dual insofar it is defined as greatest fixpoint, and consequently, the
iteration does not work by enlarging a set until stabilization, but dually be making it
smaller step by step, until stabilization.

1. sat(>) = S.
2. sat(p) = {s ∈ S | p ∈ V (s), for any p ∈ P}.
3. sat(Φ1 ∧ Φ2) = sat(Φ1) ∩ sat(Φ2).
4. sat(¬Φ) = S \ sat(Φ).
5. sat(∃© Φ) = {s ∈ S | ∃s′.s −→ s′ ∧ s′ ∈ sat(Φ)}
6. sat(∃(Φ1 U Φ2)) is the smallest subset T of S such that

a) sat(Φ2) ⊆ T and
b) s ∈ sat(Φ1) and ∃s′ ∈ T.s −→ s′ implies s ∈ T .

7. sat(∃�Φ) is the largest subset T of S such that
a) T ⊆ sat(Φ) and
b) s ∈ T implies ∃s′ ∈ T.s′ −→ s.

Figure 4.6: Characterization of CTL operators

T := sat(Φ2) ;
while {s ∈ sat(Φ1) \ T | post(s) ∩ T 6= ∅} 6= ∅ do

let s ∈ {s ∈ sat(Φ1) \ T | post(s) ∩ T 6= ∅} ;
T := T ∪ {s} ;

od ;



4 Computation tree logic
4.4 Symbolic model checking 163

return T ;

Listing 4.6: Fixpoint calculation for ∃Φ1 U Φ2

T := sat(Φ) ;
while {s ∈ T | post(s) ∩ T = ∅} 6= ∅ do

let s ∈ {s ∈ T | post(s) ∩ T = ∅} ;
T := T \ {s} ;

od ;
return T ;

Listing 4.7: Fixpoint calculation for ∃�Φ

4.4 Symbolic model checking

This section will show how the previous approach can be “encoded” or “represented” in a
way that leads to an efficient implementation. The encoding will ultimately “binary”, i.e.,
by bits. That this is possible should be clear, since we are dealing with a finite problem,
the transition system has finitely many states, we are checking propositinal formulas, and
also there are finitely many sets if states sat, the algorithms uses. With everything being
finite, it’s clear that one can represent it by bits. With everything finite, it uses a finite
amount of memory when implemented. But there’s more to it than that the problem is
finite and when implemented on some computer, everything is ultimately bits and bytes
anyway.

We look more systematically at how the nececcary encodings and operations on that can
be encoded or represented. And for that we start by introducing a particular form of
boolean functions, called switching functions.

4.4.1 Switching functions

The symbolic approach here makes heavy use of boolean functions, representing the tran-
sition system and the model checking algorithm operates on boolean function, and the
ultimate data structures, the BDDs, are som particular representation for boolean func-
tions. This section here fixes a few definitions and notations needed later.

As for boolean values, we use 0 and 1 (and not ⊥ and ⊥, as we did in connection with
logics (but it’s notation only anyway). Boolean functions are functions of type {0, 1}n →
{0, 1}. For later developments, it’s more handy (and more conventional) to identify the
function arguments not by their position, but by name, i.e., th fuctions are seen as of type
Var → {0, 1}, where Var is a finite set of variables, typically z1, z2, . . . etc., or similar.
Let’s call those function (boolean) evaluation functions, with typical element η, and write
Eval(z1, . . . , zm) for evaluation functions over the set {z1, . . . , zm}, i.e.

Eval(Var) = Var → {0, 1} . (4.22)

What we call evaluation function here is basically a fixed-size bit-vector, only that it’s
addressed by names of variables (not offsets from its start, so to say). For a concrete



164 4 Computation tree logic
4.4 Symbolic model checking

such vector with values b1 . . . bm, we use the notation [z1 = b1, . . . , zm = bm]. We may
abbreviate that as [~z = ~b] (or even ~b...)

A central role play also a particular form of boolean functions, called switching functions.
Those are boolean-values function over evaluation functions.

Definition 4.4.1 (Switching function). A switching function for Var = {z1, z2, . . . , zm}
is a function

f : Eval(Var)→ {0, 1} = (Var → {0, 1})→ {0, 1} . (4.23)

The special case Var = ∅ is allowed. In this case, the switching functions for the empty
set are the constants 0 or 1

The terminology of “switching functions” is perhaps a bit peculiar, perhaps peculiar for
BDDs or bit-valued functions in the tradition of Shannon. As said, nn evaluation function
is nothing else than a bit-vector (where variables are used as name for the different slots)
and a switching function is a set of such bit vectors (or a predicate over such vectors).

In a way, we have encountered evaluation functions and switching functions already, though
we did not use the terminology (as it’s not common to speak of switching functions there).
For propositional logic, formulas were interpreted over the domain of boolean values B,
but that’s of course the same as the set {0, 1} of bits. Propositional formulas contain
propositional variables, where we used p, q, etc., back then, where here we write zi and
similar for the same thing. A propositional formula ϕ, containing some variables, is
interpreted as the set of all variable assignments to the involved propositional variables,
that make the formula true. The standard notation for that is

σ |= ϕ , (4.24)

the assignment σ satisfies ϕ; we also called σ amodel of ϕ. Alternatively (but equivalently),
we said, the semantics of ϕ is the set of a variables assignemnts that satisfies it, i.e.

[[ϕ]] = {σ | σ |= ϕ} .

The variable assignments σ are nothing else than the evalution functions (here denoted
by η) and [[ϕ]] is nothing else than what we call here switching functions.

So, a switching function as defined in equation (4.23) represents the semantics of boolean
formula or the solution set of a boolean sat-constraint etc. It’s an explicit representation of
the solutions, i.e., it’s not a formula constructed from a given grammar (with a particular
set of operators). The representation is also in the form of bit-vectors, which is promising
with respect of efficency. It’s also “standardized”: With the variables fixed, each solution
set of a formula is represented by one switching function, representing the semantics of the
formula. Syntactic, formulaic representation are not unique. A semantics of a particular
formula can be expressed in infinitely many different ways.

Switching functions (perhaps realized with bit-sequences) sounds like a decent route to
implement propositional formulas. As fine as it sounds, one thing such a representation
is not: compact. An array of bit-vectors is basically nothing else than a truth table
representation.
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The BDDs that are central for this section is nothing else than a better, on average more
compact representation for boolean functions, based on trees. Compactness is an impor-
tant criterion for choosing a representation, but it’s not the only one. Data is not just
stored, it’s also accessed, worked with and changed. For determining if a variable assign-
ment satisfies a formula, as in equation (4.24) a tabular representation may be fast, but
we need other operations as well, also when using the representations for model checking,
here CTL model checking, as in one of the different flavors of the core algorithm from
earlier. The operations we need should be at least on average be executable efficiently.

Another positive property when choosing a representation is uniqueness of representation.
Those unique representations are sometimes called canonical forms. Some also call them
/normal forms/ in some fields, though in our context, being a normal form does not imply
unqiueness. For instance, conjunctive normal forms and its dual disjunctive normal forms,
and others, are not unique. They still are some standard representation, and can be used
as basis for a genuinely canonical forms, then e.g. called canonical conjunctive normal
form.

Often, having a canonical representation can be a very good thing, especially when none
needs to comparing the elements one implements. For instance, if one has a truly canonical
representation of propositional formulas, one can check that they are equivalent by check-
ing if their representation is identical. That’s typically faster to establish than checking
for equivalence, which basically means that the two formulas imply each other.

But working with canical (or normal) forms can also be a “burden”. Often one operates on
the data, here “formulas” or representations of switching functions. It’s not generally the
case, that the combination of two canonical forms is again canonical. Also other operations,
one needs to perform on the data may not preserve canonicity (or normal-ity).

A common and prominent form of CTL model checking is based on so-called BDDs, binary
decision diagrams. As tree-like data structure, the representation is generally much more
compact than a tabular form of the switching functions. Additional conditions on top
of the BDDs make assure that the data structure will be a canonical representation of
boolean functions. Finally, it turns out that the operations we need to do on the boolean
functions can be done pretty painlessly.

We have talked a bit vaguely about “operations” we will need to do for model checking, but
which are those? We can consult for instance the simple recursive formulation of the model
checking algorithm from Listing 4.2. Model checking works by calculating the sat(Φ) in a
fashion working bottom-up through the formula in question. Since the sets sat(_) of states
are encoded propositionally, (“symbolically”) (see Section 4.4.2), ultimately by BDDs, the
code shows what needs to be calculated on BDDs. Based on the reduced syntax of CTL,
and besides the base cases of > and the propositival variables, it’s conjunction, negation,
the next operator, and the fixpoint calculations for ∃� and ∃ U .

Before we come to some technical definitions, let’s wrap up and summarize points about
switching functions from Definition 4.4.1. The concept can be seen as a set of variable
assignments or evaluations (or a set of bit-vectors). It can also be seen as representing
propositional formulas or propositional constraintsl. A boolean formula represents a set
of valuations as in equation (4.24), but one can also turn it upside down: a switching
function represents as set of different but equivalent propositional formulas.
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Boolean operators for switching functions

Boolean operators like ∨, ∧ and the other construct larger formulas from smaller ones.
The operators have their corresponding semantical counter-parts for switching functions.
Their definition is straightforward, it’s kind of like defining truth tables but using the
more fanciful definitions based on functions over functions.

Let’s cover the base cases of propositional formulas first, propositional variables and the
constants 0 and 1.

Given an evaluation or bit-vector from Var → {0, 1}, a projection on some variable z ∈ V ar
pick that variable’s value in the evalution. A projection function onto a variable zi, written
projzi

, is of type (Var → {0, 1})→ {0, 1}, i.e., it’s a switching function.

In the view if switching function as a set of solutions to a propositional constraint, a
projection function focuses on one variable one. The outcome depends on the value of
that variable one, the value of all others play no role. That means, the switching function
projz conresponds to the atomic boolean formula or constraint z. I.e., [[z]] = projz. Often
one writes just z for the projection. Similarly, for the two constant switching functions,
one that maps all variable assignments to 0 and the other all to 1, one simply write 0 and
1.

Let’s show, as example for composing switching functions, the definition for disjunction.for
composing switching functions

Note that the switching functions are defined over a set of variables. When combining
two switching functions, one has to make a decision, if one defines it only for functions
over the same set of variable, or if one is more relaxed and don’t insist on that. It’s not
a big difference either way. If one is strict, one would simply need a way to extend the
domain of a function to operate on a larger set of variables. This way, before combining
two functions, one would extend both, if needed, to operate on the common, joint set of
variables.

The definition is is the more relaxed one and allows to combine switching functions with
different domains. But as said, it’s not a crucial choice.

Let’s consider two switching functions f1 and f2, over the respective variable domains

{z1, . . . zn, . . . , zm} and {zn, . . . zm, . . . , zk}

with 0 ≤ n ≤ m ≤ k. In other words, the two function have the variables zn, . . . , zm in
common, the variables z1, . . . , zn−1 resp zm+1, . . . , zk are exclusive for f1 resp. f2. The
switching function over the combined set {z1, . . . , zk} representing the disjunction is given
as

(f1 ∨ f2)([z1 = b1, . . . , zk = bk]) =
max(f1([z1 = b1, . . . , zm = bm]), f2([zn = bn, . . . , zk = bk]))

(4.25)

max represents the disjunction of bits (assuming that 1 is larger than 0 . . . ). Each function
f1 and f2 takes only the variables in its domain into account, of course. The outcome of
f1 only depends on the values chosen for z1, . . . , zm, the other variables are irrelevant. will
define the related notion of essential variables a little further down below in Definition
4.4.3.
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Cofactors and Shannon expansion

Next some other operations on switching function that help explaining how to encode
the data structures for the algorithm and also BDDs later. We start with cofactors and
the related notion of Shannon expansion. Note in passing, the master thesis of Claude
Shannon, the inventor or discoverer of information theory is sometimes called “the most
important Master thesis ever written”2 (I did not find the exact origin of that quote),
and the thesis was concerned with boolean logics and electric circuits (not yet with what
became known as information theory, actually Shannon coined the term).

Back to the issues at hand. When viewed as constraints, the positive resp. negative
cofactor of a switching function wrt. a variable simply means setting the variable to 1
resp. to 0. That can be captured as follows.

Definition 4.4.2 (Cofactors). Assume a variable set Var = {z, y1, . . . , ym} and let f :
(Var → {0, 1}) → {0, 1} be a switching function over it. The positive cofactor of f for
variable z, written f |z=1 is the switching function given by

f |z=1 (b1, . . . , bm) = f(1, b1, . . . , bm) (4.26)

The negative cofactor of f for z, written f |z=0 is defined analogously. If f is a switching
function for {z1, . . . , zk, y1, . . . , ym}, then we write f |z1=b1,...,zk=bk

for the iterated cofactor
of f , given by

f |z1=b1,...,zk=bk
= (. . . (f |z=b1) . . .) |zk=bk

(4.27)

Switching functions are defined over a given set of variables, one could call it their domain.
It’s similar to boolean formulas. Often, for formulas, the set of variables is not explicitly
given, it’s just all for variables occurring in the formula. Sometimes it’s useful to make it
more explicit also there, for instance, considering a formula like x1 ∧ x2 to be a formula
over, say x1, x2, and x3, even though x3 is not mentioned. It just means, to be true, x1
and x2 have to be true, but the value of x3 is arbitrary, it does not affect the outcome.

If course, even if a variable is mentioned in a formula, it does not mean its value has an
influence on the outcome. For instance, taking the proposition x1 ∧ x2 ∧ (x3 ∨ ¬x3), the
variable x3 now occurs, but its value is still inessential.

Anyway, whether a value for a variables influences the outcome is the criteron for being
essential. That can use used to define essential variables for switching functions.

Definition 4.4.3 (Essential variable). A variable z is essential for a switching function,
if

f |z=1 6= f |z=0 . (4.28)

Next the important concept of Shannon expansion. Actually it’s also known as Boolean
expansion, i.e., it’s approximately a century older than Shannon’s works.

2See https://dspace.mit.edu/handle/1721.1/11173 or https://www.cs.virginia.edu/
~evans/greatworks/shannon38.pdf. Coincidentally, Shannon’s Master thesis [31] also uses the
term “symbolic analysis” in its title “A Symbolic Analysis of Relay and Switching Circuits”.

https://dspace.mit.edu/handle/1721.1/11173
https://www.cs.virginia.edu/~evans/greatworks/shannon38.pdf
https://www.cs.virginia.edu/~evans/greatworks/shannon38.pdf
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Lemma 4.4.4 (Shannon expansion). Let f be a switching function for Var . Then

f = (¬z ∧ f |z=1) ∨ (z ∧ f |z=0) (4.29)

for all variables z from Var .

Figure 4.7

Figure 4.7: Binary decision tree for z1 ∧ (¬z2 ∨ z3)

Definition 4.4.5 (Existential quantification).

∃z.f = f |z=1 ∨f |z=0 (4.30)

4.4.2 Encoding transition systems by switching functions

The CTL model checking algorithm does its job by exploring the transition system by
calculating sat(_) of the subformulas of the given CTL formula. Next we show how the
transition system and the sat-formulas can be represented by switching functions, i.e. that
this data can be propositionally represented.

That this is possible, in principle, should be obvious, as mentioned. To find such an
propositional encoding just means ultimately represents them by “bits” and bitectors.
The transition system is finite, and all possible subsets of states are finite, as well, so
that certainly is possible. But let’s still review how it can be achieved systematically. By
systematically, we mean “symbolically”, using boolean formulas, propositional variables,
etc.

Let’s start by reminding us about transition systems. A transition system is of the form

T = (S, (Act),−→, I,P, L)

and we need to find an systematic way to encode it. In the incoding, we ignore the
(transition) labels or actions Act) as irrelevant.
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Encoding the states and sets of states

That’s easy, we basically need enough bits so that there are enough different bit-patterns
to have one for each state. For the states s ∈ S, one uses propositional variables x1, . . . , xn,
each state represented by some concrete evaluation [x1 = b1, . . . , xn = bn] : {x1, . . . , xn} →
{0, 1}, so the encoding of a state s is given by a bit-vector enc(s) = b1, . . . , bn. Should the
transition system not have exactly 2n for some n is not a problem, the are simply unused
bit-patterns. We identify in the following the set of states with the bit patterns, i.e. we
assume that

S = ~x→ {0, 1} .

We need to represents sets of states as well, i.e., sets B ⊆ S. That’s pretty simple,
and based on the fact that the set of all subsets of a set, say subsets of S is isorphic
to all functions for S to {0, 1} (or B or any 2-element set). I.e. 2S is the “same” as
S → {0, 1}. A subset B ⊆ S is equivalently represented by a function, conventionally call
its characteristic function and written χB. For all elements of S, the function gives back
1 if the element is in B, and 0 otherwise.

χB : (Eval(~x)→ {0, 1} = (~x→ {0, 1})→ {0, 1} = S → {0, 1} .

Being a finite function, it can also be seen as a bit-vector implementation of B, with the
vector of length | S |.

The transition function

What works for sets of states, works analogously for the transition relation −→⊆ S × S,
i.e., working with the characteristic function. We represent that as switching function,
i.e., a {0, 1}-valued function over variables. To represent the tuple space S×S, one needs
to “duplicate” (the encoding of) S. We refer, when describing the encoding, to the states
by variables xi, and to get another copy of it, we simply assume a second, disjoint set
of variables written x′1, . . . , x′n, and taking the original variables x to refer to the source
state of a transition and the primed versions y′ as the target. The corresponding switching
function is then of type Eval(~x, ~x′) = (~x, ~x′) → {0, 1}. We write ∆ for functions of that
type (not χ−→, using the general notation for characteristic functions).

