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Topics

• Sequential composition
• Negative behaviour 
• Refinement in the general case
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Sequential composition
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Causality 
• a message can never be received before it has been 

transmitted
• the transmission event for a message is therefore always 

ordered before the reception event for the same message
Weak sequencing
• events from the same lifeline are ordered in the trace in the 

same order as on the lifeline (from top to bottom)

Basic rules
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Example

5

sd ex

BA

a

b

!a

?a !b

?b ?b

?a!b

Mathematically !a and ?a (etc.) are shorthands for !(a,A,B) and ?(a,A,B)
Hence, each event contains the names of its sending and receiving lifelines
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Sequential composition of trace sets s1 and s2

s1 ≿ s2

=
the set of all traces obtained by merging traces

t1 from s1     and      t2 from s2

in such a way that for each lifeline, 
the events from t1 comes before the events from t2
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Sequential composition of trace sets

Alice

hello

goodbye

Bob

<!h,?h,!g,?g>

<!h,!g,?h,?g>

<!h,?h> ≳

=

<!g,?g>

s1 s2

Red events occur on Alice, blue 
events on Bob

s1 ≳ s2 is the set of positive 
traces for the diagram

s1

s2
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Note

• if s1 or s2 is empty then s1 ≿ s2 is also empty

8
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Sequential composition of interaction obligations

• (p1,n1)≿(p2,n2) ≝ (p1≿p2 ,(n1≿p2)∪(n1≿n2)∪(p1≿n2))

• Traces composed exclusively by positive traces become positive
• Traces composed with at least one negative trace become 

negative



Technology for a better society
10

Formal semantics of seq

• [[d1 seq d2]] ≝ {o1≿o2 ∣ o1∈[[d1]]∧o2∈[[d2]]}

• oi is shorthand for (pi, ni)
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Remember: By sequential composition

• positive followed by positive is positive
• positive followed by negative is negative
• negative followed by negative is negative
• negative followed by positive is negative
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Negative behaviour
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Specifying negative behaviour with refuse

• [[refuse d]] ≝ {( { }, p∪n) ∣ (p,n)∈[[d]]}

• All interaction obligations in [[refuse d]] have empty positive 
sets

• Hence, all interaction obligations in [[d1 seq (refuse d2)]] have 
empty positive sets

• The same applies to [[(refuse d1) seq d2]]
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Example use of refuse

• [[Heads]] = {({<!f, ?f, !h, ?h>}, {<!f, ?f, !t, ?t>})}

Player Coin

flip

sd Heads

heads

tails

alt

refuse
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Specifying negative behaviour with veto

[[veto d]] ≝ [[skip alt (refuse d)]]

This means:
[[veto d]] = {({<>}, p∪n) ∣ (p,n)∈[[d]]}

[[Heads]] = {({<!f, ?f, !h, ?h>, <!f, ?f>} , {<!f, ?f, !t, ?t>})}

Player Coin

flip

sd Heads

heads

tails

alt

veto
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Specifying negative behaviour with assert

• By using assert, all inconclusive traces are redefined as 
negative

• This ensures that for each interaction obligation, at 
least one of its positive traces will be implemented in 
the final implementation

• [[assert d]] ≝ {(p, n∪(ℋ\p )) ∣ (p ,n) ∈ [[d]]}

• ℋ = all possible traces
• ℋ\p = all possible traces minus those in p
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Example use of assert

• [[Heads]] = {({<!f, ?f, !h, ?h>}, n)}

• n = all traces where the first event on the lifeline of Player is 
!f and the first event on the lifeline of Coin is ?f except the 
trace <!f, ?f, !h, ?h>

Player Coin

flip

sd Heads

heads
assert
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appointmentMade() may not occur
here

noAppointment() may not occur
instead of appointmentMade() here

noAppointment () is the only
message that may occur here

From 
0 to 4 

iterations
Negative behaviour

veto
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veto or refuse?

Should doing nothing be possible in 
the otherwise negative situation?

– If yes, use veto
– If no, use refuse

ok to do nothing between no() and 
appointment-Suggestion(time)

not ok to do nothing after yes()

veto
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When to use assert?

