IN9130 - UNASSAILABLE IT-SYSTEMS

Obligatory Exercise I

An Ngoc Lam

September 19, 2018

QUESTION 1

Figure 1 illustrates the class diagram of the Product Monitoring usecase specified in the requirement.

According to the law of proximity, the Temperature, Humidity and Vibration sensors
which belong to the same Sensor Unit are all grouped to Sensor type. Similarly, Client
Factory and Customer Factory are all Factory. Also, Mobile Gateway and Static
Gateway are all Gateway.

Chemical could be produced by many Client Factory and purchased by several Customer
Factory.

A Container could store various type of Chemical and contain only one Sensor Unit. It
could be either stored in one Short-term Storage or being transported by one Truck.

A Shipment may contain many Containers, involve more than one Truck and be delivered
to one Customer Factory.

There is no construct deficit since the class diagram in figure 1 already covers all the important
objects mentioned in the requirement as well as the relationship between them. The attributes
(which are mentioned in the requirement) are also included in corresponding classes.

There is no construct redundancy since each actor or object specified in the requirement is
represented by only one class in the diagram. Also, similar concepts are grouped together
with generalization class. Similarly, construct overload is also avoided since there is no class
represent multiple concepts.

There is no construct excess since all the classes in the diagram only represent actors or
objects which are explicitly mentioned in the requirement.

Obligatory Exercise I

An Ngoc Lam

/

Factory

V\

Client Factory

1
produces Mases

Customer Factory

Chemical

- Tag :int
- ProductionParamenters: int[*]

Static Gateway

/installs

11

Gateway

Mobile Gateway

transportTo
stores
Container Sensor Unit
Short-term Storage stores
- Tag : int 1 17]-1D :int
transports : ¥
1 1 *
Truck =+ Shipment ’ Sensor
1
installs
Temperature Humidity Vibration

QUESTION II

Figure 1: Class diagram of Product Monitoring

Figure 2 represents the overview of the three scenarios A, B and C. Each of these scenarios is
illustrated in more details in figure 3, 4 and 5 respectively.

Page 2

WRISRIP 90UNDoS MOIAIOAO O], g oINITq

y T (eral >vo:_m>m aseqejep 0} arepdn
ajigow eIA Lodsuel) (qin)1osues™ie
Buunp pue Aemajeb onejs d ' (lea ‘piuny)anea 7| ' ‘ ' H ‘ '
eIA o6e.0)S WIS)-LIOoYS 1B I~ (prwny)iosuss jeb ;
yioq pawiopad aq pjnoys : _ : ' ' ' ' :
UOI}08]|02 Bep Josuasg i (A “dwaponiea " ! ! ' " !
'~ (dwey)iosuss 196 ! : ! " : ; ;
: H ﬁ dooj : : : : :
P iBullpueHHodsuR LU D) jo1
Ajpua1inouos Inooo pinoa| |- : . T T T : T r
U0I1}09]|00 Bjep Josuas| ! " ' ' ' ! uonolpaidawiesy g. Jol
pue souLeuads ¢ ay| ' : : : : ' :
. mc__vcm_._EmEa_cw|<m jol
Jed
uonesado NS o4 i .))) : Aiojoe4
UNIOSUBS: Aemalen): aseqeleq: walsAguonolpald: JaALIQ Yonu: yonuy: Aiojoe4 sl D: PO
\mc:oﬁ_co_\,__mo_Ewco ps

Obligatory Exercise I

An Ngoc Lam

sd A_ShipmentHandIing/

:Customer
Factory

:Client Factory

:Truck

:Truck Driver

:Mobile Gateway

:Database

Arrived at ihe factory

Get pﬁediction information of thje containers in the truck

forward the request

Receive prediction information of each container

response

N
.

Inform thé tags of the good contaihers

j_ get good containers

[
L_| return

load down the good containers

return bad containers

\

.