∆ : ((~x, ~x′)→ {0, 1})→ {0, 1}, ∆(s1, s2[~x′ ← ~x]) =
{

1 if s1 −→ s2
0 else . (4.31)

In equation (4.31), the s2[~x′ ← ~x] represents state s2 with the variables ~x renamed to or
substituted by their primed counter-parts ~x′. Actually, we have not made an argument
that we can actually do that. We are using variables and symbols, and of course one
can substitute variables in a formula. But ultimately the formulaic writing refers to
switching function. For instance, when mentioning a variable x, we are actually meaning
a corresponding projection function. Section 4.4.1 covered all kinds of switching functions
and operations on them, including the mentioned projection functions and how to combine
them with boolean operators (which will be used later). But we have not covered how to
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interpret renaming like s2[~x′ ← ~x] as operation on switching function. We leave that bit
out in the presentation, it can be straightforwardly done.

Indeed if one has convinced oneself that all the relevant notations and concepts have
their counterpart in the chosen representation, the switching functions, one can work
formulaically with variables, and renaming of variables, boolean formulas, etc. In the
context of LTL, we have talked about products of automata resp. transition systems (let’s
not make a fundamental discinction here in the discussion). We covered two simple cases,
the synchronous and the asynchronous production or parallel composition. Imagine one is
modelling a system, consisting of a number number transitions systems running in parallel,
either synchronously or asychronously depending on the kind of system. Then the CTL
model checking is done of the overall combined transition system.

If now each of the processes is encoded in the described way as switching function, then
one could figure out if it’s possible to define paralell composition directly on switching
functions. And it’s possible, but we omit also that here.

4.4.3 Exploring the encoding for model checking

Now with the transition system safely encoded, we need to show how the algorithm(s)
cover earlier can be made working on those encodings. We have seen different versions of
the algorithm(s), some more concrete than others. The overall design does not change,
the algorithms works bottom-up through the structure of the given CTL formula. That
has nothing to do with whatever encoding we have chosen, here switching functions, but it
could be anything, so we don’t have to change anything there. So the recursive algorithmic
skeleton from Listing 4.2 can remain unchanged.

Let’s then discuss the individual cases of the algo from Listing 4.2 one by one. For the
temporal cases, see in particular also the corresponding cases from the characterization
from Figure 4.6.

The first four cases in the switch statement are covered. In particular, ∧ and ¬ can be
interpreted on switching functions. The case for ∃ © A requires to encode the pre-set
calculation. With the encoding of the transition relation −→ and with the encoding of
existential quantification and the renaming operation, the set {s ∈ S | ∃s′.s −→ s′ ∧ s′ ∈
sat(Φ)} can be straightforwardly encoded as

∃~x′.∆(~x, ~x′)︸ ︷︷ ︸
s∈pre(s′)

∧χA[~x′ ← ~x]︸ ︷︷ ︸
s′∈A

(4.32)

Insteat of the U -case, let’s discuss here how to represent ∃♦, as we elaborated the fixpoint
iteration on that slightly simpler special case. So, how to encode ∃♦? Let’s look at the
formulation from Listing 4.5, the breadth-first backward exploration.

It’s an iterative calculation of the predecessor sets. Of course the iteration itself needs
not to be “encoded”, it’s still a loop. What needs to be encoded is the start set and the
iterative step in each round from Tj to Tj+1 = Tj ∪ pre(Tj).

The start set T0 = A can be represented by a switching function f0 = χA. Each Tj will
likewise be representd by a switching function fj = χTj . And with ♦ being basically
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an iterated version of ©, the iteration step is basically what we have covered for ∃© in
equation (4.32):

∃~x′.∆(~x, ~x′)︸ ︷︷ ︸
s∈pre(s′)

∧ fj [~x′ ← ~x]︸ ︷︷ ︸
s′∈Tj

(4.33)

The treatment of th until-operator is not much harder to encode (see its characterization
from Figure 4.6). The resulting code is shown in Listing 4.8.
f0(~x) := χA1 (~x) ;
j := 0 ;
repeat
fj+1(~x) := fj+1(~x) ∨ (χA2 (~x) ∧ ∃~x′.∆(~x, ~x′) ∧ fj(~x′)) ;

until fj(~x) = fj−1(~x) ;
return fj(~x) .

Listing 4.8: Symbolic exploration sat(∃(A1 U A2))

Finally, Listing 4.9 shows how to do the case for ∃�. The innovation here is that the
greates fixpoint is calculated: in each iteration round, the current approximation gets
smaller not larger, using ∧, not ∨.
f0(~x) := χA(~x) ;
j := 0 ;
repeat
fj+1(~x) := fj+1(~x) ∧ ∃~x′.∆(~x, ~x′) ∧ fj(~x′)) ;

until fj(~x) = fj−1(~x) ;
return fj(~x) .

Listing 4.9: Symbolic exploration sat(∃�A)
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5.1 Intro

The slides here take inspiration from the presentation [11] and the article [10]. Another
good (handbook-)article is [4].

We have talked about model checking, i.e., solving the problem whether or not a model
satisfies a given formula, of M |=? ϕ. The focus was on the model being a transition system
T , typically finite state, and the formula expressing some temporal property, written in
some some temporal logic or other. In particular we have covered so far LTL and automata-
based model checking and symbolic CTL model checking, using BDDs.

Definition 5.1.1 (Kripke structure). A Kripke structure or transition system is a tuple
(S, I,−→, V ) where S is the set of states,I ⊆ S the set of initial states, −→ ⊆ S × S
the transition relation, and V : S → 2P the valuation function (aka. (state) labelling
function).

The conceptual idea of bounded model checking is quite trivial. When facing the task of
verifying a system, we simply give up on exploring all of the system, but content ourselves
in exploring it only up-to some point, i.e., imposing an upper bound on the exploration.
In the context of LTL-model checking, the upper bound is on the depth of exploration,
i.e., one puts a upper bound on the length on the paths the model checker explores.

Of course, the idea of putting an bound on the amount of effort spent in analysing a
system or model can take different forms. One could for instance limit the time the model
checker runs (or stop it from running if one looses patience waiting for an outcome).
That would also in a way be bounded model checking thought it would not fall into a
what is conventionally be called a bounded model checking technique; it would be too
ad-hoc. Characteristic for classical bounded model checking is also, that model checking
is presented as a SAT-solving problem, and just shutting down a process when it runs too
long does not qualify for that.
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But besides bounding the length of the paths, other criteria have been studied, for instance
the number of context switching in parallel processes etc. We will not cover alternatives,
but focus on the classical situation: exploring a system only up-to a paths of a fixed
length.

Above it was said that bounded model checking gives up the hope of exploring the whole
system, basically giving up the hope of system verification. One should probably formulate
that less categorical.

First, in principle bounded model checking may not give that up, one could increase the
bound iteratively until it spots an error or if one knows the bound is big enough. For
finite-state systems such may be possible. But on the other hand, even if possible, it is
somehow not too natural and a bit against the spirit of bounded model checking, which
focuses more on spotting errors within exactly specified bounds. Bounded model checking
shares this spirit-ual focus of finding errors with testing (focusing on a finite set of test
cases) and with run-time verification (looking just at one run).

Secondly, and probably more importantly: that unbounded model checking allows full and
absolute verification of correct systems resp. finding bugs in faulty ones is also more a
fiction. In the introductory part we discussed why that is is a naive view in practice. One
is that model checking typically works with models of the real system and with certain
abstractions. That alone may result in that some errors are overlooked (and/or lead to
the detection of spurious errors, which are errors caused by the abstraction but absent in
the more detailed system). And even in when abstracting away from certain details, the
state space may still be infinite or too big. So, when doing “unbounded” model checking
in such a situation, the analysis may find its natural bounds by the maximum memory
usage, for instance, or the practically acceptable running time.

Back from the more philosophical remarks, back to the technical realization of the general
idea of exploring all paths up to a fixed length of k. An important aspect of the approach
we have encountered already in connection with CTL-model checking. In a quite different
form, thought, but there is the general commonality of a

symbolic treatment via a propositional encoding for the purpose of the
exploration.

In the context of CTL model checking we have looked at how different propositional
constructs, ultimatly how propositional constraints can be represented and worked with.
The propositional encoding back then was to capture sets of states, and the transition
system etc. At some level, those entities where described by (quantified) boolean formulas.
The formulic constraints were interpreted as boolean (swiching) functions, ultimatelty
represented as ROBDDs.

Here, we are concerned representing finite paths through a given transition system (not
(the evolution of) sets of states as in the CTL case). That means, the boolean formulas
look different, but the idea is similar.

In the CTL case, which does a backwards, breadth-first exploration, a crucial ingredient
was to capture the set of predecessor states for a given set A of states. That set spre(A)
was captured by a formula that relied on (propositional) existential quantification and
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relied on the propositional representation of the states and the transition relation −→ of
the transition system.

Following similar ideas, it’s plausible that one can represent a finite path of the form

s0 −→ s1 −→ . . . −→ sm . (5.1)

As mentioned earlier, in its basic form, bounded model checking focuses in finding errors,
namely errors that can be spotted with a finite distance, say k, from the initial states.
One could, if one prefers that, spot errors with a finite distance of a different point in the
program, or errors doing the same thing backwards, i.e., errors at most k-step before a
given point, maybe before the end of the program. Those variations are inessential for the
idea, and let’s discuss it by assuming we do it forward, and start at an initial state, and
let’s assume there’s only one of those, which is a common set-up anyway.

Encoding the path from equation (5.1) as SAT problem descibes all paths of finite length
m, i.e., the solutions to that SAT-problem are those paths. Indirectly that descibes also
all states sm that are at a distance m away from the initial state s0.

Now, if we see bounded model checking as a form of bug-hunting with a bound how deep
to look for a bug, then of course it’s not good enough to encode equation (5.1). Assume
that we are after a safety property, a simple invariance �A′, with A′ propositional. Seen
as a state formula, it means we want to establish resp. refute ∀�A′. To refute it means
to establish an existential state formula of the form

∃♦A (5.2)

(with A = ¬A′). Taking the path specification from equation (5.1), i.e., its SAT encoding
and with proposition A at hand, one can formulate that

s0 −→ s1 −→ . . . −→ sm ∧ sm satifies A (5.3)

The states are best understood as variables. As far as s0 is concerned, there may only be
one state that qualifies, under the assumption that the model has only one initial state.
Checking equation (5.3) for a satifying solution mean, looking for states s0, . . . sm such
that sm satisfies the proposition A. To say it differently but equivalently, the si are best
seen as exitentially quantified. At any rate, in this way, equation (5.3) does not represent
a particular path with concrete states s0 to sm, but all paths of length m that start at the
initial state and with some end-state sm that satisfies A. That symbolic treatment is similar
to what we have seen in CTL model checking where one crucial trick was to represent the
sets of states and the set of predecessor states of a given set in a propositional manner.

So we know that we can capture paths of length m and a witness to ∃♦A from equation
(5.2). Let’s abbreviate the corresponding formula from equation (5.3) by

∃♦mA (5.4)

with m fixed. Now, we are looking for witnesses at an arbitrary distances, i.e., what we
are actually after is something like ∃m : N.∃♦m. That’s not a propositional formula. The
inner existential quantifier is ok, we made use of existential quantifications also in the
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encoding of pre(A) for CTL model checking. It quantifies over finite entities, resp. their
propositional representation. So, that can be done propistionally, in so-called quantified
boolean or quantified propositional logics, which is ultimately not much different than
propositional logic without that operation. In particular it’s about finite structures.

But the outer quantification ∃m : N, that’s a different story, that’s no longer propositional.
Another way to see it, to look for a witness means to solve the sat-problem ∃♦A is to
solve

∃♦0A ∨ ∃♦1A ∨ ∃♦2A ∨ . . . (5.5)

That’s just a different way of expression the existential quantification over N. And of
course neither that is propositionally allowed. Disjunctions, of course, are allowed, but
equation (5.5) makes use of an inifinite disjunction, which one cannot do.

But that’s where the boundedness of bounded model checking comes in. The sat-constraint
∃♦A captures standard, unbounded model checking, unfortunately in a non-propositinal
way. But if we restrict ourselves to find a witness only up-to a fixed depth k, then the
setting becomes finite. Instead of the existential quantification over all natural numbers,
one has to deal only with a quantification ∃m ∈ {0, . . . , k}, resp. the infinite disjunction
from equation (5.5) is now defused to a propositional finite disjunction

k∨
m=0

∃♦mA (5.6)

5.1.1 What else need to be taken care of?

We sketched the core idea behind sat-based bounded model checking. In the short remarks,
we simplified the situation slightly, basically by focusing on finding a encoding for a the
problem ∃♦m≤kA and looking for a satisfying witness for that. That corresponds to
refuting the simple invariance property ∀�¬A, at least in a bounded manner.

However, we want apply the approach not just to formulas ∀�A′, which is the simplest
form of a safety property, but to all of LTL.

Generally, of course, that’s not possible: one cannot hope to verify or refute a property by
looking only at path of finite length. At least not the the way we told the story. Additional
considerations would come it, which are somehow orthogonal, and thus not in the spirit
of the story of bounded model checking as sat problem over finite paths. We leave those
extra considerations out in this discussion (for now, or completely).

That actually also applies to the situation from above, when reasoning about ∀�A′ in a
bounded manner. We can refute that property by finding a finite counter example. But
one cannot verify it in the described manner (without additional tricks), i.e., we cannot
decide the logical status of that formula.

The above formula is the simplest form of safety property. But the same can be said about
liveness properties, neither their status can be decided. The situation is somehow dual,
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however. Let’s take as property to verify ∀♦ϕ, which means ∃�¬ϕ for refutation resp. as
sat problem. In a bounded form, it’s about sat-solving

∃�≤k¬ϕ . (5.7)

If there exists a solution to the constraint, i.e., a path as witness for that formula, resp.
a counter-example for the original formula in its bounded form ∀♦≤kϕ, then we have a
finite witness-path where always ¬ϕ. But having established the constraint (5.7) does not
imply that also ∃�¬ϕ, in other words, we cannot dis-prove ∀♦ϕ. One the other hand, if
the constraint (5.7) is not satisfiable, it means ∀♦≤kϕ is the case, and that means also
unboundedly ∀♦ϕ where it holds.

So the safety property could be disproved in a bounded manner (if it actually does not
hold), and one gets counter-example for it. The sample liveness propert could be proved
(if it actually holds).

In some way, that’s not posible. There are properties that cannot be refuted in that
manner (nor can they be verified that way). At least not the the way we told the story.
Additional considerations would come it, which are somehow orthogonal, and thus not in
the spirit of the story of bounded model checking as sat problem over finite paths. We
leave those extra considerations out in this discussion (for now, or completely).

Without any extra tricks, it’s clear that one cannot verify a problem ∀♦ϕ, and one cannot
refute it, i.e. find a counter-example as a witness for the negation ∃�¬ϕ. Looking only at
paths up-to length k (and without extra tricks) gives no information about the status of
∀♦ϕ. Looking at a single path (for the sake of argument) and assuming that ϕ does not
hold up to k, it’s clear that without looking beyond the bound we cannot know

But we are of course not doing model checking on one path, but all paths up to a given
bound. If, by some lucky chance, ϕ would become true within the explored k-horizon
on all bounded paths, then one could conclude that ∀♦ϕ actually holds. But we are not
getting hold of all such paths. We are doing sat-solving and are working with ∃�¬ϕ. The
information we get is either

∃�≤k¬ϕ or ∀♦≤kϕ
and we only get to know that there exists bounded path where �¬ϕ or else not.

If there does not exist such bounded path where ¬ϕ is always true, it means ∀�≤kϕforit
has not information about the situation beyond the bound, and it does not help. If, on
the other hand, there exists a bounded path where �ϕ holds, it carries no information
eather

5.2 Bounded semantics

We have covered the standard semantics of LTL earlier, interpreting LTL formulas over
infinite paths. The interpretation of formulas over a transition system being a derived
notion.
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In the CTL-part, in particular in the model checking part, we restricted our interest to
formulas in a particular normal form, it was CTL-formulas in ENF, existential normal
form. We also mentioned that other normal forms exists, for CTL or other logics. We
use a quite common such normal form here for LTL and bounded model checking, namely
negation normal form, NFF.

In such a form, one restricts the use of negation in that only atomic propositions or
propositional variables are allowed to occur negated and negation cannot be used on
compound formulas. To compensate for that, we need both ∧ and ∨, both ♦ and � etc.

In the presentation (following [4]), we leave out, however, the until-operator and the other
binary temporal operators. Not that it would be complex, but the presentation is slightly
simpler.

An initialzed path satisfying ϕ is called a witness for ∃ϕ.

or counter example, remember refutation

π of a transition system T

witness of ϕ in T is a path starting in an initial states and that satisfies ϕ.

We assume the formulas in negation normal form.

Looking for witnesses for formulas of the form ∃♦ϕ. In other words the approach can deal
straightforwardly with finding counter-examples for formulas of the form ∀�ϕ′, generally
counter-examples to safety properties.

In the dual case of looking for counter-examples for liveness properties, i.e., looking for wit-
nesses of for instance formulas of the form ∃�ϕ, things get more involved. It’s intuitively
clear that a finite prefix of an infinite path cannot be used as witness for

∃�ϕ . (5.8)

Unless one adds one additional clever idea, a central one for bounded model checking in
the form discussed here.