Sending 
noAppointment() is the

only acceptable
response to the no() 
message at this point

veto
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The pragmatics of negative behaviour

• To effectively constrain the implementation, the specification 
should include a reasonable set of negative traces

• Use refuse when specifying that one of the alternatives in an 
alt represents negative traces

• Use veto when the empty trace (i.e. doing nothing) should be 
positive, as when specifying a negative message in an otherwise 
positive scenario

• Use assert on an interaction fragment when all positive traces 
for that fragment have been described
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Refinement in the general case
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Supplementing

• Inconclusive trace are recategorized as either positive or 
negative (for an interaction obligation)

• New situations are considered
– adding fault tolerance
– new user requirements
– ...

• Typically used in early phases
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Example of supplementing

Positive
Negative
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The pragmatics of supplementing

• Use supplementing to add positive or negative traces to the 
specification

• When supplementing, all of the original positive traces must 
remain positive, and all of the original negative traces must 
remain negative

• Do not use supplementing on the operand of an assert
– no traces are inconclusive in the operand
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Narrowing

• Reduce underspecification by redefining positive traces as 
negative

• For example adding guards, or replacing a guard with a stronger 
one
– traces where the guard is false become negative
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Example of narrowing

For each operand, traces where the
guard is false become negative
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The pragmatics of narrowing

• Use narrowing to remove underspecification by redefining 
positive traces as negative

• In cases of narrowing, all of the original negative traces must 
remain negative

• Guards may be added to an alt as a legal narrowing step
• Guards may be added to an xalt as a legal narrowing step
• Guards may be narrowed, i.e. the refined condition must imply 

the original one
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General refinement

• d’ is a general refinement of d if
– for every interaction obligation o in [[d]] there is at least

one interaction obligation o’ in [[d’]] such that o’ is a 
refinement of o

• Interaction obligations that do not refine any obligation at the
abstract level may be added



Technology for a better society
30

p1

n1

H \(p1∪n1)[[d]]:
p2

n2

H \(p2∪n2)

p1
'

n1
'

H \(p1
'∪n1

')
p2

'

n2
'

H \(p2
'∪n2

')
p3

'

n3
'

H \(p3
'∪n3

')[[d’]]:

General refinement illustrated
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The pragmatics of general refinement

• General refinement is required for specifications with xalt
• It corresponds to the pointwise application of refinement for 

each single interaction obligation
• General refinement supports the introduction of additional 

inherent nondeterminism
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Limited refinement

• d’ is a limited refinement of d if
– d’ is a general refinement of d, and
– every interaction obligation in [[d’]] is a refinement of at 

least one interaction obligation in [[d]]

• Limits the possibility of adding new interaction obligations
• Typically used at a later stage
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Limited refinement illustrated

p1

n1

H \(p1∪n1)[[d]]:
p2

n2

H \(p2∪n2)

p1
'

n1
'

H \(p1
'∪n1

')
p2

'

n2
'

H \(p2
'∪n2

')
p3

'

n3
'

H \(p3
'∪n3

')[[d’]]:
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The pragmatics of limited refinement

• Limited refinement is a special case of general refinement
• Limited refinement disallows the introduction of additional 

inherent nondeterminism
• Limited refinement is normally used in the later stages of a 

system development 
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Compositionality

A refinement operator ⇝ is compositional if it is
reflexive: d⇝d
transitive: d⇝d’∧ d’⇝d’’ ⇒ d⇝d’’
the operators refuse, veto, alt, xalt and seq are monotonic w.r.t. ⇝ :

d⇝d’ ⇒ refuse d ⇝ refuse d’
d⇝d’ ⇒ veto d ⇝ veto d’
d1⇝ d1’∧ d2⇝ d2’ ⇒ d1 alt d2 ⇝ d1’ alt d2’
d1⇝ d1’∧ d2⇝ d2’ ⇒ d1 xalt d2 ⇝ d1’ xalt d2’
d1⇝ d1’∧ d2⇝ d2’ ⇒ d1 seq d2 ⇝ d1’ seq d2’

• Transitivity allows stepwise development
• Monotonicity allow different parts of the specification to be refined 

separately
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Supplementing, narrowing, general refinement and limited 
refinement are all compositional 
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The mathematical foundation

• Haugen, Husa, Runde, Stølen: STAIRS towards formal design 
with sequence diagrams, 2005. SoSyM, Springer.
– http://heim.ifi.uio.no/~ketils/kst/Articles/2005.SoSyM-

onlinefirst.pdf

• Runde, Haugen, Stølen: The Pragmatics of STAIRS, 2006. 
Springer-Verlag. LNCS 4111. 
– http://heim.ifi.uio.no/~ketils/kst/Articles/2006.FMCO-

LNCS4111.pdf
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