
IN9130 - Unassailable IT-systems

Obligatory Exercise I

An Ngoc Lam

September 19, 2018

Question I

Figure 1 illustrates the class diagram of the Product Monitoring usecase specified in the requirement.

• According to the law of proximity, the Temperature, Humidity and Vibration sensors
which belong to the same Sensor Unit are all grouped to Sensor type. Similarly, Client
Factory and Customer Factory are all Factory. Also, Mobile Gateway and Static
Gateway are all Gateway.

• Chemical could be produced by many Client Factory and purchased by several Customer
Factory.

• A Container could store various type of Chemical and contain only one Sensor Unit. It
could be either stored in one Short-term Storage or being transported by one Truck.

• A Shipment may contain many Containers, involve more than one Truck and be delivered
to one Customer Factory.

• There is no construct deficit since the class diagram in figure 1 already covers all the important
objects mentioned in the requirement as well as the relationship between them. The attributes
(which are mentioned in the requirement) are also included in corresponding classes.

• There is no construct redundancy since each actor or object specified in the requirement is
represented by only one class in the diagram. Also, similar concepts are grouped together
with generalization class. Similarly, construct overload is also avoided since there is no class
represent multiple concepts.

• There is no construct excess since all the classes in the diagram only represent actors or
objects which are explicitly mentioned in the requirement.

Obligatory Exercise I An Ngoc Lam

Factory

Customer FactoryClient Factory

Chemical

- Tag : int
- ProductionParamenters: int[*]

purchases

*

*
produces

*

*

Container

- Tag : int

stores
*

*

Truck

transports
*

1

Short-term Storage
1 *
stores

*

1

Shipment

1

*

* *

Sensor Unit

- ID : int

Sensor
*

*

11
Static Gateway

Mobile Gateway

1

1 installs

installs
1

1

Gateway

Temperature Humidity Vibration

*

transportTo

1

Figure 1: Class diagram of Product Monitoring

Question II

Figure 2 represents the overview of the three scenarios A, B and C. Each of these scenarios is
illustrated in more details in figure 3, 4 and 5 respectively.

Page 2

:C
lie

nt
 F

ac
to

ry
:T

ru
ck

 D
riv

er
:C

us
to

m
er

Fa
ct

or
y

:S
en

so
rU

ni
t

re
f S

U
_O

pe
ra

tio
n

:G
at

ew
ay

sd
 C

he
m

ic
al

M
on

ito
rin

g

pa
r re
f

A_
Sh

ip
m

en
tH

an
dl

in
g

re
f

B_
R

ea
lti

m
eP

re
di

ct
io

n

C
_I

nT
ra

ns
po

rtH
an

dl
in

g

ge
t_

se
ns

or
(te

m
p)

va
lu

e(
te

m
p,

 v
al

)

ge
t_

se
ns

or
(h

um
id

)
va

lu
e(

hu
m

id
, v

al
)

ge
t_

se
ns

or
(v

ib
)

va
lu

e(
vi

b,
 v

al
)

:T
ru

ck
:D

at
ab

as
e

lo
op

U
pd

at
e

to
 d

at
ab

as
e

re
f

:P
re

di
ct

io
nS

ys
te

m

Se
ns

or
 d

at
a

co
lle

ct
io

n
sh

ou
ld

 b
e

pe
rfo

rm
ed

 b
ot

h
at

 s
ho

rt-
te

rm
 s

to
ra

ge
 v

ia
st

at
ic

 g
at

ew
ay

 a
nd

 d
ur

in
g

tra
ns

po
rt

vi
a

m
ob

ile
ga

te
w

ay

Th
e

3
sc

en
ar

io
s

an
d

se
ns

or
 d

at
a

co
lle

ct
io

n
co

ul
d

oc
cu

r c
on

cu
rre

nt
ly

F
ig

u
re

2
:

T
h

e
ov

er
v
ie

w
se

q
u

en
ce

d
ia

g
ra

m

Obligatory Exercise I An Ngoc Lam

:Client Factory :Truck :Truck Driver:Customer
Factory :Mobile Gateway

sd A_ShipmentHandling

Arrived at the factory

Get prediction information of the containers in the truck

Receive prediction information of each container

Inform the tags of the good containers

load down the good containers

get good containers
return

return bad containers

:Database

forward the request

response

Prediction values are
calculated by the
PredictionSystem (next
scenario) and stored in
the central database

Figure 3: Diagram for scenario A

:Client Factory:Customer
Factory

sd B_RealtimePrediction

:Database :PredictionSystem

loop
get all the information

 of the containers

response

update the prediction
values of the containers

{ bad containers detected }
Planing for re-production

Planing for re-shipment
{ bad containers are in transport OR shipment affected }

if bad containers are
noticed, report to the
client factory for re-
production planning.

if bad containers are
scheduled for a shipment
or in transport, report the
plan to the affected
customer also.