The idea is to take into account looping behavior. Consider Figure 5.1, depicting a
loop or a lasso. Both words are used for that, in the original publication it was called
loop, though in the handbook article, the word “lasso” is used. I prefer lasso, and a lasso
consists of two parts, the stem, in the picture going from s0 to sl and the loop part, the
part depicted as cycle at the end.

The picture is a visualization of lasso or loop, but it’s (also) understood as a path, i.e.,
an infinite sequence of states (see Definition 5.2.1). The infinite path it respesents has a
finite prefix, the stem, and then an infinite repetition of the looping part (see also equation
(5.9)).

Even if, technically, a lasso is an infinite path, it can be finitely represented, as in Figure
5.1 and it also can detected looking only at a finite prefix. Having reached state sk and
detecting that one can continue to a state one has seen before, state sl in the picture,
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•s0 • •sl
• •si

•sk

Figure 5.1: A lasso

shows that there is a cycle in the transition system. It shows also that the prefix can be
extended to a infinite path by repeating the cycle forever. That means that in a situation
with a lasso, a finite prefix can actually serve as a witness for the from equation (5.8).
Note that it’s important that in the approach, looking for witnesses, we are dealing with
existentially quantified formulas ∃ϕ, so the detection of a loop shows there exists an infinite
path as witness. So a finite sequence of k + 1-states represents (the existance of) a lasso,
if continues, and we use the term lasso also for that finite representation consisting of
s0 . . . sk, with the last state sk as the one with the back-transition to some earlier sl.

Definition 5.2.1 (Lasso). Assume l ≤ k. A path π is a (k, l)-lasso if πk −→ πl and

π = u · vω (5.9)

with
u = π0 . . . πl−1 and v = πl . . . πk

A path π is a k-lasso if there exists an l with 0 ≤ l ≤ k s.t. π is a (k, l)-lasso

Of course, not all finite paths are k-lassos, for instance if all states are different. Techni-
cally, that’s not the only reason, why a path of length k + 1 is no lasso. The definition as
given insists that, to be a lasso, the last state sk loops back, if an earlier state sm with
m < k is repeated, then technically that’s not a loop. But its prefix s0s1 . . . sm would be.
In the larger picture, it’s not so important, as the approach works with prefixes of paths
of all length up-to a pre-defined upper bound say k, i.e., the lasso at m will be detected
and taken into account.

At any rate, some finite path of length k + 1 are lassos (or contain lassos in their prefix)
and some not. One could increase k, increasing also the chance to find some lassos. Having
a path with a lasso is a good thing, because, as explained, in this favorable situation, we
can hope to use it as witness for an �-style formula (or a counter-example for an original
liveness property). Of course not all lassos are factually a witness for such a formula, the
ϕ must also hold at all positions.

But for non-loop finite paths, the situation is worse. They can serve as witness for ∃♦ϕ
formulas; for that kind of properties the lassos play no role. But without loop, they don’t
contain information for ∀�ϕ-formulas.

When we will define the so-called bounded semantics for LTL, i.e., when a finite path
satisfies an LTL formula, we distinguish the two situations: paths which are lassos and
paths which are not. In both cases, sometimes the finite path can serve at a witness. In
this case the semantic will report back that this is the case.
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But there will be cases where the finite prefix contains not enough information to serve
as a witness (and to serve as counter-example for the original ∀-formula). We discussed
the case that obviously non-lasso prefixes can never serve as witness for �-formulas. But
the same problem, the fact that a finite prefix does not contain enough information, also
applies to ♦-formulas. If we want a witness for ♦ϕ, but the finite prefix contains no
occurrence of ϕ, we likewise don’t know.

The question is

What should the semantics give as an answer is such “don’t know’-situations?

One possibility could be to work not with a binary logic with true and false, but perhaps
with true, false, and “don’t know”. Some approaches for run-time verification use a 3-
valued version of LTL for that.1 But here we do something else. We stick to 2 boolean
values, but in case of not knowing, the bounded semantics reacts pessimistically and gives
false as judgement. The emphasis is on finding a witness for a formula (resp. a counter-
example for the non-negated property), and if the length of exploration cannot be used as
such a witness, then, with the current bound, there is no witness (yet) and the finite path
does not satify the formula in the bounded semantics.

Let’s now define the bounded semantics, and let’s do that in the form of a satisfaction
relation |=, as before. The bounded version is written |=k, where k is the bound up-to
which we consider the path. As mentioned, the definition is given in two “variants”, one
for paths which are in the form of a lasso, and one for finite paths where that is not the
case. In the latter case we will also work with a refined version of |=k, written |=i

k, see
below. Let’s start with the lasso-case.

Definition 5.2.2 (Bounded semantics: with lasso). Let π be a k-loop. A formula
ϕ is valid along π with bound k, written

π |=k ϕ iff π |= ϕ .

The definition is quite trivial, it’s the original, unchanged semantics |=. In the presence
of a k-loop and with the bound at k, we have all the information we need. The loop case
is exact, non approximative.

On the other hand, that’s only the case if we consider the bounded semantics on one path
(as the definition does). In the larger conceptual picture, we are exploring a transition
system, and we are exploring paths up-to a bound of k. Thinking in particular about
looking for a witness for ∃�ϕ, in the positive case, namely that the formula holds, the
semantic is exact also in the larger picture of exploring the transition system. In the
negative outcome, however, when the lasso-path does not satisfy the formula, of course it
does not mean . . .

1Actually also 4-valued version. It’s 4 values in that they make use of 2 version of “unknown”, somehow
like “unknown, but it looks good”, and “unknown, but it looks bad”, a “tendency” towards true resp
false. This is an informal description and not 100% accurate, and there are technical reasons which
speak for 4 values instead of 3.
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Definition 5.2.3 (Bounded semantics: without lasso).

π |=i
k p iff p ∈ L(πi)

π |=i
k ¬p iff p /∈ L(πi)

π |=i
k ϕ1 ∧ ϕ2 iff π |=i

k ϕ1 and π |=i
k ϕ2

π |=i
k ϕ1 ∨ ϕ2 iff π |=i

k ϕ1 or π |=i
k ϕ2

π |=i
k �ϕ is always false

π |=i
k ♦ϕ iff ∃j.i ≤ j ≤ k. π |=j

k ϕ

π |=i
k ©ϕ iff i < k and π |=i+1

k ϕ

π |=i
k ϕ1 U ϕ2 iff ∃j, i ≤ j ≤ k.π |=j

k ϕ2 and ∀n, i ≤ n < j.π |=n
k ϕ1

π |=i
k ϕ1 R ϕ2 iff ∃j, i ≤ j ≤ k.π |=j

k ϕ1 and ∀n, i ≤ n < j.π |=n
k ϕ2

Now that we have established the bounded semantics, we look into it connection to the
original one. Basically, in the limit, both semantics coincide. The bounded semantics is an
approximation of the real semantics, in the sense that in case of a positive answer in the
bounded semantics, that carries over to the real, unbounded semantics. In other words,
the bounded semantics is a sound approximation of the unbounded semantics, and that
for every bound k. See Lemma 5.2.4.

Lemma 5.2.4 (Soundness (per path)).

π |=k ϕ implies π |= ϕ

That’s not surprising, and was easy to achieve: the bounded semantics in case of not having
enough information, stipulated that the formula does not hold. The reverse direction,
completeness is harder, and it means that ultimately, if a formula for existential LTL
holds in a transition system, it also holds for the bounded semantics, if only the k is large
enough. See Lemma 5.2.5.

Lemma 5.2.5 (Completeness (for TSs/KSs)).

S |= ∃ϕ implies S |=k ∃ϕ for some k ≥ 0

Both results together give the following

Theorem 5.2.6.
S |= ∃ϕ iff S |=k ∃ϕ for some k ≥ 0

So, to use a bounded model checker, one has pick a large enough k and the tool gives
the correct answer. The k may not be known, so one could guess one. Or better, model
checker could increase the k automaticall in case an attempt is unsuccessful, hoping that
one finds an positive answer at some point and before running out of resources.

Besides that one may well run out of resouces before one gets a positive answer, banking
in on soundness, the case where the ∃ϕ does not hold is principally more problematic.
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Completeness from Lemma 5.2.5 states that in this case, one need to check |=k for all
k ≥ 0! That’s of course not doable.

The existential LTL formula ∃ϕ is typically the negation of a standard ∀-formula, one
tries to refute. That’s why we said, bounded model checking focuses on finding bugs (i.e.,
refuting the original formula), but not on verification: one cannot check the bounded
model checking problem for all k.

There are things one can do about that. For instance, in a finite-state system, if one knows
the size of the transition system (more precisely its diameter), one can use that to know
when there’s no use in looking for larger k’s, and if until then one has not found a witness
(a counter-example to the original ∀-formula), one is sure there is none. But we don’t into
that further.

5.3 Propositional encoding

Next we will present how a bounded model checking problem can be addressed by sat-
solving by showing an encoding of such problems. We show the encoding as originally
proposed, which is a pretty straightforward translation of the bounded LTL semantics
and of course the transition system into propositional logics. Indeed, afterwards, other
encodings and representation have been proposed, for instance some working with Büchi-
automata or other techniques that lead to more efficient implementations. See for instance
[23] which is also covered in [4]. Also explicit-state, non-symbolic method have been
explored for bounded model checking. See for instance for some discussion of different
techniques [9].

Here, as said, we stick to the original proposal of the encoding. Some of that we basically
know already from symbolic model checking of CTL, namely how to encode the transition
system. Here we don’t need to encode the set of predecessors pre, but finite paths through
the system, but the priciples are the same. Talking about CTL model checking: in that
part we continued to explain how the encoding can be understood as boolean switching
functions, and how those can be canonically represented as BDDs. That one popular way
in CTL model checking.

Here we don’t do that, we just show the formulaic representation as boolean formula. How
to handle those we leave to a SAT-solver, which may not be based on BDDs; most SAT
solvers are using variations of David-Putnam’s procedure (DP).

Goal: [[T, ϕ]]k is satisfiable by some π iff π is a witness for ϕ

The encoding will be done in three separate parts, one dealing with the (finite paths) of
the given transition system. Secondly, capturing the loop or lasso condition, and finally,
representing the formula ϕ, resp. its bounded satisfaction relation. The latter part is split
into the semantics dealing with paths with a lasso, and those without (as it was defined
earlier)
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Encoding the transition system

Let’s start with the transition system, resp. bounded paths through it. Let T be a
transition system, then

[[T ]]k , I(s0) ∧
k−1∧
i=0

si −→ si+1 (5.10)

Loop condition

Remember the concept of (k, l)-loop or lasso and of k-lasso from Definition 5.2.1 (remember
also Figure 5.1). Both are readily encodable. lLk, representing a (k, l)-loop is a simple
abbreviation for the fact that there is an edge in the transition system between the to
involved states.

lLk , sk −→ sl

With that the k-lasso is given as a finite disjunction (or bounded existential quantification)
as follow:

Definition 5.3.1 (Loop condition).

Lk ,
k∨
l=0

lLk

Encoding (the semantics of) ϕ

Earlier, the bounded semantics was defined using the relation |=. Here we capture the
semantics as the set of states where the formula holds, i.e., for encode [[_]].

Lasso-case: bounded semantics for a (k, l)-loop Encoding the propositional part as
propositnal formula is, of course, trivial

l[[p]]ik , p(si)
l[[¬p]]ik , ¬p(si)

l[[ϕ1 ∧ ϕ2]]ik , l[[ϕ1]]ik ∧ l[[ϕ2]]ik
l[[ϕ1 ∨ ϕ2]]ik , l[[ϕ1]]ik ∨ l[[ϕ2]]ik

The temporal part is a but more interesting. To do that, we also need to “define” the
successor of a state, resp. we need to convince ourselves that one can propositionally refer
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to the successor of a state in a path with a loop. We use succ(i) to refer to the successor
of i in a (k, l)-loop as

succ(i) =
{
i+ 1 for i < k
l for k (5.11)

l[[�ϕ]]ik , l[[ϕ]]ik ∧ l[[�ϕ]]succ(i)
k

l[[♦ϕ]]ik , l[[ϕ]]ik ∨ l[[♦ϕ]]succ(i)
k

l[[©ϕ]]ik , l[[ϕ]]succ(i)
k

l[[ϕ1 U ϕ2]]ik , l[[ϕ1]]ik ∨ l[[ϕ1 U ϕ2]]succ(i)
k

l[[ϕ1 R ϕ2]]ik , l[[ϕ2]]ik ∧ l[[ϕ1 R ϕ2]]succ(i)
k

Translation for paths without a loop The translation follows the same principles (the
index l is not needed obviously here). And instead of the more “complex” succ(i) from
before, we can simply use i+ 1, otherwise: the definition stays “the same”

The propositional part is boring again (and we don’d show it):

For the temporal case, we can make, we have ∀i ≤ k:

[[�ϕ]]ik , [[ϕ]]ik ∧ [[�ϕ]]i+1
k

[[♦ϕ]]ik , [[ϕ]]ik ∨ [[♦ϕ]]i+1
k

[[©ϕ]]ik , [[ϕ]]i+1
k

[[ϕ1 U ϕ2]]ik , [[ϕ1]]ik ∨ [[ϕ1 U ϕ2]]i+1
k

[[ϕ1 R ϕ2]]ik , [[ϕ2]]ik ∧ [[ϕ1 R ϕ2]]i+1
k

We can see it as induction case. The “induction” goes backwards insofar the situation of
i is defined in terms of i+ 1. So the base case is the one at the end, namely for k + 1.

[[ϕ]]k+1
k , false (5.12)

Putting it together Finally, we can put the three ingredients together, the encoding of
the paths, the loop condition, and the encoding of the formula.

[[S, ϕ]]k , [[S]]k∧
( (¬Lk ∧ [[ϕ]]0k)
∨ (∨k

l=0(lLk ∧ l[[ϕ]]0k) )

(5.13)

Theorem 5.3.2.
[[S, ϕ]]k satisfiable iff S |=k ∃ϕ .
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6.1 Introduction

The material here is based on Chapter 10 from the book [12] or the handbook article [28].
[2] does not cover partial-order reduction.

A fundamental limitation in model checking is the state-space explosion problem. Model
checking is basically intractable, i.e. it suffers from a combinatorial explosion which renders
the state space exponential in the problem or system size.

All analyses based on “exploration” or “searching” suffer from the fact that problems
become unmanagable when confronted with realistic problems. That’s also true for other
approaches like SAT/SMT-solving, and there is no lack of intractable problems in all kinds
of fields. If we look at (explicit-state) model checking very naively, and perhaps even focus
on only very simple problems like checking �ϕ (“always ϕ”), the model checking problem
phrased like this and as such seems not really untractable (complexity-wise). It’s nothing
else than graph search, checking “reachability” of a state that violates the property ϕ.
Searching through a graph is tractable (it has linear complexity, measured in the size of the
graph, i.e., linear in the number of nodes and edges). So that’s far from “untractable”.

In model checking, it’s the size of the graph, that causes problems. That’s typically
exponential in the description of the program. In model checking one is often interested in
temporal properties of reactive, concurrent programs, consisting of more than one process
or thread running in parallel. Typically, the size of the global transition system “explodes”
when increasing the number of processes, due to the many interleavings of the different
local process behaviours one needs to explore.

Of course, there may be other sources that make a raw state exploration unmanagable. If
the problem depends on data input (like inputting numbers), the the size of the problem
increases exponentially with the “size” of the input data. If one uses integers with only
one byte length, one already has to take 28 inputs into account. Normally, of course,
one has (immensly) larger data to deal with, and perhaps not just with one input, but
repeated input in a reactive system. Those kind of data dependence quickly goes out of
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hand. That is also a form of “state space explosion problem”, but mostly, when talking
about the state-space explosion problem for model checking, one means the state space
explosion due to different interleavings of concurrent processes. Dealing with data is not
the strong suit of traditional model checkers, so it sometime better to deal with data with
different techniques, and/or to ignore the data This means to abstract away from data
(that’s also known as data abstraction) and let the model checker focus on the part of the
problem it is better suited, the reactive behavior and temporal properties.

Partial-order reduction is a technique to reduce the explored state space by avoiding
irrelevant interleavings

One last word about “complexity”: Before we said that model checking is linear in the
size of the transition system. That’s of course an oversimplification, insofar that the
“size” of the formula plays a role as well. For instance, in the section about the µ-
calculus it was hinted at the the alternation-depth is connected to the complexity of the
model checking problem in that contaxt. For model checking LTL, the time complexity is
actually exponential in the size of the formula. Normally, that’s not referred to as state
space explosion and also in practice, the size of the formula is not the limiting factor.
Also, if one has many properties to check, which can be seen as a big conjuction, one can
check the individual properties one by one.

Battling the state space explosion

As it’s such major road block, it’s clear that many different techniques have be proposed,
investigated, and implemented to address it. An incomplete and somewhat unordered list
symbolic techniques, BDDs, abstraction, compositional approaches, symmetry reduction,
special data representations, parallelization of model checking, the use of “compiler opti-
mizations” on the model (like slicing, live variable analysis . . . ). And here we are doing
partial order reduction.

“Asynchronous” systems and interleaving Partial-order reduction is most effective in
asynchonous systems. The distinction is for systems with different parts working in par-
allel or concurrently, and one can make that distinction for hard- or software. In HW,
synchronous behavior can be achieved by a global hardware clock, that forces different
components to work in lock step. The global clock is used to synchronize the different
parts. Also in software, synchronous behavior has its place (one could have protocols
simulating or realizing a global clock) there are also so-called synchronous languages, pro-
gramming languages based on a synchronous execution model, they are often used to
model and describe HW, resp. software running on top of synchronous HW.

