
Technology for a better society 1

Refinement III

The general case

Ketil Stølen

Technology for a better society
2

Topics

• Sequential composition
• Negative behaviour
• Refinement in the general case

Technology for a better society
3

Sequential composition

Technology for a better society

Causality
• a message can never be received before it has been

transmitted
• the transmission event for a message is therefore always

ordered before the reception event for the same message
Weak sequencing
• events from the same lifeline are ordered in the trace in the

same order as on the lifeline (from top to bottom)

Basic rules

Technology for a better society

Example

5

sd ex

BA

a

b

!a

?a !b

?b ?b

?a!b

Mathematically !a and ?a (etc.) are shorthands for !(a,A,B) and ?(a,A,B)
Hence, each event contains the names of its sending and receiving lifelines

Technology for a better society
6

Sequential composition of trace sets s1 and s2

s1 ≿ s2

=
the set of all traces obtained by merging traces

t1 from s1 and t2 from s2

in such a way that for each lifeline,
the events from t1 comes before the events from t2

Technology for a better society
7

Sequential composition of trace sets

Alice

hello

goodbye

Bob

<!h,?h,!g,?g>

<!h,!g,?h,?g>

<!h,?h> ≳

=

<!g,?g>

s1 s2

Red events occur on Alice, blue
events on Bob

s1 ≳ s2 is the set of positive
traces for the diagram

s1

s2

Technology for a better society

Note

• if s1 or s2 is empty then s1 ≿ s2 is also empty

8

Technology for a better society
9

Sequential composition of interaction obligations

• (p1,n1)≿(p2,n2) ≝ (p1≿p2 ,(n1≿p2)∪(n1≿n2)∪(p1≿n2))

• Traces composed exclusively by positive traces become positive
• Traces composed with at least one negative trace become

negative

Technology for a better society
10

Formal semantics of seq

• [[d1 seq d2]] ≝ {o1≿o2 ∣ o1∈[[d1]]∧o2∈[[d2]]}

• oi is shorthand for (pi, ni)

Technology for a better society
11

Remember: By sequential composition

• positive followed by positive is positive
• positive followed by negative is negative
• negative followed by negative is negative
• negative followed by positive is negative

Technology for a better society
12

Negative behaviour

Technology for a better society

Specifying negative behaviour with refuse

• [[refuse d]] ≝ {({ }, p∪n) ∣ (p,n)∈[[d]]}

• All interaction obligations in [[refuse d]] have empty positive
sets

• Hence, all interaction obligations in [[d1 seq (refuse d2)]] have
empty positive sets

• The same applies to [[(refuse d1) seq d2]]

Technology for a better society

Example use of refuse

• [[Heads]] = {({<!f, ?f, !h, ?h>}, {<!f, ?f, !t, ?t>})}

Player Coin

flip

sd Heads

heads

tails

alt

refuse

Technology for a better society 15

Specifying negative behaviour with veto

[[veto d]] ≝ [[skip alt (refuse d)]]

This means:
[[veto d]] = {({<>}, p∪n) ∣ (p,n)∈[[d]]}

[[Heads]] = {({<!f, ?f, !h, ?h>, <!f, ?f>} , {<!f, ?f, !t, ?t>})}

Player Coin

flip

sd Heads

heads

tails

alt

veto

Technology for a better society

Specifying negative behaviour with assert

• By using assert, all inconclusive traces are redefined as
negative

• This ensures that for each interaction obligation, at
least one of its positive traces will be implemented in
the final implementation

• [[assert d]] ≝ {(p, n∪(ℋ\p)) ∣ (p ,n) ∈ [[d]]}

• ℋ = all possible traces
• ℋ\p = all possible traces minus those in p

Technology for a better society

Example use of assert

• [[Heads]] = {({<!f, ?f, !h, ?h>}, n)}

• n = all traces where the first event on the lifeline of Player is
!f and the first event on the lifeline of Coin is ?f except the
trace <!f, ?f, !h, ?h>

Player Coin

flip

sd Heads

heads
assert

Technology for a better society

appointmentMade() may not occur
here

noAppointment() may not occur
instead of appointmentMade() here

noAppointment () is the only
message that may occur here

From
0 to 4

iterations
Negative behaviour

veto

Technology for a better society 19

veto or refuse?

Should doing nothing be possible in
the otherwise negative situation?

– If yes, use veto
– If no, use refuse

ok to do nothing between no() and
appointment-Suggestion(time)

not ok to do nothing after yes()

veto

Technology for a better society
20

When to use assert?

Sending
noAppointment() is the

only acceptable
response to the no()
message at this point

veto

Technology for a better society
21

The pragmatics of negative behaviour

• To effectively constrain the implementation, the specification
should include a reasonable set of negative traces

• Use refuse when specifying that one of the alternatives in an
alt represents negative traces

• Use veto when the empty trace (i.e. doing nothing) should be
positive, as when specifying a negative message in an otherwise
positive scenario

• Use assert on an interaction fragment when all positive traces
for that fragment have been described

Technology for a better society
22

Refinement in the general case

Technology for a better society
23

Supplementing

• Inconclusive trace are recategorized as either positive or
negative (for an interaction obligation)

• New situations are considered
– adding fault tolerance
– new user requirements
– ...