Figure 4: Diagram for scenario B

Page 4

Obligatory Exercise I An Ngoc Lam

:Client Factory:Truck :Truck Driver :Transport
Company

sd C_InTransportHandling

:Database :PredictionSystem

get all the information
 of the containers

response

{ expensive procedures needed }

loop

Prediction if expensive
procedures needed

Plan for special proceduresPlan for special
proceduresPlan for special

procedures

carry out the procedure

Figure 5: Diagram for scenario C

Question III

Figure 6 illustrates the composite structure of the Sensor Unit. Figure 7 presents the internal
communication of the components inside the Sensor Unit which is also referenced by the sequence
diagram in figure 2.

ts:TemperatureSensorts:TemperatureSensorts:TemperatureSensor

hs:HumiditySensorhs:HumiditySensorhs:HumiditySensorsc:SensorControllersc:SensorControllersc:SensorController

vs:VibrationSensorvs:VibrationSensorvs:VibrationSensor

SensorUnit

get_sensor get_sensor

get_sensor

get_sensor

value

value

value

value

get_sensor

value

value

get_sensor

The controller should read
the input parameter of the
request and forward the
message to corresponding
sensor.

The controller should read
the input parameter of the
request and forward the
message to corresponding
sensor.

Figure 6: Composite structure of the Sensor Unit

Page 5

Obligatory Exercise I An Ngoc Lam

sc:SensorController hs:HumiditySensor

sd SU_Operation

ts:TemperatureSensor vs:VibrationSensor

get_sensor(temp)

get_sensor(temp)

value(temp, val)

get_sensor(humid)

value(humid, val)

get_sensor(vib)

value(vib, val)

get_sensor(vib)

value(humid, val)

get_sensor(humid)

value(vib, val)

value(temp, val)

Figure 7: Sequence diagram of the Sensor Unit

Question IV

IDLEIDLE

WaitforTempWaitforTemp

WaitforHumidWaitforHumid

WaitforVibWaitforVib

get_sensor(humid)/get_sensor(humid)

get_sensor(temp)/get_sensor(temp)

get_sensor(vib)/get_sensor(vib)

value(temp, val)/value(temp,val)

value(humid,val)/value(humid,val)

value(vib,val)/value(vib,val)

sm SensorController sm SensorController

Figure 8: State machine of the Sensor Controller
Page 6

Obligatory Exercise I An Ngoc Lam

Figure 8 represents the behavior state machine of the Sensor Controller corresponding to the
sequence diagram in figure 7. As can be seen from these figures, each message received by the
controller corresponds to one event which triggers the transition of the state machines. Specifically,
there are 6 messages received by the controller which corresponds to 6 state transitions in the state
machine. Also, the controller forwards messages to relevant sensors or the gateway after receiving
these messages, which corresponds to the 6 actions of the transitions. Therefore, the state machine
is consistent with the controller lifeline in the sequence diagram.

Question IV

Figure 8 is sufficient to model the behavior of the controller. However, there are also situations
that are not handled by this state machine which could lead to errors or deadlock during the
runtime of the controller. For example, if the sensors never return observed value to the controller,
the controller would get stuck in waiting states forever. Therefore, it is better to return back to
Idle state after some time waiting for the sensor values. Also, the controller should also handle
the situation in which sensors return incorrect values (e.g. requesting for temperature value but
receiving humidity values). Figure 9 illustrates the enhanced state machine which represents those
aforementioned situations.

IDLEIDLE

WaitforTempWaitforTemp

WaitforHumidWaitforHumid

WaitforVibWaitforVib

get_sensor(humid)/get_sensor(humid)

get_sensor(temp)/get_sensor(temp)

get_sensor(vib)/get_sensor(vib)

value(temp, val)/value(temp,val)

value(humid,val)/value(humid,val)

value(vib,val)/value(vib,val)

Time expired/

Time expired/

Time expired/

value(!=temp,val)/get_sensor(temp)

value(!=humid,val)/get_sensor(humid)

value(!=vib,val)/get_sensor(vib)

sm EnhancedSensorController sm EnhancedSensorController

Figure 9: Enhanced state machine of the Sensor Controller

Page 7