Concurrent software and programs, though, more typically behave asynchronously, i.e.,
without assuming a global clock. A good illustration are different independent processes
inside an operating system, say on a single processor. The operation system juggles the dif-
ferent processes via a scheduler. The scheduler allocates “time slices” to processes, letting
a process run for a while, until it’s the turn of another process (preemptive scheduling).
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In a mono-processor, it’s one process at a time, and the scheduler interleaves the steps
of different processes. That’s a prototypical asynchronous picture.

Of course, often processes or threads etc. don’t run in a completely independent or “a-
synchronous” manner. To allow coordination and communication (and perhaps to help the
scheduler), there are different ways of synchronization and constructs for synchronization
purposes (locks, fences, semaphores, barriers, channels . . . ). Very abstractly, synchro-
nization just means to restrict the completely free and independent execution. Even if
processes coordinate their actions using various means of synchronization, one still speaks
of asynchronous parallelism. If one would go so far in tie the processes together by using
a sequence of global barriers, where each processes takes part in, then that very restric-
tive mode of synchronization would effectively correspond to having a global clock and
synchronous behavior.

The two ways of compose two automata “in parallel” reflected those two ends of the
spectrum: completely asynchronous and completely synchronous. (The definition was
done for Büchi-automata, but the specifics of (Büchi-)acceptence are an orthogonal issue
that have to do with the specific “logical” needs we had for those automata (representing
LTL). The synchronous-vs.-asynchronous composition is independent from those details.

Where does the name come from? The name of the technique seems to promise reduc-
tions based on “partial order”. We’ll see about the reductions of the state space later, but
why “partial order”?

A partial order (or partial order relation) is a binary relation which is reflexive,
transitive, and anti-symmetric

What’s the connection? The short story is maybe the following: exploring the state
space involves exploring different interleavings of steps of different processes. Often that
means one can do steps either in one order in one exploration, and in reversed order
in a alternative exploration (and the whole trick will be to figure out situations when
the exploration of the alternative order is not needed). One will not figure out precisely
all situations where one can leave out alternatives, that would be too costly. So, one
conservatively overapproximate it: when in doubt with the available information, better
explore it.

It’s of course not always the case that one can reorder steps into an alternative order.
Steps within the same process might well be executed in the order written down; likewise,
synchronization and communication may enforce that steps are done in one particular
order or at least that they cannot be freely shuffled around (that’s, in a way, the whole
point of synchronization). Anyway, one may therefore see the actions or steps as partially
ordered, at least when considering the behavior of the system as a whole. Focusing on one
run or path, of course, presents one particular schedule and the steps in that run appear
in a linear or total order. In one particular run, it’s not represented, if two events are
ordered by necessity (one is the cause of the other for instance) or whether the order is
accidental.
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That’s the short story. Based on ideas as discussed, people proposed ways to describe
concurrent behavior different from the interleaving picture, but based on partial orders.
Those kind of styles of semantics are connected to true concurrency semantics, to
distinguish them from “interleaving semantics” (which thereby could be called a “fake
concurrency” semantics. . . ). There is a point to it, though. Remember the informal
discussion of asynchronous processes and interleaving, referring to scheduling processes
on a single-core processor. There, clearly concurrency is an illusion maintained by the
operating system’s scheduler, that juggles the different processes so fast that, for the
human, they appear to be concurrent, whereas “in reality”, there is at most one process
actually executed at a time. Two things being concurrent, in that picture, is just a different
way of saying, they can occur in either order. True concurrency semantics takes a diffent
point of view, seeing concurrency as something different from just unordered.

As simple litmus test: A semantics that considers a ‖ b as equivalent to ab + ba is
an interleaving semantics, if the two “systems” are different, it’s a true concurrency
interpretation (details may apply).

For instance, Petri-nets is a quite old “true concurrency” model (they exist also in many
flavors, and there are other true concurrency models as well). True concurrency models
make use of partial orders (and perhaps other relations as well), but we don’t go into true
concurrency models.

Independent from the true-vs-“fake” concurrency question: there is a connection between
partial order semantics and semantics based on arbitrary interleavings. It’s a known
mathematical fact that every partial order can be linearized (i.e., turned into a total order),
and more generally, that a partial order is equivalent to the set of all its linearizations.
The first statement, that partial orders are linearizable, may be known from the 2000-level
course “algorithms and data structures”. In that course, a straightforward solution to the
problem is presented known as “Dijkstra’s algorithm”.

POR here takes as starting point sets of executions or runs, which are linearizations. It
does not take as a starting point a partial-order or a true concurrency semantics. While
connections between partial orders and linearizations are easy, well-known, and hold gen-
erally, i.e., for all partial orders, they are more an inspiration than a technical basis for
partial order reduction here. Nailing down a concrete partial order semantics for concrete
situations in an asynchronous setting with specific synchronization constructs is not so
easy. It’s much easier to specify what a program can do for the next step; that leads to an
operational semantics which also specifies all possible runs of a program. Implicitly, that
also contains all alternative runs, so one could say (based on the mentioned “math fact”)
that somehow indirectly one may view it as that it describes a “partial order” between
the steps of the behavior of the program. But it’s, as said “implicit” and for the behaviors
per program. But it’s far from easy to start upfront with a partial-order based semantics
for all programs.

POR therefore is not based directly on an explicit partial order semantics. It does not
even strive to reconstruct fully the underlying partial order that is hidden in the set of
all interleavings of one given program. It does something more modest (but also more
ambitious at the same time, as it has to be done during the model-checking run and has



188 6 Partial-order reduction
6.1 Introduction

to be done efficiently). Perhaps POR is inspired by the connection between partial orders
and possible linearizations and partial order semantics, but one can understand POR even
simpler:

Under some circumstances, it does not matter in which way steps are done and in
other circumstances it does. POR tries to figure out when alternative orders don’t
matter and avoids them. That needs to be done while running the “program”.

Since this is done while running the model checker, compromises need to be done how
much effort is done to estimate or predict if a step is necessary or not, as it needs to be
efficient. It also (and connected to that) needs to be “local”. One cannot first generate all
runs, then filter out duplicates, and then model check the rest. Instead, when exploring
the state space during the model checker run, a “local” decision needs to be made, like
“shall I explore the next candidate edge, or can I let it be.”

Of course, the criterion should not be trival like: I leave out an edge if I know that I
have seen the resulting state already. That’s ridiculous, as one might as well follow the
edge and then backtrack after discovering that I have seen the state already. Exploring
one more additional edge and then checking is probably easier compared to to make some
fancy overhead to avoid that very last step. One has to do better, namely: one can leave
out an edge, if all what follows is covered already or actually what will be covered later.
At any rate, one cannot expect those estimations to be precise in recovering all of the
theoretically possible reduction (if one had a full partial-order picture, which one does not
have anyway).

The contrete details when to explore and edge and when not depend also on the program-
ming language and its constructs. For instance, if one has shared variables, and the model
checker is in a state where, in a next step, process 1 can write atomically to a variable or
process 2 can write atomically to the same variable, it’s clear that one has to explore both
alternatives. Or does one? What if they write the same value? Well, perhaps checking
that particular situation is not worth in checking, and one may conservatively explore
both orderings anyway.

To postpone the details of more concrete language constructs for later, one abstracts away
from concrete types of actions first and introduces the concepts of dependence and inde-
pendence (for instance, two reads to the same variable may be independent, whereas two
writes may not). The theory justifying the POR is then based on notions of independence
and when the order of execution is irrelevant and can be commuted.

That is perhaps inspired by partial-order thinking, but can be an approximation at
best (for practical reasons), therefore a better name of partial-order reduction may be
commutativity-based reduction (see Peled [28] who makes that argument).

POR can be also understood as an example of analysis techniques that exploit equiva-
lences

Exploiting “equivalences” means: Instead of checking all “situations”, figure which
are equivalent. That also implies, equivalent wrt. the property being checked) and
then check only one representatives (or at least not all) per equivalence class.
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There are other such techniques along those line. One is known under the name symmetry
reduction; we don’t cover that, but the underlying idea is simple. Often systems have
some symmetries, one can exploit. Not that it’s a typical model-checking problem, but
think of the 8 queens problem: is it possible to place 8 queens on chess-board without that
they can attack each other in one move? If one wants to solve that combinatorially, one
can exploit the symmetry inherent in the fact that a solution can be rotated 90 degrees
and it’s remains a solution.

Of course, in this well-known example the symmetry is obvious, and someone who want to
solve the puzzle may arrange a search algorithm (and/or the respresentation of the chess
board) so make use of that knowledge. In general, symmetries may not be so obvious and
one would like to have the model checker detect and exploit them, but that’s the general
idea. And that is quite similar in POR, where the model check tries to detect equivalent
behaviors.

(Labelled) transition systems In the lecture we have variously encountered represen-
tations based on states and transitions. Kripke structures or Kripke models, transition
systems, and also automata belong into that category. There may be minor differences in
terminology (states vs. worlds) and perpaps notation, but these representations are not
radically different. Maybe the biggest difference is that we made use of the automata as an
mechanism for accepting runs of a system, in particular the Büchi-automata used for LTL
model checking accept infinite-word languages. Transition-systems, on the other hand,
represent the system, program, or model under investigation, and do not have accepting
states. Another difference was that automata were edge-labelled with letters from some
alphabet, whereas for the transition systems we focused on information carried by the
state. For instance, one could see propositional information to be a form of labelling: each
state is “labelled” with the sets of propositional atoms that are assumed to hold in that
state. Another terminology we also used was “valuation”.

At any rate, the edges of transition systems so far did not play an important role, but
now we will be dealing with edge-labelled transition systems.1 Typically, if one talks
about labelled transition systems (LTS), one means transition systems with the edges-
labelled (independent of wether or not the states are (also) labelled with propsotional
information).

Now, the labels in the edges become important, because we need to look into when steps
(i.e., transitions) in a system can be re-ordered resp. when some steps can be ignored in
an exploration. To do so, the steps should carry information about the action they are
representing, like: when a read from x by process P1 is followed by a read to the same
variable by process P2, then the two steps or transitions can be swapped. Or generally
α−→, β−→, α1−→, etc.

Apart from that now we consider transition-labels, the definition of transition system or
Kripke-structure is basically unchanged.

1In the context of dynamic logics and multi-modal logics, the transition systems had “multiple” transition
relations, which is the same as having labelled transitions.

http://www.nqueens.de/sub/SearchAlgoUseSymm.en.html
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Definition 6.1.1 (Labelled transition system). A lablled transition system T over
a set of labels L (also called alphabet) is a tuple (S,−→, L, S0, V ) where

• S is a set of states.
• −→⊆ S×L×S is the L-labelled relation between states, the transition relation.
• S0 ⊆ S is the set of starting states
• V : S → 2P is a map labeling each state with a set of propositional variables.

Determinism and enabledness

In the context of automata (Büchi or otherwise), we have introduced the concept of de-
terminism. We use the same definition here for labelled transition systems.

Determinism, generally, applies to situations where the result, the outcome, the nexts
state etc. is fixed, as opposed to when more than one result is possible. That would be
non-deterministic. Functions are deterministic: the output is determined by the input.

For transition systems (and automata), the conventional definion of determinism is that
in a state, the successor state determined, for a given label. So it’s not as strict as the
the successor is fixed independent from the action label; that would make the transition
system a linear structure.

The action labels, abstractly seen, are elements from some alphabet, but in concrete
representations, labels may also be “structured” for instance W1(x, 1) could represent
that process P1 does some write instruction to variable x, writing value 1, or similar. The
label may or may not be seen as input

Definition 6.1.2 (Deterministic). A labelled transition system is deterministic if
s1

a−→ s1 and s s2−→ implies s1 = s2 (for all states s0, s1, and s2).

See also the depiction in Figure 6.2a later.

In that case (and since we are focusing on deterministic systems): we also write s′ = α(s)
for s α−→ s′ (or α(s, s′)).

The definition here in the introductory section is not the last word about determinism and
related issues in this chapter. Section 6.3.1, there will be variations on the topic.

A subtle point in that context will be the question whether there is a next state doing a
particular step. If, in a state one can do and α−→-transition, one says α is enabled in that
state. Otherwise, a is disabled there.

Definition 6.1.3 (Enabled). α−→ enabled in s, if s α−→. Otherwise α−→ disabled in s.

As a side remark: we will talk about paths π

s0
α0−→ s1

α1−→ s2
α2−→ . . .
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but the paths now are not necessarily infinite. For technical reasons, we focused on infinite
paths in LTL (which was not a real restriction, as finite ones could be artificially made
infinite by stuttering after reaching the official end).

Concurrency in asynchronous systems

In loosely coupled concurrent systems or asynchronous systems, the actions of different
processes running in parallel in an asynchronous fashion are largely independent. In an
interleaving model, a concrete run or execution (or path) is an arbitrary linearization.
In a single-processor setting it’s the scheduler’s task to pick at each point one possible
next step, i.e., make a choice between the different processes who’s next. In a practical
schedular, of course it will not make a new pick at each clock tick, but let one picked
process run its course until its time slice is up one something else triggers the schedular
to give another processs its turn. But in the most extreme case, the scheduler may in
principle reconsider the options after each tick. That’s often assumed in model checking:
one is given the system, but one does not know the scheduler, resp. one wants to verify the
system for any possible scheduler (and in isolation, i.e., ignoring other unrelated processes
running under the same scheduler.

In a situation where the processes are completelety independent, that leads to a behavior
sketched in Figure 6.1 (for actions of three processes, each doing just one step). The
actions themselves are assumed atomic.

Figure 6.1: Interleaving of three actions / steps

If we have n transition relations (corresponding to n different independent processes, that
gives rise to n! different orderings and 2n states.

Of course that’s a very simple case, complete intependence of the relations (and processes).
In more realistic situations, some actions or transitions are independent, and some not.

We talked about independence here informally, with an intutive understanding of what it
means that processes run indepdently, i.e., have nothing to do with each other. Later we
present a definition of independence abstractly in terms of labelled transition relations,
and not necessarily for actions of parallel processes.

Still, the picture of parallel processes doing steps is useful and gives intuition behind the
definitions later.
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There will be two aspects of when we call processes (resp. their steps) independent, resp.
when they are not independent.

One is that the order of steps does not matter, for instance, if two processes write to
the same variable at the same time, the outcome will be different depending who comes
first. In this situation, both actions or steps can swap their place, i.e., a scheduler can
execute them in either order, but the outcome is different. Then the systems would not
be considered independent.

But is another aspect: it’s still a situation of “who is first” or “whom the scheduler chooses
first”. However, there is no “second step”. So at one point two processes can do a next step,
but the one not chosen has lost it’s chance. The step that had been enabled before the
competing situation has been resolved becomes disabled by making the decision (that’s
why we introduced the notion of enabledness for labelled transitions already). At any
rate, if the action of one process disables the possible next action of another process, also
that breaks independence of course. In terms of concurrent processes, the latter type of
non-independence is typical for synchronization actions (think lock-taking).

We come back to it in Section 6.3.1

6.2 Pruning the state space: ample sets

Partial order reduction is about reducing the state-space. This section does not provide
a concrete solution (for a combination of a concrete programming language and concrete
temporal logics). It sketches an skeleton of an idea how achieve the state space reduc-
tions.

For the setting, however, we assume a explicit state approach, based on depths-first search
(DFS).

A super-unrealstic approach would be the following

1. generate explicitly the state space (by DFS for example),
2. then prune it and remove equivalent transitions & states, and finally
3. model-check the property on the smaller space.

Of course it makes no sense to first generate the all of the state space, the trick must be
to avoid doing that. So a slightly more realistic approach is

1. generate explictly the reduced state space (using a modified DFS) and then
2. model-check the property.

That’s still not realistic; a more practical way will be to both stages at the same time, but
for presentational reasons, we focus on generating resp. exploring a reduced state-space.
That will be done by modifying a standard depth-first exploration procedure.

Actually, this section here will not provide much more than setting the stage. Let’s first
recall standard DFS, i.e., the problem to explore or traverse a given graph via a tryically
recursive procedure.
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We should perhaps be careful when talking about traversing a “given” graph or transition
sytem. We do not want to imply that the transitition system is stored (via some standard
graph representation) in the memory ready to be explored. That would imply the super-
unrealistic setting where the whole state space is generated up-front.

Instead, the state-space is explored which being generated (hopefully only partially). In
model-checking terms and independent from partial-order reduction, that is known as
on-the-fly model-checking.

Depth-first search does some recursive state exploration: exploring one given means visit-
ing all its neighbors or successors, and doing the same for each of them, remembering
which states one has seen already, so that one can stop and backtrack, if one sees a state
for the second time, otherwise woul would run into an infitely exploration loop.

One realization of depth-first seach in pseudo-code is shown in Listing 6.1. It’s not based
on recursive calls of a procedure, but making use of a explicit stack. Furthermore it
sketches some way to maintain the states in in some hashed form and organizes the search
making use of a work-list. For instance, the basic exploration steps adds successor-steps
to the work-list and remove the current action.

Those organasational things are not central for depth-first exploration. The code from
Listing 6.1, while still a depth-first strategy however, deviates crucially from plain depth-
first search. But instead of exploring posible next steps (i.e., all neighbors), the approach
realizes the following improvement:

Don’t explore all enabled transitions, follow enough enabled transi-
tions.