Figure 3: Diagram for scenario A

Prediction values are
calculated by the

PredictionSystem (next
scenario) and stored in
the central database

U

sd B_RealtimePrediction/

:Customer
Factory

:Client Factory

:Database

:PredictionSystem

loop J

{ bad containers are in transport OR shipment affected } O-------

get all the information
of the containers

response

update the prediction

values of the containers

Planing for jre-production

N

/|

if bad containers are
noticed, report to the
client factory for re-

production planning.

if bad containers are

Planing for re-shipment :

scheduled for a shipment
[--"or in transport, report the

- - - =L oo

Figure 4: Diagram for scenario B

plan to the affected
customer also.

Page 4

Obligatory Exercise I

An Ngoc Lam

sd C_InTransportHandIing/

Truck :Truck Driver

:Transport
Company

:Client Factory

:Database :PredictionSystem

loop J

get all the information
of the containers

response

Prediction if expensive
+_procedures needed

{ expensive procedures needed }
Plan for special procedures

Plan for special

Plan for special
procedures

procedures

carry out the procedure

QUESTION IIT

Figure 5: Diagram for scenario C

Figure 6 illustrates the composite structure of the Sensor Unit. Figure 7 presents the internal
communication of the components inside the Sensor Unit which is also referenced by the sequence

diagram in figure 2.

SensorUnit

The controller should read
the input parameter of the
request and forward the

message to corresponding
sensor. -

get_sensor

value

get_senso

i

get_sensor

get_sensor

sc:SensorController 7
get_senso
1 1
value
value

get_sensof

i

value
ts:TemperatureSensor
value
hs:HumiditySensor
vs:VibrationSensor
value

Figure 6: Composite structure of the Sensor Unit

Page 5

Obligatory Exercise I

An Ngoc Lam

sd SU_Operation /

sc:SensorController ts:TemperatureSensor hs:HumiditySensor vs:VibrationSensor

get_sensor(temp)

get_sensor(temp)

value(temp, val)

value(temp, val)

get_sensor(humid)

get_senso'r(humid)

value(humid, val)

get_sensor(vib)

get_sensor(vib)

value(vib, val)

value(vib, val)

value(humid, val) i

Figure 7: Sequence diagram of the Sensor Unit

QUESTION IV

sm SensorControl Ier)

get_sensor(temp)/get_sensor(temp)

WaitforTemp

value(temp, val)/value(temp,val)

get_sensor(humid)/get_sensor(humid)

WaitforHumid

value(humid,val) /value(humid,val)

WaitforVib

get_sensor(vib)/get_sensor(vib)

value(vib,val) /value(vib,val)

Figure 8: State machine of the Sensor Controller

Page 6

Obligatory Exercise I An Ngoc Lam

Figure 8 represents the behavior state machine of the Sensor Controller corresponding to the
sequence diagram in figure 7. As can be seen from these figures, each message received by the
controller corresponds to one event which triggers the transition of the state machines. Specifically,
there are 6 messages received by the controller which corresponds to 6 state transitions in the state
machine. Also, the controller forwards messages to relevant sensors or the gateway after receiving
these messages, which corresponds to the 6 actions of the transitions. Therefore, the state machine
is consistent with the controller lifeline in the sequence diagram.

QUESTION IV

Figure 8 is sufficient to model the behavior of the controller. However, there are also situations
that are not handled by this state machine which could lead to errors or deadlock during the
runtime of the controller. For example, if the sensors never return observed value to the controller,
the controller would get stuck in waiting states forever. Therefore, it is better to return back to
Idle state after some time waiting for the sensor values. Also, the controller should also handle
the situation in which sensors return incorrect values (e.g. requesting for temperature value but
receiving humidity values). Figure 9 illustrates the enhanced state machine which represents those
aforementioned situations.

sm EnhancedSensorCo ntroIIer) value(!=temp,val)/get_sensor(temp)

get_sensor(temp)/get_sensor(temp) “
WaitforTemp

value(temp, val)/value(temp,val) Time expired/
value(!=humid,val)/get_sensor(humid)

et_sensor(humid)/get_sensor(humid
IDLE ge- (/et () WaitforHumid

value(humid,val)/value(humid,val)

Time expired

value(vib,val)/value(vib,val)
Time expired/

value(!=vib,val)/get_sensor(vib)
get_sensor(vib)/get_sensor(vib)

WaitforVib

Figure 9: Enhanced state machine of the Sensor Controller

Page 7