• Typically used in early phases

Technology for a better society24

Example of supplementing

Positive
Negative

Technology for a better society
25

The pragmatics of supplementing

• Use supplementing to add positive or negative traces to the
specification

• When supplementing, all of the original positive traces must
remain positive, and all of the original negative traces must
remain negative

• Do not use supplementing on the operand of an assert
– no traces are inconclusive in the operand

Technology for a better society
26

Narrowing

• Reduce underspecification by redefining positive traces as
negative

• For example adding guards, or replacing a guard with a stronger
one
– traces where the guard is false become negative

Technology for a better society27

Example of narrowing

For each operand, traces where the
guard is false become negative

Technology for a better society
28

The pragmatics of narrowing

• Use narrowing to remove underspecification by redefining
positive traces as negative

• In cases of narrowing, all of the original negative traces must
remain negative

• Guards may be added to an alt as a legal narrowing step
• Guards may be added to an xalt as a legal narrowing step
• Guards may be narrowed, i.e. the refined condition must imply

the original one

Technology for a better society
29

General refinement

• d’ is a general refinement of d if
– for every interaction obligation o in [[d]] there is at least

one interaction obligation o’ in [[d’]] such that o’ is a
refinement of o

• Interaction obligations that do not refine any obligation at the
abstract level may be added

Technology for a better society
30

p1

n1

H \(p1∪n1)[[d]]:
p2

n2

H \(p2∪n2)

p1
'

n1
'

H \(p1
'∪n1

')
p2

'

n2
'

H \(p2
'∪n2

')
p3

'

n3
'

H \(p3
'∪n3

')[[d’]]:

General refinement illustrated

Technology for a better society
31

The pragmatics of general refinement

• General refinement is required for specifications with xalt
• It corresponds to the pointwise application of refinement for

each single interaction obligation
• General refinement supports the introduction of additional

inherent nondeterminism

Technology for a better society
32

Limited refinement

• d’ is a limited refinement of d if
– d’ is a general refinement of d, and
– every interaction obligation in [[d’]] is a refinement of at

least one interaction obligation in [[d]]

• Limits the possibility of adding new interaction obligations
• Typically used at a later stage

Technology for a better society
33

Limited refinement illustrated

p1

n1

H \(p1∪n1)[[d]]:
p2

n2

H \(p2∪n2)

p1
'

n1
'

H \(p1
'∪n1

')
p2

'

n2
'

H \(p2
'∪n2

')
p3

'

n3
'

H \(p3
'∪n3

')[[d’]]:

Technology for a better society
34

The pragmatics of limited refinement

• Limited refinement is a special case of general refinement
• Limited refinement disallows the introduction of additional

inherent nondeterminism
• Limited refinement is normally used in the later stages of a

system development

Technology for a better society
35

Compositionality

A refinement operator ⇝ is compositional if it is
reflexive: d⇝d
transitive: d⇝d’∧ d’⇝d’’ ⇒ d⇝d’’
the operators refuse, veto, alt, xalt and seq are monotonic w.r.t. ⇝ :

d⇝d’ ⇒ refuse d ⇝ refuse d’
d⇝d’ ⇒ veto d ⇝ veto d’
d1⇝ d1’∧ d2⇝ d2’ ⇒ d1 alt d2 ⇝ d1’ alt d2’
d1⇝ d1’∧ d2⇝ d2’ ⇒ d1 xalt d2 ⇝ d1’ xalt d2’
d1⇝ d1’∧ d2⇝ d2’ ⇒ d1 seq d2 ⇝ d1’ seq d2’

• Transitivity allows stepwise development
• Monotonicity allow different parts of the specification to be refined

separately

Technology for a better society
36

Supplementing, narrowing, general refinement and limited
refinement are all compositional

Technology for a better society

The mathematical foundation

• Haugen, Husa, Runde, Stølen: STAIRS towards formal design
with sequence diagrams, 2005. SoSyM, Springer.
– http://heim.ifi.uio.no/~ketils/kst/Articles/2005.SoSyM-

onlinefirst.pdf

• Runde, Haugen, Stølen: The Pragmatics of STAIRS, 2006.
Springer-Verlag. LNCS 4111.
– http://heim.ifi.uio.no/~ketils/kst/Articles/2006.FMCO-

LNCS4111.pdf

	Slide Number 1
	Topics
	Sequential composition
	Slide Number 4
	Example
	Sequential composition of trace sets s1 and s2 �
	Sequential composition of trace sets
	Note
	Sequential composition of interaction obligations
	Formal semantics of seq
	Remember: By sequential composition
	Negative behaviour
	Specifying negative behaviour with refuse
	Example use of refuse
	Specifying negative behaviour with veto
	Specifying negative behaviour with assert
	Example use of assert
	Negative behaviour
	veto or refuse?
	When to use assert?
	The pragmatics of negative behaviour
	Refinement in the general case
	Supplementing
	Example of supplementing
	The pragmatics of supplementing
	Narrowing
	Example of narrowing
	The pragmatics of narrowing
	General refinement
	General refinement illustrated
	The pragmatics of general refinement
	Limited refinement
	Limited refinement illustrated
	The pragmatics of limited refinement
	Compositionality
	Slide Number 36
	The mathematical foundation