That’s done in line 6, adding a set of actions to the work-list called ample. The word
“ample” means, especially in this context, something like “enough” or “sufficiently many”.
In general, ample set of transitions in a state ⊆ set of enabled transitions in a state
hash (s0 ) ;
s e t on_stack (s0 ) ;
expand_state (s0 ) ;

procedure expand_state (s ) ;
work_set (s) := ample (s ) ;
while work_set (s) 6= ∅
do

l e t α ∈ work_set (s ) ;
work_set (s) := work_set (s) \{α}
s′ := α(s)
i f is_new (s′ )
then hash (s′ )

s e t on_stack (s′ ) ;
expand_state (s′ ) ;

end i f
end while
s e t completed (s)

end procedure ;

Listing 6.1: Modified DFS (ample sets)
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Requirements on ample sets Of course, on that level, it’s not a solution to any problem.
We have so far not done more than expressing the wish to achieve our goal of pruning the
explored state space by a small modification the standard DFS algorithm (and we use the
terminology of ample sets to talk about that modification).

The only thing we know is that for each state, the state’s ample set of actions is, by
definition, a subset of the actions enabled in that state. So the question is: how to restrict
the set of enabled transitions (with this restriction called “ample”). There are some general
requirements on the restriction:

1. pruning with ample does not change the outcome of the model checking run
(correctness)

2. pruning should, however, cut out a significant amount
3. calculating the ample set: not too much overhead

The first is a condition sine-qua-non: correctness must not be compromised. How well
the remaining to criteria are fulfilled decides on how much the pruning improves the
performance. The last 2, however, are somehow in conflict with each other. Investing too
much effort in calculating the smallest possible (and still correct) subset may be counter-
productive.

The details of a concrete correct and efficient realization of the ample-set idea also depend
on the programming or modelling language.

The general idea of ample sets has been explored in the literature in many variations. The
names the papers used for their respective proposal are mostly not very indicative of how
a particular solution works; names of concepts in well-known approaches include “sleep
sets”, “persistent sets”, “stubborn sets” . . .

6.3 Equivalent behavior

Before looking an algorithmic approach, we loop a bit deeper into indepence of systems.
We touched upon that already in the introductory remarks of Section 6.1, namely when
we consider (the actions of) two or more processes as independen. Here we define more
formally the notion of independence of labelled transitions or relations. That can be
somehow related also to the question of systems being deterministic, at least deterministic
as far as the result is concerned in that the outcome may not depend on the schedule.
Therefore we discuss also that. Especially the definition of independence is important for
partial-order reduction.

Later a further aspect needs to be taken into account and that has to do with the fact
that we are doing verification of a specification (here an LTL formula). Even if the order
of actions don’t matter with respect to the outcome, still we have to be careful if the order
matters wrt. formula, i.e. whether the answer to the model checking question depends on
the order. That will be captured by the notion of visibility resp. invisibility.
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6.3.1 Equivalent reordering of behavior: Independence

Determinism, confluence, and commuting diamond property

Partial-order reduction works best for asynchronous, loosely coupled systems, as we said,
when different parts of the system run independently and without interfering with each
other. Of course, the situation where processes run completely and always indepdent are
seldom. Resp. they are uninteresting. If parts of the system are truly independent, there
is no need to jointly model them and jointly verify them.

In some way, such a setting with, say two completely independent processes, would be
ideal for partial-order reduction. A really optimal reduction could reduce the system to
doing the steps of one process first, and then doing the other afterward. If each process
is in itself deterministic, the reduced system doing first P1 and then P2, would show a
linear, deterministic behavor, and no combinatorial state explosion due to unterleaving
the steps of the processes when exploring P1 ‖ P2 (‖ here for the asynchronous parallel
composition).

But of course, it’s a stupid idea to try to jointly analyse P1 ‖ P2 and hope some mystical
POR-model-checker will comes up with an ideal reduction (which is unrealistic) if one
already knows that P1 and P2 are independent.

More interesting are processes that interact from time to time, working on shared variables,
exchanging messages etc, but also work independently for large stretches of time. Doing
independent actions means that the outcome does not depend on the order of the actions.

Assume that processes are internally deterministic, i.e., there are no internal sources of
non-determinism. That means, the “outcome” can only be influenced by the way the
actions of different processes are interleaved. In case of independent, actions, the outcome
remains the same, as there order can be inverted. In the (unintesting) case of completely
independent processes, also the outcome is the same, whether we do P1;P2 or P2;P1: every
(deterministic) process calculates its own result, it’s only a question who comes first.

This is to say the notions of determinism and independence are closely connected. They
are not the same though (and we have not formally defined what independence actually
means). For a transition system to be deterministic, remember see Definition 6.1.2.

The version of POR and the notion of ample sets will be based on a so-called independence
relation (see Definition 6.3.1). Like ample-sets it will be rather non-concrete. I.e., it will
not specify what concrete actions (reading, writing, synchronizations etc.) in some setting
are independent. It spells out more general conditions as to when a relationship between
actions or transitions qualifies to be called an independence relation.

Before doing that, let’s at least have a short look at aspects relating “independence” of
actions and determinism, because the notions are in spirit similar, but technically not the
same.

We will discuss it mostly abstractly, i.e., as a property of relations or pairs of relations.
Assume we are dealing with a labelled transition system.

and vice versa. We assume that the transition relations αi−→ are deterministic, and we
write αi(s) for s αi−→.



196 6 Partial-order reduction
6.3 Equivalent behavior

a a

=

(a) Determinism (b) Diamond property

a b

b a

(c) comm. d-property

a b

b a

(d) swap./commuting

Figure 6.2: Different flavors of determinism and “order does not matter”

Definition 6.3.1 (Independence). An independence relation I ⊆−→ × −→ is a sym-
metric, antireflexive relation such that the following holds, for all states s ∈ S and
all ( α1−→, α2−→) ∈ I

Enabledness If α1, α2 ∈ enabled(s), then α1 ∈ enabled(α2(s))

Commutativity: if α1, α2 ∈ enabled(s), then

α1(α2(s)) = α2(α1(s))

The complement of a independence relation is called, not surprisingly, a dependence re-
lation. I.e., given some independence relation I then D = (−→ × −→) \ I is a dependence
relation.

Is that all?

Let’s look at the commuting diamond diagram again, from Figure 6.2c, resp. repeated in
Figure 6.3. We made arguments that situations of that form have the potential for saving
since the order of the two steps does not matter, since each order, they reach the same
state, r in Figure 6.3.

Figure 6.3: Commuting diamond

There are, however, two issues or complications to take into account

1. The checked property might be sensitive to the choice between s1 and s2
(and not just depend on s and r)

2. s1 and s2 may have other successors not shown in the diagram.
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6.3.2 Equivalence wrt. formula(s): visibility and stuttering

The first point is an aspect we have ignored in the discussion so far, namely the influence
of the property or the class of properties to check. However, in a situation like the
communting diamond, of one wants to explore the path via s1 only, ignoring the one
over s2, it must be sure that satisfaction of the property to check does not depend on
visiting those states. For instance, if there is a proposition that holds in s1 but not in
s2 or vice versa, then one has to explore both alternatives. If propositions can make
differentiate between two states, one says, the formula can “see” the difference or that the
two states resp. their difference is observable or visible by the formula. The picture behind
that terminology is that checking for a formula is a way to observe a system. Behavior that
cannot make a difference whether the formula holds or not is not observable or invisible.
That terminology is often used for classes of formulas or whole logics. More expressive
logics can observe more behavior, resp. differentiate between more systems that weaker
ones. Weaker ones, in that sense, have more potential for reductions, here partial-order
reduction.

Here, for our purposes, we define when to call a transition as being (in-)visible for a set
of propositional atoms.

Definition 6.3.2 (Propositional vsibility). Assume a valuation V : S → 2P . The tran-
sition relation α−→ is invisible wrt. a set of P ′ ⊆ P if for all s1

α−→ s2 and all p ∈ P ′, the
following holds

s1 |= p iff s2 |= p (6.1)

The definition means, that no α-transition changes the truth-status of an of the proposi-
tional variables in P ′.

So, state changes which don’t change the truth status of any propositional variable (in P ′)
is invisible (wrt. P ′). It’s a step that does not matter concerning the question whether
the transition system satisfies the specification or not. Steps that don’t matter are also
called stutter steps and the phenomenon stuttering.

We have encountered stuttering already in connection with LTL and the definition of
π. Paths, in that context, were defined as being necessarily infinite. To accomodate
terminating behavior of a system, we extended an terminating behavior by an infinite
sequence of stuttering steps at the end, to obtain an infinite path.

Of course, it is possible that the system does some “actual” stuttering while still running,
doing stretches of invible steps. Those stretches of stuttering steps, resp. maximal such
stretches, are sometimes called blocks. Note in passing: terminating behavior, which
stuttering at the end, consists of a finite number of blocks, since the stuttering extension
after termination is represented by one infinitely long block.

Two paths that consist of the “same” sequence of blocks are called stuttering-equivalent.
When saying the “same” sequence of block, we mean that each block of π is represented
by a corresponding block in π′ with the same propositional valuation, but the size of the
block, i.e., the number of stuttering steps inside the block may different. This is shown in
Figure 6.4. We write ∼st for stutter-equivalence for paths.
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Figure 6.4: Stuttering-equivalent path

The different states in a block have the same status as far as the satisfaction of propo-
sitional variables is concerned. That carries over to general propositional formulas, of
course. But what about temporal properties of LTL? Does an LTL formula that holds for
some path also hold for a stutter-equivalent one, does π |= ϕ and π ∼st π

′ imply π′ |= ϕ.
To say it differently: can the addition or removal of stutter steps in a π change the truth
status of the path with respect to a temporal property.

Before we closer at that, let’s first give a name to LTL formulas whose truth-status is
untouched by adding or removing stuttering steps.

Definition 6.3.3 (Stutter invariance). An LTL formula ϕ is invariant under stut-
tering iff for all pairs of paths π1 and π2 with π1 ∼st π2,

π1 |= ϕ iff π2 |= ϕ

Using the observability-terminology, one could say that for those formulas stuttering-steps
are invisible. Technically, we have introduced the notion of invisibility for propositional
proporties only (and we defined it for transitions α−→ in a transition system) in Definition
6.3.2, but conceptually it’s analogous.

Back to the question: can additional stutter steps in a π change the truth status of the
path with respect to a temporal property, i.e., are LTL formulas stutter invariant (or at
least some). We clarified already that for propositions are stutter invariant, but that’s not
very interesting and helpful.

However, adding (or removing) a stutter steps may change satisfaction of ©-formulas!.
That’s because blocks are finite. Assume that some ©p us be true at last position of
a block and whether it’s true or not depends on the situation in the subsequent block.
Therefore, extending the block longer by adding a stutter step may change the truth status
in the considered position. Similar for removing stutter steps.

It turns out, if we banish © from LTL, formulas become stutter invariant. The truth
status of ♦ and � (and for the more complex binary operators) does not depend on the
length of the stutter blocks. For example ♦ refers to some finite point in the future, and
adding or removing stutter steps does not change that. Note that stuttering means adding
or removing only finitely many steps. That means, stuttering cannot turn a finite block
into an infinite one.

The restricted form of LTL is known as next-free LTL, and abbreviated as LTL−©(or also
LTL-X).
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LTL−© is stuttering invariant. That’s good for reducing the state space, because it gives
hope to ignore states, ideally to take only one representative in each block. And the more
stuttering and the larger the blocks, the more potential for space reduction.

We defined the concepts like visibility and stutteing on transition systems and paths.
Those stem of course from the description of a concurrent system, consisting of processes
or threads running in parallel. As a general observation: the more loosely coupled or more
asychronous a system is, the more one can expect to see stuttering. That’s probably not
self-evident, it’s also not a mathematical fact. It’s also not just a consequence on the loose
coupling of the system, but also based on how one typically specifies properties for such
loosely coupled system.

Of course the logic because less expressive that way. That’s in a way the point, making it
less expressive makes stutter steps unobservable.

stuttering (in this form): important for asynchronous systems . . .

6.4 POR for LTL−©

LTL−© is is one useful and fuitful general setting for POR (especially for asynchronous
systems), so let’s look at that. Partial-order reduction and related ideas have also been
studied from different angels and settings and logics. One may also try to achieve reduc-
tions for, say, safety-properties, only„ or even try with reductions per formula. But we
do it for LTL−©, and we want to do that in terms of the ample-set variant of depth-first
search.

Given a transition system T , let’s refer to the reduced or pruned version as T�, reduced
in the sense containing only the part of the state space explored via the neighbors in the
ample-sets.

T, s |= ϕ iff T�, s |= ϕ

Since we a doing a form of LTL, the correctness is mainly a condition on paths, i.e., all
the path in T starting from s. So the correctness is assured if each path in the original
system is equivalently represented after pruning, at least once.

each path π1 in T starting in s is represented by an equivalent path π2 in T�,
starting in s

6.4.1 Conditions on selecting ample sets

The correctness condition spell out for path is straightforward and should be obvious.
Far less obvious is how to achieve that by doing a proper definition of the ample set. Of
course, if correctness were the only goal, that could be trivially achieved by setting the
ample set to be the equal to the set of enabled transition in each state. Then there would
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be no reduction whatsoever, and that is of course correct. The trick must be to make the
ample set as small as (reasoably) possible, without compromising correctness.

In the design of the algorithm, it’s about making a selection of enabled steps and following
those, leaving out others., local decisions, paths . . .

reorderings of

• each pruned path can be “reordered” to an which is explored (using indepen-
dence). It also includes a condition covering end-states. See Section 6.3.1.

• make sure that the reordering (pre-poning) does not change the logical status,
based on the notions of stuttering and visibility. See Section 6.3.2.

• “fairness”: make use not to prune “relevant” transitions by letting the search
cycle in irrelevant ones.

We will later show code snippets covering those conditions.

Reordering conditions (C0, C1)

This section is making sure that, when cutting out a path or rather a whole set of paths
by not exploring some neighbors, the omitted paths are covered equivalently otherwise.

This requirement is split into to conditions. The first one, let’s call it C0 is very trivial.
We know that ample(s) ⊆ enableds and thus if enabled(s) = ∅, also the ample set is of
course empty: if there are no neighbors, one can not continue exploring anyway and the
depth-first seach backtracks. Note that it’s not about that there are no more unexplored
neighbors; also in this case the exploration backtracks. It’s about having reached a dead
end.

But if there are enabled steps, i.e. enabled(s) 6= ∅, then it’s clear that we cannot set the
ample-set to ∅ as well. Without at least following one of the possible neighbors, there’s no
way to know what would have happened if we followed at least one. So we have to require
the following:

C0: stop at dead ends, only.

ample(s) = ∅ iff enabled(s) = ∅ (6.2)

The next condition is a bit more tricky. It’s also not formulated in an actionable or readily
implementable form. It spell out just a condition on the ample sets in a state connection
with paths that start in that state.

C1 Along every path in T starting at s, the following condition holds: a transition
dependent on a transition in ample(s) cannot be executed without a transition
from ample(s) occuring first.
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Observation 6.4.1. Under condition C1, we have:

ample(s) ./ ¬ample(s) . (6.3)

As a consequence of the definition: in a state, all enabled ones but not ample are indepen-
dent from the ample ones. If a transition (assuming otherwise) that is dependent on one
in ample would both be enabled but not covered by the ample set, then one could simply
start a path using that transition, contradicting the condition.

Another way of saying the same is

The set ample(s) is closed under #

As a consequence of C1, one can distinnguish two forms of paths, with respect of which
actions from within and outside the ample-set they contain. These two forms are

β0β1 . . . βmα or β0β1β2 . . . with α ∈ ample(s) and βi ./ ample(s) . (6.4)

In the first case, the path has a finite prefix β0β1 . . . βmα, i.e., after a few βi independent
from all actions in the ample set, at some point a member of the ample set (of s) is taken.
In the second case, there is an infinite sequence β0β1β2 . . . where also βi ./ ample(s).

Note that the two case are not mutually exclusive. Remember that the ample sets are
closed under #, thanks to C1, but the condition is a loose one. It states that if a action
is outside in the ample set, it has to be independent from it. However, it does not forbid
to put independent actions inside.

However, without loss of generality, we can focus on the case that all βi /∈ ample(s), in
which case the two conditions from equation (6.4) are mutually exclusive. Either there is
eventually an α from the ample set of s preceded by β’s outside that ample set. Or there
are infinitely many such β’s. As a side remark, in that form, it is a form of weak-until
property of the paths.

We can now make an argument that we can reorder paths appropriately, using commuta-
tion. Consider the situation in Figure 6.5, which corresponds to the first case of equation
(6.4). The assumptions are, as agreed, that α ∈ ample(s), that βi /∈ ample(s),

Consider further the two paths starting in s,

π1 = ~βα and π2 = α~β .

As far as the unreduced transition system is concerned, we have that π1 ∈ T, s implies
π2 ∈ T, s (and vice versa). That’s a direct consequence from the fact that α and the β’s
are independent (see Definition 6.3.1).

Concerning T�, we have under the given assumptions,

π1 /∈ T� and π2 ∈ T� ,

at least if we assume m > 0, excluding the uninteresting and trivial corner case that there
are no β’s at all. So it’s an example of an actual reduction, the pruned system leaves out
π2 but explores the reordered one
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Figure 6.5: C1 (reorder) and C2 (invisibility)

Invisibility (C2)

So, as far as their existance in T is concerned, π1 and π2 are “equivalent” (and all the
“intermediate” paths as well, like β′αβ′′). If one path exists, it’s guaranteed that the
other exists, and vice versa and they have the same start and end state (s and r in the
picture).

But are they interchangable also wrt. the intermediate, visisited states, in particular, are
the two paths interchangeble wrt. the property we model check? Well, one paths visits
s0, s1, . . . sm, r the other one s, r0, . . . , rm (with start and end states coinciding, i.e., s0 = s
and rm = r). So the question is:

does it matter if one passes though the state ri or the state si?

Of course, it may matter if some property holds for ri but not for si or vice versa. The ri
and si states are connected by α, i.e.

si
α−→ ri

Now, whether π1 or π2 is taken (or one of the “intermediate mixtures) does not matter
provided that same formulas hold, comparing ri with si. That’s guaranteed if α is invisible
(with respect to the atomic propositions)

The answer is clearly no, it does not matter provided that the satifaction or “dissatis-
faction” of the property does not depend on whether one is in si or ri. That form of
“invariance” has been called “invisibility”.

The perspective is that the a formula observes the transition system, it can “see” if a truth
status changes (from true to false or the other way around). Observing changes means
being able to observe transitions. And, in this picture, a transition is invisible or not
observable, if taking said transition doe not lead to change of any truth values. Actually,
visibility has been defined with resp. to atomic propositions only, more complex formulas
don’t need to be considered, resp. their non-observability follow as a consequence.
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C2 (invisibility):

If s is not fully expanded, then every α ∈ ample(s) is invisible.

A state s is fully expanded if ample(s) = enabled(s). That’s a situation where all enabled
transitions are explored anyway, so in that case, the ample-set at s is certainly ok, without
need to require invisibility of any transitions.

If we ignore transitions, the non-ignored transitions must all be invisible.

C3 (cycle condition)

The previous condition C2 insisted on invisiblity of an action α, in case one omits alterna-
tives. The transition system from Figure 6.5 shown previously illustrated that, that if α
is invisble, the uncovered path (in the picture) with α at the end can be reordered with α
at the beginning without omitting intermediate states with different logical status. That
last condition about invisibility took care about one form of paths from equation (6.4)
that follow as consequence of condition C1, namely the one with finitely many βi’s (not
in the ample set of a state s) followed by one α from the ample set of s.

The final condition C3 is about the second form of paths from equation (6.4), namely the
ones with infinitely many βi, and never any α from the ample set.

Based on the intution of the ample sets we can already intuitively see that one has to be
careful there. The ample set in a state represent the transitions that should be explored,
and the rest from ¬ample(s) are the one that are intended to be ignored (because one
can argue that they are equivalently covered otherwise during the exploration). Now, a
transition in the ample set of a state marks it as “this transition needs to be explored”.
Postponing it forever is not the way to go.

Like the other conditions as well, condition C3, is not a condition on the behavor or the
form of paths (like “don’t look at paths where transitions α ∈ ample(s) are postponed
forever”), it’s a condition on the forms of the ample set in the state that must be de-
signed in such a way that, when running the system, all paths have the desired properties
(in particular guaranteeing correctness, or avoiding infinite postponements of the form
sketched).

Let’s look at Figure 6.6 The three figures serve to illustrate the previously discussed
problem of “infinite postponement”. To complete the example, we need to add one piece
of information, namely the “logical part”, i.e., at which states satisfy which propositions.

Figure 6.6a contains two separate processes and Figure 6.6b their (asynchronous) parallel
composition. In the example, assume that α is visible, the βis are invisible. We also assume
that the α is independent from all the β’s. With all its transitions invisible, the second
process is stuttering. That means also, that, as far as the property to be model-checked
is concerned, the focus is on the first process, the second one is irrelevant as far as the
property is concerned.
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Figure 6.6: Illustration of the cycle condition

Since the actions of the two processes are also indepdent, the two processes are completely
independent. There is no synchronization between them (independence) and they are not
“secretly” couple via the property (invisibility). The example is this pretty trivial, but it’s
used to illustrated the need for the last condition.

More concretely, the picture may repesent a situation, where there is one boolean variable,
initially say “false”, and the process to the left sets it to “true” via it’s transition α−→, i.e.,
the label α may represent the assignment p := true. The other process does not do
anything (except spinning around, cycling through its three states), resp. does nothing
interesting as far as the property to be checked is concerned. For instance, the property
could be ♦(p = true), and the second process only operates on variables other than p

Figure 6.6b shows the two processes running in parallel in an asynchronous fashion, i.e.,
interleaving their steps. The overall combined behavior is given by the transition system
T , with 6 states. In that T with its 6 states and if we assume one propositional atom p,
then p is false in all 3 states on the top of the picture, and true in the three states on the
bottom.

For this system, we can find ample sets that satisfy all the three conditions so far,
but still fail to achieve correctness. That’s easily doable by systematically ignoring
α, i.e., not including this transition in any of the ample sets.

I.e., each state has an one element ample set ample(s) = {βi}, and α is not included
anywhere.

It’s easy to check that this choice satisfies C0 (trivally, since no ample set or enabled set
is empty), C1 (since α is assumed to be independent from the βis; remember that C1
speaks about paths in T , not in T�). And finally C2 is satisfied as well, as the example
is constructed in such a way that the αi are all invisible, as required by C2.

In contrast to the β’s, transition α is visible, it does not stutter, so taking it matters wrt.
the verification problem. However, the ample sets chosen as given, leads to explorations
in T� ignoring α.

The last condition C3 excludes such infinite avoidance. Seen as condition one the graph
itself, it’s a condition on a cycle, not a condition on infinite paths resp. only indirectly so,
since in finite-state systems, infinite paths must come from running through at least one
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cycle. What needs to be ensured is that a situation as in the example cannot occur. That
a−→ is not included in some of the 3 states of the last picture is fine. What is not fine is
that it’s left out in all of them in the cycle. If left out completely would allow, as in the
example, to construct a path running through this cycle where the transition is constantly
enabled but always in ¬ample(si), so no state “takes responsiblity” to at least one time,
explore that edge.

In the example, the neglegted edge α is a visible one. But the requirement stating “do not
systematically neglect an edge” also applies to invisible ones, as well. Even if some edge
itself is invisible, one may reach behavior after taking it that is visible and needs to be
checked. The example is also specific insofar in that α−→ is continuously enabled (but not
taken). Condition C3 is more stringent: don’t neglect a transition α−→ that is somewhere
enabled in a cycle.

This condition is connected with the notion of fairness. It’s a notion that is relevant in
concurrent systems. In practical systems (like operating systems), it also can be under-
stood as a property of a scheduler. In our example, with two processes, a behavior that
constantly schedules the second process, with systematically ignoring the first one (despite
the fact that it could do a step, namely α−→), that’s a non-fair behair. Of course, after the
first process has done α−→, it cannot do any further (no transition is enabled, and that
will remain so as well, as the process is terminated). If, in that situation, the scheduler
“choses” only βi−→ steps from the second process, but no steps from the first, that does not
count as being unfair.

There are, though, two variations of the concept of fairness, namely strong fairness and
weak fairness. The illustrating example corresponds to the weak variant (resp. it illustrates
behavior which not weakly fear). Since it’s not even weakly fair, it also fails to be strongly
fair, though. It illustrates a situation, where α−→ is neglected despite being constantly
enable. The chose infiniten path β1β2β3β1 . . . has an inifinite sequence of points where
α is constantly enabled. Weak fairness requires that one cannot have an action (like α)
enabled infinitely long without also taking it. fairness

Strong fairness say: of an action is enabled infinitely often (but can be disabled in between
the places when it’s enabled again), then, for fairness sake, it must be taken: strong fairness
means, if an action is enabled infinitely often in an execution, it needs also to be taken
infinitely often.

Condition C3 coming up next corresponds to the strong variant of fairness.

Side remark 6.4.2 (Zeno). A final side remark (not too relevant perhaps for POR): as
part of the illustration example, the chosen βi transitions are all invisible. The resulting
behavior (without imposing C3) is not just unfair in the described sense, neglecting α−→, the
behavior is also doing an infinite amout of do-nothing steps (here formulated by having the
αi−→ as invisible). The have no influence on the satisfaction of formulas. More practically,
one can see then as no-operation or skip steps (sometimes executing NOP steps, eating
up processor cycles without doing anything) or do-nothing “stutter” steps added to the
model (like we did in LTL).

Either way: infinitely many do-nothing or skip or stutter steps is seen as a simple and
discrete form of so called Zeno-behavior. That’s in honor of an old Greek philosopher Zeno
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of Elea, who is remembered for some speculative paradoxes (retold by Aristotle), often
concerning infitely many (smaller and smaller time) steps. The most well-known of those
is probably the tale of Achilles and the tartoise, racing against each other.

Now, without furter ado, here’s the condition

C3 (cycle condition):

A cycle is not allowed if it contains a state in which some transition α is
enabled but never included in ample(s) for any state s on the cycle.

With all the conditions nailed now, let’s go back to the two issues we sketched in connection
with the commuting diamond Figure 6.3. As a recap: the two issues mentioned where:

1. Does the satisfaction depends on chosing the path via s1 or via s2?
2. When following only one path, do we forget to check successors?

Let’s focus on the second issue and let’s look at Figure 6.7, where s1 had successor(s)
reachable via transition γ. Assume the state s1 is omitted, i.e., β ∈ ample(s), but not
α.

Figure 6.7: Forgotten successors?

So, by omitting s1, do we forget to check parts of the system?

the conditions imply

ss2r ∼st ss1r
ss1s′1 ∼st ss2rr′

Calculating the ample sets

We don’t go much into details here, but looking at the different conditions, it’s clear
that they quite different in complexity. The conditions need to be checked on-the-flow
during the depth-first exploration. Therefore checking the condition can prefably be done
efficiently.

C0 and C2 are easy. More tricky is C1. Note that the condition refers to T , to to T�. It
is equivalent to reachability checking. As for C3, also that is tricky. One can replace the
condition by a modified one, that is easier to establish namely
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at least one state along each cycle must be fully expanded

Since we do DFS: watch out for “back edges”: C′3: If s is not fully expanded, then no
transition in ample(s) may reach a state that is on the search stack

Applying the ample-set theory of POR

The whole presentation of partial-order reduction based on ample-sets is rather abstrac-
tion. It speaks about multiple relations, i.e., the labelled transitions and conditions on
them, like being independent resp. when they are inter-dependent.

In practice actions correspond to atomic steps in a (concurrent) program or a model
thereof. It’s also important that those steps are also deterministic, since one general
assumption underlying the whole setting is that the labelled transition system is deter-
ministic. If that’s not the case, the framework does not work in the presented form, resp.
need to be refined.

That’s typically not big restriction, atomic individualy steps are deterministic. A source of
non-determinism, however, could be is abstraction, for instance in that the model abstracts
away from details of a concrete programs. Also that actually is not really problematic for
the POR framework.

Anyway, we

General remarks on heuristics

• dependence and independence ./ “theoretical” relation between (deterministic) rela-
tions

• “use case”: capturing steps of concurrent programs
– processes with program counter (control points)
– different ways of

∗ synchronization
∗ sharing memory
∗ communication

• calculating (approx. of) ample sets: dependent on the programming model

Let’s fix some notations and definitions. We write now α for α−→. We assume a fixed, finite
set of processes Pi or just i for short. We also write Ti: those transitions that “belong to”
Pi

In the abstract discussions we referred to states of a transition system by s or simulir.
Now, the states are assumed to have more internal structure. Since the program is seen
as the parallel consposition of a number of processes. The overall state contains then the
tuple of the states of the individual processes. Each process is a particular location, or
control-flow point in its own execution. If the control-flow is depicted as some transition
system (or control-flow graph), that control-flow point corresponds to one node in that
transition system. We can also see it as the current value of the program counter. For
notation, given a global
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Definition 6.4.3 (Referring to parts of a global state). Let pci(s) be the value of the
program counter of process i in state s. We refer by Ti(s) to the set of enabled transitions
in state s enable in process Pi

Definition 6.4.4 (Relationships between actions). dep(α): transitions interdependent
with α pre(α): transitions whose execution may enable α

can be over-approximative

When are transitions (inter)dependent The definition of independence has two aspects,
commutativity is one. The other one concerns enabledness. Basically, it’s about preserving
enabledness, resp. to forbid an action to disable the other. Since the definition of inde-
pendence is symmetric, this condition works both ways. For α1 and α2 being independent
means that for all states where both are enabled, taking α1 must not disable α2, and vice
versa.

Being inter-dependent means that communtativity or the enableness condition breaks,
at least in one state. For the condition that independence breaks in a least one state,
it’s however likely that if two enabled actions don’t commute on one state, the don’t
commute in a different states where they happen to be also enabled. Same for breaking
the preseving-enabledness condition. After all, actions like reading from or writing to
memory or other forms of interactions, work uniformely.

We said that α1#α2 mean violating commutativity or disabling the competitor. Actually,
it’s unlikely or unrealistic to find examples of actions which violate both. The reason is
simple: assume that taking α1 disables α2. Then j α1−→ α2−→ does not occur, with α2 disabled
after taking α1. That means, α2(α1(s)) does not exists or is undefined. Then one could
make the argument, that breaks the second requirement for indepedence

α2(α1(s)) = α2(α2(s)) (6.5)

becaise the left-hand side is undefined and the right-hand side may still be ok. To break
independence, it’s enough that α1 disables α2, it’s not needed that α2 also does the same
with α1. In practice, when an action disables another, the situation is symmtetric. It
describes a choice point in a program where one of two (or more) actions is taken and the
others disabled. Choice-point not in the sense of a case-construct of a sequential program.
Typically would be lock-taking actions. The hole purpose of a lock is to do exactly that
(to ensure mutex): let at most one action succeed, and disabling competitors, at least for
some time, until the lock becomes free again.

But the behavior of the lock-taking actins is symmetric, if process P1 takes the lock at a
place where P2 could also take it, P2 is disabled, and vice versa. That means, both sides
of equation 6.5 don’t exists or are undefined.

Assuming that in practice such disabling actions are symmetric, there could be another
reason why in a situaton α1#α2, both swapping and the enabledness condition are violated.
That has to do with the fact that one needs to find only one state where the conditions
for α1 ./ α2 don’t hold. And it could be that in one state, commutativity is violated, and
in another one the enabledness part. So that would be another situation when both fail,
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namely at different states. But again, that unplausible in practice. Actions typically act
uniform in states.

Transitions that may enable α (pre(α)) Assume α is an action from one specific process
Pi

pre(α) ⊇ {β | α /∈ enabled(s), β ∈ enabled(s), α ∈ enabled(β(s))} (6.6)

• pre(α) includes
– “local predecessor” of i (“program order”)
– shared variables: if enabling conditions of α involves shared variables: the set

contains all other transitions that can change these shared variables
– message passing: if α is a send (reps. receive), the pre(α) contains transitions

of other processes that receive (resp. send) on the channel

6.4.2 Some code snippets for the conditions

We have discussed the different conditions in some detail and mentioned a bit how they
can be checked. Here, for completeness, some pseudo-code that sketch how to algorith-
mically determine the conditions. For the third condition, the code shows the variant C′3
mentioned shortly earlier which is easier to check than the more precise one C3.
function ample (s) =

for a l l Pi such that Ti(s) 6= ∅ // try to f o c u s on one Pi

i f
check_C1 (s, P1 ) ∧
check_C2 (Ti(s)) ∧
check_C3 ' ( s,Ti(s))

then
return Ti(s)

i f
end for a l l // too bad , cannot f o c u s on any but
return enabled(s) // f u l l y expanded can ' t be wrong

end

Listing 6.2: ample

function check_C2 (X ) =
for a l l α ∈ X
do i f v i s i b l e (α)

then fa lse
else true

Listing 6.3: Check C2

function check_C3 ' (s,X ) =
for a l l α ∈ X
do

i f on_stack (α(s))
then fa lse
else true

Listing 6.4: Check C′3
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function check_C1 (s, Pi ) =
for a l l Pj 6= Pi

do
i f dep(Ti(s)) ∩ Tj 6= ∅
∨

pre(currenti(s) \ Ti(s)) ∩ Tj 6= ∅
then return fa l se

end f o r a l l ;
return true

Listing 6.5: Check C1
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7.1 Introduction

The material here is partly based on [16] (in particular the DART part). The slides take
inspiration also from a presentation of Marco Probst, University Freiburg, see the link
here, in particular, some of the graphs are reused and adapted from that presentation.
More material may be found in the survey paper [3].

Symbolic execution is a quite “old” technique, one or the starting point for it is [21] from
1976. It’s a technique natural also in the context of testing (and in the chapter, we talk
also about some aspects of testing). We cover also the ideas behind concolic execution, a
portmanteau word meaning “concrete and symbolic”. Symbolic execution is also used in
compilers, for optimization and code generation.
f ( int x , int y ){

i f ( x∗x∗x∗ > 0) {
i f ( x > 0 && y == 10) {

f a i l ( ) ;
}

} else {
i f ( x > 0 && y == 20) {

f a i l ( ) ;
}

}

complete ( ) ;
}

Listing 7.1: Sample code

Let’s take a look at Listing 7.1. The code has no particular purpose, except that it
will be used to discuss testing, symbolic execution, and also concolic execution. The
function has two possible outcomes, namely success or failure, represented by calls to
corresponding procedures. Note that non-termination is not an issue, there is no loop
in the procedure. In general, symbolic execution works best or most straightforward on
straight-line programs and loops pose challenges for symbolic execution. The problems
with loops are similar the challenges they pose for bounded model checking . Indeed, BMC

http://swt.informatik.uni-freiburg.de/teaching/WS2015-16/ProgramAnalysisSoftwareTesting/Resources/Slides/dart_seminarslides_marcoprobst.pdf
http://swt.informatik.uni-freiburg.de/teaching/WS2015-16/ProgramAnalysisSoftwareTesting/Resources/Slides/dart_seminarslides_marcoprobst.pdf
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shares some commonalities with symbolic execution: both are making use of SAT/SMT
solving.

How to analyse a (simple) program like that?

One has different options there; and can of course pursue more than one of them. One
standard thing to do is testing. Testing is probably the most used method for ensuring
software (and system) “quality”.

Testing is a broad field and has very many aspects, and there are very different approaches
to testing and techniques and different testing goals. Those techniques are also used in
combination and in different phases of software engineering cycle.

For function bodies in isolation like the ones shown, unit testing is a way to go (perhaps
a part of a larger testing set-up for the whole product).

One could do “verification”, whatever that means. The term could include code review,
or a formal verification of the code towards a specification, perhaps with the help of a
theorem prover. Later we will disucss symbolic and concolic execution. Before we do that,
what about model-checking?

Model-checking a program like that is challenging. Model-checking methods and corre-
sponding (temporal) logics are mostly geared towards concurrent and reactive programs
anyway. In particular, standard model checking techniques are not very suitable for pro-
grams involving data calculations. The given code is a procedure with input and its
behavior is determined by the input. So, given the input, it’s a deterministic (and sequen-
tial) problem and with a concretely fixed input, there is also no “state-space explosion”.
Generally, though, the problem is infinite in size, if one assumes the mathematical integers
as input, resp., unmanagably huge, if one assumes a concrete machine-representation of
integers, i.e., for practical purposes, the state space is basically infinite, even though the
program is tiny.

Of course, common sense would tell that if the program would works for having x = 2345
and y = 6789, there is no reason to suspect it would fail for x = 2346 and y unchanged, for
example. In that particular tiny example, that is clear from the fact that those particular
numbers are never even mentioned in the code, they are nowhere near any corner case
where one would expect trouble.

This way of thinking (what are corner cases) is typical for testing, and is obvious also for
unexperienced programmers (or testers). Of course it is based on the assumption that the
code is available, as the intuitive notion of “corner case” rests on the assumption one can
analyze the code and that one sees in particular which conditionals are used. For instance,
there’s no way of knowing which corner cases the complete() might have, should it have
access to those variables x and y, except perhaps some “usual suspects” like uninitialized
value, 0, MAXINT and +/- 1 of those perhaps.

There are many forms of testing, in general, with different goals, under different assump-
tions, and different artifacts being tested. The form of (software) testing where the code
is available is sometimes called white-box testing or structural testing (the terms white-box
and black-box testing are considered out-dated by some, but widely used anyway).
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Coverage

The intuitive thinking about “corner cases” basically is motivated by making sure that
all possible “ways” of executing the code or actually done. In testing that’s connected to
the notion of coverage. In the context of white-box testing, one want to cover “all the
code”. What that exactly means depends on the chosen coverage criterion or criteria. The
crudest one (which therefore is not really used) would be line coverage that every line
must be executed and covered by a test case. It’s not a useful concept: it would allow the
tester to claim 100% line coverage if the program would be formatted in a single line. . .
That’s of course silly, so typically, criteria are based on covering elements of the programs
represented by a control-flow graph (CFG, see the pictures later), and then one speaks
about node coverage, or edge coverage, or further refinements, depending on the set-up.
For instance, if one had a language that supports composed boolean conditions, and if
one had a CFG representation that puts such composite conditions into one node of the
CFG, then covering only that node, or covering both true and false branch of that node
will not test all the individual contributions of the parts of the formular to that true-or-
false condition. If want wants more ambitious coverage criteria, one may that those into
account as well, which would be better than simple edge coverage.

So, there are very many coverage criteria. Known ones include
• node coverage
• edges coverage, condition coverage
• combinations thereof, and
• path coverage

They are defined to answer the question

When have I tested “enough”?

Agreeing on some coverage criterion then measuring how much coverage a test gives is
one thing. Another important and more complex thing is to figure out what test cases are
needed to achieve good coverage, and then arrange for that automatically. In the given
example, that may be simple. The example is tiny, one can see a few boolean conditions
and easily figure out inputs that cover each decision as being both true (for one test case)
and false (for another). Practically, one may choose the exact corner-cases and then one
off, since one should not forget that the real goal is not “coverage”, the real goes is to
make sure that a piece of code has no errors, or rather more realistically: testing should
have a better than random chance to detect errors, should there be some. As a matter of
fact, one common source of errors is getting the corner cases wrong (like writing < in a
conditional instead of ≤ or the other way around, especially in loops), which is sometimes
called off-by-one error. So, if the code contains a simple, non-compound condition x > 0,
choosing as input x = 700 and x = −700 may cover both cases (= 100% edge coverage for
that conditional), but practically, choosing x = 1 and x = 0 may be better.

But anyway, to achieve good “coverage” and/or good testing of corner cases, the real
question is:
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How to do that systematically and automatically? How to generate nec-
essary input for the test-cases to achieve or approximate the chosen cov-
erage criteria?

That in a way a the starting point of symbolic execution, which has its origin in testing.
As coverage, it’s based typically on something more ambitious than edge coverage or some
of the refinements of that. It’s based on path coverage. Path coverage requires that each
path from the beginning of the procedure till the end is covered. If there are loops, there
are infinitely many paths, which explains the mentioned fact, that loops are problematic.
The method is called “symbolic” as it’s not about concrete values to cover all paths (if
possible). So, if one has a condition x > 0 as before, it’s not about choosing x = 700
and x = −700 (or maybe better x = 1 and x = 0). Symbolically, one has two situations:
simply x > 0 and it’s negation ¬(x > 0) (which corresponds to x ≤ 0), i.e., the two possible
outcomes of a condition with that conditions corresponds to two constraints. It should
be noted: even if, in the presence of loops, there are infinitely many paths 100% path
coverage does not cover all reachable states, as different values can lead to the same path.
That means full path coverage is not the same as full verification or model checking.

Programs typically contain more control structure than just one or two conditions. So,
symbolic execution just takes all paths, each path involves taking a number of decisions
along its way, every one either positively or negatively, and collects all constraints in a big
conjuction.

There is more to say about symbolic execution as a field, but that’s one core idea in a
nutshell.

Path coverage is often considered as too ambitious as coverage criterion. Of course, some-
times tests cannot cover 100% of the simpler critera as well. Nodes that belong to dead
code cannot be covered. In a unit with dead code, one cannot achieve 100% coverage. But
perhaps one should, since indirectly, dead code may be a sign of a problem as well (only
one cannot test dead code in a conventional way, and in a way, there may be no point to
test it either). In the presence of loops, there are typically infinitely many paths. That
means, no matter how many test cases one comes up with, the coverage is always 0%, so
in this plain form, one cannot use path coverage to measure if one has tested “enough”.
Note also: the fact that there are infinitely many paths is not the same as saying that the
program itself is non-terminating (for some input). The notion of paths (in the context
of path coverage) refer to paths through the control flow graph (CFG), which is an ab-
straction. The paths may or may not correspond to paths through the graph done when
executing the actual program. That also means, there may be paths in the CFG that are
unrealizable, and in particular, all loops in the progam may actually terminate, but that’s
something one cannot see in the CFG, where one can see just a cycle in the graph.

Let’s revisit the small progrom from earlier, from Listing 7.1. Figure 7.1 shows the cor-
responding control-flow graph. The graphical “design” used in that figure is sometimes
called flow-graph, using some conventions. For instance that the condinals are repre-
sented by diamond- or rhombus-shaped nodes, the input-nodes by rhomboid etc. For us,
those conventions don’t matter much (and they may also vary from presentation to pre-
sentation). But maybe they help to visualize the notion of control flow graph. Indeed,
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control-flow graphs are not primarily a visialization, the are often concrete data structures
inside a compiler or model checker, and important intermediate representation, serving
various analysis, optimization, and code generation purposes.

Here, coverage is defined in terms of paths through the control-flow graph, and thus also
(an implementation of) symbolic execution is based on some form of control-flow graph.

f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 10 x > 0 ∧ y = 20

complete()

x > 0 ∨ y 6= 10 x ≤ 0 ∨ y 6= 20

Figure 7.1: Control-flow graph/flow chart

The boolean conditions on the edges correspond to the the condition in case the if- resp.
the else-case is taken of the corresponding if-statement. The two branches are mutually
explusive (in conventional, deterministic programs), the false-branch is the negation of
the true-branch. It should be noted that we assume that there the conditions are are
side-effect free. That’s generally good programming style, even in case the programming
language would support it. Besides, it’s of course not real restriction. It’s easy to transform
“dirty” programs with side-effects in conditions into one that is more disciplined that way.
An actually, should the programmer turn a deaf ear on advice like “boolean conditions
are better side-effect free”, the compiler (or model-checker or analysis tool) will take
care of it. Normally, control-flow graphs are not meant for human consumption (unless
one uses a graphical programming notation, UML etc), it’s an internal representation
of the tool, for the purpose of analysis. The flow graph may not even be to represent
the control-flow in source code syntax, but perhaps for a lower level intermediate code
representation. Keeping that clean helps with whatever one intends to use the CFG for,
like code generation, analysis, optimization, etc. Or in our case, symbolic execution,
which is a form of analysis anyway. Thus, we it’s perfectly fine and realistic to assume the
conditions are side-effect free.

The control-flow graph of the program is very simple and there are only 4 different paths
from the initial node to one of the terminal nodes. Those four path are shown in Figure
7.2.

Following a path accumulates the conditions as they appear on the positive, resp. the
negative edge on the decisions being taken, depending on which decision is assumed the
particular path take. If one follows a path from the beginning to the end, one has a boolean
constraint which consists of the conjunction of all the indidual boolean constraints. One
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f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 10 x > 0 ∧ y = 20

complete()

x > 0 ∨ y 6= 10 x ≤ 0 ∨ y 6= 20

(a) Path 1

f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 20x > 0 ∧ y = 10

complete()

x ≤ 0 ∨ y 6= 20x > 0 ∨ y 6= 10

(b) Path 2

f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 20x > 0 ∧ y = 10

complete()

x ≤ 0 ∨ y 6= 20x > 0 ∨ y 6= 10

(c) Path 3

f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 10 x > 0 ∧ y = 20

complete()

x ≤ 0 ∨ y 6= 20x > 0 ∨ y 6= 10

(d) Path 4

Figure 7.2: Four different paths through the control-flow graph

such constraint is also called the path constraint or path condition for that particular
path.

For instance, the first path, as marked in Figure 7.2a, has the path condition

(x3 > 0) ∧ (x > 0 ∧ y 6= 10) (7.1)

and the last path from Figure 7.2d, has the path condition.

(x3 ≤ 0) ∧ (x > 0 ∧ y = 20) . (7.2)

Obviously, the condition for the first path can be simplified, plausibly to x > 0 ∧ y 6= 10.
The one from equation (7.2) has no solution (in the assumed conventional interpretation on
“numbers”). It corrsponds to the constraint “false”. As for terminology: the corresponding
path is unrealizable.

Figure 7.3 contains all three realizable paths, marked in red. It’s not the same as dead
code, but of course one cannot find input that covers that path, as the path condition is
contradictory.

f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 20x > 0 ∧ y = 10

complete()

x ≤ 0 ∨ y 6= 20x > 0 ∨ y 6= 10

Figure 7.3: All realizable paths

Now the goal is: find a set of inputs to run program so that all realizable
paths are covered, resp. find a method that automatically does so.
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Random testing

Let’s start with perhaps the most “naive” way of testing, namely to run the program
repeatedly with randomly generated inputs. “Naive” is perhaps an exaggeration, random
testing has and is being used, (and studied evaluated and compared to other forms, it has
been refined etc.) So it has its place, at least including randomized aspects into testing.
We ignore in the discussion here is that in testing one needs among other things, also
a way to judge the outcome of the tests. I.e., one needs a specification of the expected
outcomes, or at least of the expectation what should or should not happen (like that one
does not want to see certain general errors). In the small program from Listing 7.1 that’s
assumed given by the two possible termination outcomes, either properly completed or
failed.

For us important is that testing, randomized or otherwise works with concrete input
values, and does a dynamic execution of programs, observing its actual behavior and
compare it against expected behavior.

Example 7.1.1 (Random testing). Let’s use the program from Listing 7.1 resp. its control-
flow graph for illustration. Testing means providing different inputs that lead to different
outcomes, following potentially different paths, and let’s assume the input is generated
randomly. For instance, one could use (x, y) = (700, 500), and (x, y) = (−700, 500) . . . The
first pair of values results in the path of Figure 7.2a, the second pair in the path of Figure
7.2c, both ending in the non-erroneous end-state, i.e., the two test cases are passed.

The path from Figure 7.2d is unrealizable. But with the two inputs so far, the realizable
from Figure 7.2b has so far been missed.

We shouldn’t count the unrealizable 4th path one among the ones we missed. But the
realizable path shown should be covered. In particular, it’s one that would point to an
error in the program, the other two so far found no bug.

The problem with this is: to randomly hit that particular path has an astronomically
low probability (hitting y = 10 by chance is very unlikely, indeed). Actually, this way
of testing, at least the way of selecting input, may even not even be called white box, as
it ignores information inside the body of the function, for instance that y = 10 seem a
profitable corner case.

In defense of random testing one may say: it may be easy in this particular case, to pick
more reasonable or promising input like y = 10. That’s not just because the program
is small. Note in particular, that x and y are also not updated in fancy ways (maybe
conditionally updated, maybe even using pointers and other complications). One may
have to invest heavily in complex theories that may be time-consuming to run before
one can get a decent grip on improving on the randomness of the input. And, in a way,
symbolic execution is an investment in theory (SMT solving) to find an alternative way
of testing, thereby also going from a black-box approach for selecting the inputs to a
white-box view.

To avoid a mis-conception: random testing is not synonymous with white-box testing. If
one does random input testing the way described, and then used path coverage to measure
how good the test suites have been, that’s white-box testing: to rate the path coverage, one
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needs access to the code. It’s only that the available white-box information is not taken
into account for shaping the test cases in a meaningful way (except for perhaps stop test-
ing, when one feels the random input has achieved sufficient node/edge/path/whatever-
coverage).

So, how to get to the missing path from Figure 7.2b? One input that would do the job is,
for instance (x, y) = (145, 10), but hitting the concrete value y = 10 by chance, as said, as
a very low probability.

But that’s where working with symbolic representations can do better, where it’s not about
individual, concrete values, but sets of values, resp. symbolic or formulaic representations
of sets of values. In symbolic executions, one works with path constraints or path con-
ditions. The path condition corresponding to the so far missing path from Figure 7.2b,
after simplification, is

x > 0 ∧ y = 10 .

7.2 Symbolic execution

We have essentially introduced the core idea of symbolic execution in the previous section,
focusing on path constraints.

Perhaps it’s worth iterating that, like in BMC, it’s about SMT-solving (not just SAT
solving), sat-solving modulo theories. That’s about

boolean combinations of constraints over specific domains with specific theories

The theory or theories allows to express properties of values like integers or arrays, etc.,
that corresponds to data types used in the programming language used for the programs
we are analyzing.

One should be aware, that theories may easily lead to undecidability of constraint solving.
Integers with addition only have a decidable theory.1 Add multiplication, and decidability
of the theory goes out the window.

Undecidability is a real issue: how many programs use only integers and addition? One
could claim that the programs mostly never use real mathematic integers, but just a
finite portion of them (up-to MAX-INT) so one is dealing with a finite memory, so that
makes properties decidable. That’s correct, and when dealing with integers and actual
programs, one can make the argument, one should deal with the machine integers anyway
to make it more realististic. Indeed, one can work with a theory capturing those “realistic”
integers or “IEEE floating points”, etc. But all those theories are non-trivial. So even if
technically decidable (by being finite), it may be computationally too expensive to wait for
an answer when doing SMT solving. And there are more data types than just numbers:
there are dynamic data structures (linked lists, trees, etc.), and they are conceptually
unbounded, as well. Again, one may posit that, in the real world, there is always some
upper bound (out-of-heap-space, stack-overflow), but it’s unrealistic to capture

1This specific theory is known as Presburger arithmetic.

http://www.lsv.fr/~haase/documents/h18.pdf
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those limitations in a decidable theory and hope the constraint solver will handle it thereby.
It would even make no sense conceptually, if one is doing “unit testing”: the procedure
under test may or may not have out-of-memory problems depending on factors outside the
unit. For instance on how much heap space is already taken away by other data structure
in the program.

Anyway, one has to face the sad fact that one will encounter constraints that are either
formally undecidable or untractable; in some way, there’s not much practical difference
either way. In some not too far-fetched situations, constraint solving may simply not
work.

We come back to that later: concolic execution is an extension of symbolic execution
that addresses exactly that problem: what can I do if my constraint problem exceeds the
capabilities of the used SMT solver. But first we finish up with symbolic execution by
looking at a super-simple example, but without adding much new technical content to the
material, it’s more like rubbing it in a bit more. One difference to the previous example,
though, is that now a variable involved in the program is assigned to, i.e., changes its
value on the path(s) through the execution

Let’s have a look at the code from Listing 7.2 resp. the CFG from Figure 7.4

y = read ( ) ;
y = 2 ∗ y ;

i f ( y==12) {
f a i l ( ) ;

}

complete ( ) ;

Listing 7.2: Sample code

read()

y = 2*y

if

fail()

y = 12

complete()

y 6= 12

Figure 7.4: CFG

In the C-style code, the “equation” sign of course represents assignments, and the == is a
comparison. In the constraints and the annotation on the edges, we use = for comparison,
and in the text here, for clarity, we use := for assignments. The difference between
assignments and equations should be clear. If not, looking at line 2 of the code snippet: y
:= 2 * y is definitely not the same as the equation y = 2y). The latter is unsatisfiable
using standard numerical theories.
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Let’s also introduce the variable s for containing the result of the read()-operation.
The code contains two asignments, y := read() and y := 2*y. That leads to two
constraints,

y = s and y = 2s

at the corresponding points in the program. The branching point in line 4, leads to the
two conditions 2s = 12 and 2s 6= 12.

As a side remark: we came to the constraint like y = 2s that holds after line 2 by looking
at the very simple example. Nore systematic would be to work with different instances or
incarnation of the variables. Here with different versions of y, as this is the only variable
being asigned to. Actually there are two versions of y, say y0 after the first assignment and
y1 after the second. I.e., the constraint solver would have to deal with the two constraints

y0 = s y1 = 2y0 (7.3)

which is equivalent as far the purpose of the symbolic execution is concerned.

We have seen the same treatment of using different “versions” to represent mutable pro-
gram variables also in the context of symbolic model checking (where we used unprimed
and primed version to capture the pre- and the post-situation in representing the successor
states (for the representation of the pre- or post-sets). And the “versioning” treatment
was analogously done for bounded model checking, which also needed to capture paths.

Back to the program. To find, for instance, the erroneous outcome, the onstraint solver
needs to solve the path constraint 2s = 12 (or the slighly longer one from equation (7.3).

That’s (in this case) child’s play: the solution is s = 6.

However, the constraint containts multiplication. We shortly mentioned it before: the
theory of natural numbers with addition and multiplication is undecidable.

In this particular example, the constraint is trivially solved by humans, and would pose
not problem for constraint solvers. Indeed, the constraint 2s = 12 is covered by a de-
cidable theory, namely a restriction of the general case of addition and multiplication,
where multiplication is restricted to involve only one variable multiplied with constants
(so constraints like xy > 0 and also x× x = 23 would violate that restriction).

A constraint like 2x + 17y < z, using an inequation instead of equality, would still be
ok: there are 2 variables but they are not multiplied with each other. Such restricted
forms can be covered by linear arithmetic, which has a decidable theory. It’s an important
class of constraints. For strange historical reason, the field dealing with such (in)equations
(and generalizing the question of satisfiability to the question of finding an optimal solu-
tion) is called linear programming. It’s also know under the less strange name of linear
optimization.

Here is a short (intermediate) summary of what’s been said, symbolic execution for dum-
mies. It works like this: take the code (resp. the CFG of the code), collect all paths into
path conditions. A path condition is a big conjunctions of all conditions along each the
path. Each single condition b will have one positive mention b in one continuation of the
path, one negated mention ¬b in the other continuation.
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Then feed the contraints to an appropriate SMT constraint solver, in particular solve
the constraints for paths leading to errors. The whole approach works best for loop-free
programs (and we will not cover what could be done for loops).

Even if one leaves out loops, which are problematic and focuses on straight-line code, the
path constraint themselves may not easily solvable.

Looking again at the code from Listing 7.1 and the paths through the CFG, the path
constraints mention x3 as part of their path constraints. In particular also for the realizable
path from Figure 7.2b and the unrealizable one from Figure 7.2d.

With the numerical constraints non-linear, we are definitely leaving the safe ground of
decidable theories. Many contstraint solvers would throw the towel when facing those, for
instance by only accept linear constraints in numerical domains, or under other restriction.
Most solvers would not be ready to deal with random math constraints.

What can one do?

What can one do, beyond throwing the towel and accept that SE won’t cover all paths or
won’t work on many programs? Later we will cover so-called concolic testing, but that is
only one possible way to address the limitations of constraint solvers.

First make some remarks on other ways, as well, even if we don’t cover then. One thing one
could do is involve humans in some way, in the spirit of theorem proving. Theorem provers
typically can do a lot more than guiding a human through manual proof activities. There
is a good deal of automation under the hood, including constraint solving and verification
in many domains. And even if undecidable, one could give it a shot, maybe relying on
heuristics that in practice can handle many situations. But still, any method that involves
human assistance in logical argumentation in formal theories is probably hard to sell in
most areas and unappealing for large programs. For most areas a technique is either
automatic, or unused . . .

One can also give up on the goal of full path coverage. Most testing approaches don’t do try
that anyway. Random testing that we touched upon makes not attempt in the direction of
any guaranteed coverage, path coverage or otherwise. The problem is, if one is after some
form of path coverage, in the face of astrononomically many path (or infinitely many),
one in practice covers approximately 0% of all paths, even if one invests is a huge amount
of test cases. Zero percent sounds worse than it maybe is; after all, it’s not coverage one
is after, it’s about getting the software right, resp. spotting errors or faults (and then
repairing them). A particular defect or its symptom may well not be reached by exactly
one path, which one hits or misses, but by very many. Besides, there are heuristics one
could use, one could check standard corner cases inherent in the input data or, if one has
that, corner cases in the specification of the unit one tests. That then goes in the direction
of white box testing, since the test selection is done on the input-output data, and that
can be done without having access to the internals of the code or the CFG.

There is another, standard thing one can do, namely working with abstractions.
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Abstraction and “static analysis” Abstracting away from details (in a systematic way)
allows to cover all possible behaviors. The price of that is that one looses precision.

The presentation here presented SE as a way to systematically represent possible paths via
path conditions. The representation of the paths is assumed precise but collecting exactly
the boolean conditions along the way. It’s only we run into trouble when solving them.
Static analysis characteristically works with techniques like data flow analysis (or more
generally abstract interpretation or type system in way that systematicall approximates
the concrete behavior. One (typically) does not attempt to capture precisely which choices
of values lead to which paths. Instead, one works with approximations (of the values) but
does not attempt to tailor-make the abstractions such that they fit exactly the paths.

In a way, the treatment in symbolic execution works on abstractions, as well. The values
of the input space are carved up. As far as the values for y are concerned, they are grouped
into two classes: all the values where y = 10 and all the values y 6= 10. One can see that
as having two abstract values for y, one consisting of {10} and one of the set N \ {10}.
That they are represented “symbolically” with “formulas” or constraints is more a matter
of perspective. But SE is based on the idea that the abstraction is sculpted by the need to
“steer” the abstract execution along all possible paths (at least those which are realizable),
and that works fine as long as there are only finitely many such path.

What an approximating analysis on the other hand does is to assume that it can go either
way, but without remembering which way it goes, just running the analysis approximately
(the technical terms is that the analysis is “path insensitive”). There is more that dis-
tinguishes data flow analysis from SE. One is that often the purpose is different. In data
flow analysis, the purpose is often not to split up the input of a procedure to get good
coverage for testing (though it’s a legitimite goal as well). Instead, one analyses (often in
the context of a compiler) other aspects of the code. Therefore, even if one is as radical
as representing variables like x and y just by the knowledge that they are integers, one
typically adds additional information related to what one is interested in (for live vari-
able analysis, some information about when the variables is assigned to, for analysis of
nil-pointer problems, when pointer variables get a proper value etc). And typically that is
done also not just for input variables of a procedure, but for all variables or other entities
one is interested to analyze. In any case, static analysis like data flow analyses are typ-
ically not path-sensitive (as explained). Path sensitivity is not fundamentally forbidden,
it’s just too expensive to do in many applications. As a consequence, such analyses are less
precise, i.e., more approximative. In doing so, problems with undecidablity may disappear
thanks to working with abstractions, and loops no longer pose a problem, at least not as
serious as for SE.

One way to see analyses like data flow analysis is not to work with abstractions that exactly
cover all combinations of “true” and “false” for all encountered conditions. The abstraction
is done independent from that. In the simplest case (with the most radical abstraction),
one could completely ignore the concrete value (perhaps just abstracting it into its type,
like int). Obviously, when encountering a condition mentioning the comparison y = 10,
the analyser would not know if the run goes left or right in that case. One might also split
into 3 different abstract values, maybe {negative, 0, positive}, hoping that this is a good
choice, but the choice is independent from the conditions in the program.
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The borderline between SE and static analysis is, however, not clear cut. For instance, one
could do the following: one can replace constraints beyond the capabilities of the chosen
SMT solver (like the one involving x3) by a constraints in linear arithmic. Sometimes
one can approximate non-linear constraints by linear one. That way, one can no longer
have the exact correspondance between the paths and solutions of the path constraints,
therfore it becomes a but like (other) static analyses.

So, isn’t SE not a static analysis, as well? It sure is, in that it analyses statically the code.
Why it’s presented here as being slightly different is its motivation: it’s part of a more
advanced testing approach, which is not a static analysis. Testing is run-time or dynamic
analasys. But it’s fair to see SE in the presentation here as a static analysis technique
used to improve the run-time technique of testing.

7.3 Concolic testing

“Concolic” is a portmanteau work, mixing together the words “concrete” and “symbolic”.
Another name for the technique is also DSE, dynamic symbolic execution. The pre-
sentation here covers the approach as realized by the Dart-tool, which introduced the idea
[16]. Since it’s introcution, the tool and technique evolved further, as well as the acronyms
of the tool(s).

It rests combination of two techniques: a) Random testing, which works with dynamic
executions involving concrete values and b) symbolic execution, which works statically
and with symbolic constraints and formulas. The slogan of the approach is:

Execute dynamically & explore symbolically

In the following we show in a series of figures, how Dart combines random testing and sym-
bolic execution into a concolic execution framework. In the slide versions, the exploration
of the different path is shown stepwise, in overlays, which illustrate the interplay between
the dynamic execution and the symbolic exploration of alternatives . The overlays are not
reproduced here.

The example is taken from Section 2.5 from Godefroid et al. [16] and shows how to handle
the program from before (Listing 7.1), which involves non-linear constraints. The non-
linear constraint there is meant as an example of a constraint that can’t be handled by the
chosen SMT solver. Often those focus on decidable theories (like linear constraints).

Also standard over-approximation techniques (“predicate abstraction”) may not be able to
precisely analyze a program like that. They would be unable to figure out that a fail state
is unreachable taking the path “via the right-hand side” from Figure 7.2d), i.e., unable to
pinpoint unrealizable path. The best they would do is that it “may be reachable”, thus
reporting an error that is actually not possible. The overapprixmation thus leads to false
alarms. False alarms are problematic if the user drowns in them. The “tester” may have
no patience to inspect thousands of warnings, most of which are just false alarms. So,
the tool may become unhelpful if the approximation is too coarse. Complex programming
structures, especially wild pointer manipulations and spaghetti code, but also dynamic
aspects such as higher-order functions, dynamic or late binding etc. confuses not just the
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programmer but also lead to wildely approximative (= unusable) results. Things get worse
when adding concurrency to the mix . . .

For the example. Figure 7.5 shows a possible first run of the Dart tool. It starts like
random testing, picking an random input, say

(x, y) = (700, 500) . (7.4)

This input leads to the path marked in red in Figure 7.5. Of course, picking exactly
those two numbers is highly improbable, but picking an x larger than 0 and y 6= 10 has a
probability of almost 50%. Of course since it’s random, Dart may alternatively start off
by choosing the input that leads to the path to completions on the right-hand side, which
has a probability of likewise 50%. Only the third possible path, stumbling directly across
the error by picking x > 0 and y = 10 is highly unlikely. Anyway, we start as shown in
Figure 7.5.

f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 10 x > 0 ∧ y = 20

complete()

x > 0 ∨ y 6= 10 x ≤ 0 ∨ y 6= 20

Figure 7.5: Dart (1) (same as Figure 7.2a)

While doing the concrete test run with that input, two boolean conditions have been
evaluated to true: x3 > 0 and y 6= 10. Those are the path conditions corresponding the
path randomly picked. Now, with the goal of path coverage in mind: one should continue
with exploring alternatives, i.e., explore paths behind the negation of those conditions.
The negation of the first one is x3 ≤ 0. That’s a non-linear constraint, i.e., one where a
typical SMT solver may chicken out.

So assume Dart does not attempt to do any constraint solving here. Remember the goal:
we want to find more or less systematically all paths, but we don’t want to overapproxi-
mate; we don’t want to include unrealizable paths as the might result in false alarms. As
we cannot find the alternative route at this point in the chosen path by solving x3 ≤ 0.
the only thing we can do at this point is to use the path we know that exists as fall-back.
That’s the path we are currently pursuing, which “solves” the constraint x3 > 0 in having
the concrete 700 as one solution.

So we use the concrete execution as witness to find one witness solving a constraint we
cannot otherwise solve via SMT (more precisely, when we cannot solve its negation, but
that amounts generally to the same). In that particular example, we add x1 = 700 as
constraint (let’s write x1 when referring to the x in the first run). Now we continue the
run with the next conditional. With y picked as 50, the condition y¬ = 10 is true. In this
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f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 20x > 0 ∧ y = 10

complete()

x ≤ 0 ∨ y 6= 20x > 0 ∨ y 6= 10

Figure 7.6: Dart (2) (same as Figure 7.2b)

case, the the negation is y = 10 which is perfectly solvable (actually: a constraint of that
form, equating a variable with a concrete, constant value is a constraint in solved form).
That’s good, so constraint “solving” gave us that y = 10 would lead to a different path.

So sum up the first run: the randomly generated input from equation (7.4) led to the
concrete execution from Figure 7.5, and a constraint system of the form

(x1, y1) = (700, 10)

The x1 is the concrete value in this run, the constraint for y1 comes from symbolically
representing the corresponding alternative in that run (it so happens in the example that
the constraint is already in a form (y1 = 10) that has only one solution.

This is the starting point for the second run of the method, which is shown in Figure
7.6.

Applying the same method as in the first run, x has the same problem as before, which
means we need to use the concrete value 700 as fall-back. That leads to the constraint

(x1 = 700) ∧ (y2 6= 10) .

However, that corresponds to a path already explored. Consequently, after the second run
(in this example), no new inputs are generated.

If we don’t have clear direction (in the form of constraints) what input to take next, we
can of course generate a new one randomly. That obviously may result in path already
explored. However, in the example, the portion of the graph not yet explored so far is
the right-hand side. Sooner or later, the random input generation will pick an input with
x ≤ 0, which explores that part. And actually, it will happen rather sooner than later,
let’s assume, at iteration n. For concreteness, let’s assume the concrete input is

(x, y) = (−700, 500) .

That leads to an execution covering the path from Figure 7.7. The symbolic part chickens
out on the first constraint which involves x3 (besides that the left-hand alternative x3

n > 0
is already explored), so we have the concrete value xn = −700.
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f(x,y)

if

if

x3 > 0

if

x3 ≤ 0

fail()

x > 0 ∧ y = 20x > 0 ∧ y = 10

complete()

x ≤ 0 ∨ y 6= 20x > 0 ∨ y 6= 10

Figure 7.7: Dart (n) (same as Figure 7.2c)

The conditional leads to the additional constraint xn > 0 ∧ y = 20, but that means we
have

xn = −700 ∧ xn > 0 ∧ y = 20 (7.5)

which is unsatisfiable. By general reasoning involving the non-linear term x3, we were
aware that this path is unrealizable for any choice of x. The SMT solver may be too
weak to draw that conclusion, but at least it will never explore that path, since when the
symbolic execution does not work, it relies on concrete executions, and those never take
that path. So: no false alarms!

At that point, we cannot generate new paths any more, all 3 possible paths are covered
and the one unrealizable was “covered” insofar that it has been half-symbolically and half-
concretely evaluated (see equation (7.5)). So, when figuring out that, the method stops
generating new tests, having achieved (in this example) the best possible path coverage
without generating false alarms.

One can convince oneself, that even with alternative random picks, for instance starting
to explore the right-hand side instead of the left hand side as in this illustation, the result
would be the same. So with very high probablity (and in short time), the method will
achieve that coverage.

Side remark 7.3.1. The example, taken from [16], serves to illustrate in which way the
combination of symbolic and concrete execution improved on both plain random testing,
symbolic execution, and on approximative methods: it is highly improbably that random
testing find the bug, symbolic execution cannot handle the example, and overapproxima-
tion give false alarms. Hurrah for concolic execution!

But, on second thought, the example is hand-crafted with the intention to “prove” the
superiority of that methods over some competitors. But is it wholly convincing? Well, it
worked convincingly enough in the example, in particular stressing the high probablity of
covering all realizable paths in a short amount of time.

But that may depend on the (perhaps too cleverly) constructed example. There are two
integer input domains: the one for x and the one for y. The one for x is divided 50-50,
namely for x ≤ 0 and x > 0. The other domain is split in an extremely uneven way: y = 10
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vs. y 6= 10. In both cases the split of the domains correspond to different paths that need
to be covered. The SMT solver cannot tackle the even split domain for x, as it is written
in the form x3 ≤ 0 and x3 > 0. The uneven split for y, luckily, can be represented by
linear constraint and the symbolic treatment can therefore cover the two choices very fast.
The even coverage can, with high probability, be covered quite fast by random generation.

If we would have written y2 6= 100 ∧ x > 0 instead of y = 10, the DART method would
struggle as well.

So, the example should be read as illustration, in aspects one can hope to improve of
the other approaches. Whether it in practice is a step forward can be judged only by
applying a corresponding tool to real example programs. Besides that, it also depends on
practical issued (which kind of theories should be reasonably covered by the SMT, what
data structures does the programming language support, what about external variables
and external procedure call etc). The paper [16] reports on experimental evaluation of
their approach, providing evidence that the method gives quite added value compared to
pure random testing, but they also point out problems of the method in practice

It should also be said, that DART is not the only attempt to improve “stupid random
testing” by similar ideas (also before that particular paper).
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subtitution, 38
symbolic model checking, 185
symmetry reduction, 185
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term, 37

ground, 37
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random, 217
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unit, 212
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