IN9130 - UNASSAILABLE IT-SYSTEMS

Obligatory Exercise I
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September 19, 2018

QUESTION 1

Figure 1 illustrates the class diagram of the Product Monitoring usecase specified in the requirement.

According to the law of proximity, the Temperature, Humidity and Vibration sensors
which belong to the same Sensor Unit are all grouped to Sensor type. Similarly, Client
Factory and Customer Factory are all Factory. Also, Mobile Gateway and Static
Gateway are all Gateway.

Chemical could be produced by many Client Factory and purchased by several Customer
Factory.

A Container could store various type of Chemical and contain only one Sensor Unit. It
could be either stored in one Short-term Storage or being transported by one Truck.

A Shipment may contain many Containers, involve more than one Truck and be delivered
to one Customer Factory.

There is no construct deficit since the class diagram in figure 1 already covers all the important
objects mentioned in the requirement as well as the relationship between them. The attributes
(which are mentioned in the requirement) are also included in corresponding classes.

There is no construct redundancy since each actor or object specified in the requirement is
represented by only one class in the diagram. Also, similar concepts are grouped together
with generalization class. Similarly, construct overload is also avoided since there is no class
represent multiple concepts.

There is no construct excess since all the classes in the diagram only represent actors or
objects which are explicitly mentioned in the requirement.
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QUESTION II

Figure 1: Class diagram of Product Monitoring

Figure 2 represents the overview of the three scenarios A, B and C. Each of these scenarios is
illustrated in more details in figure 3, 4 and 5 respectively.
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sd A_ShipmentHandIing/
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Figure 3: Diagram for scenario A

Prediction values are
calculated by the

PredictionSystem (next
scenario) and stored in
the central database

U

sd B_RealtimePrediction/
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Figure 4: Diagram for scenario B
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QUESTION IIT

Figure 5: Diagram for scenario C

Figure 6 illustrates the composite structure of the Sensor Unit. Figure 7 presents the internal
communication of the components inside the Sensor Unit which is also referenced by the sequence

diagram in figure 2.

SensorUnit

The controller should read
the input parameter of the
request and forward the

message to corresponding
sensor. -

get_sensor

value

get_senso
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get_sensor

get_sensor

sc:SensorController 7
get_senso
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get_sensof

i

value
ts:TemperatureSensor
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hs:HumiditySensor
vs:VibrationSensor
value

Figure 6: Composite structure of the Sensor Unit
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sd SU_Operation /

sc:SensorController ts:TemperatureSensor hs:HumiditySensor vs:VibrationSensor

get_sensor(temp)

get_sensor(temp)

value(temp, val)

value(temp, val)

get_sensor(humid)

get_senso'r(humid)

value(humid, val)

get_sensor(vib)

get_sensor(vib)

value(vib, val)

value(vib, val)

value(humid, val) i

Figure 7: Sequence diagram of the Sensor Unit

QUESTION IV

sm SensorControl Ier)

get_sensor(temp)/get_sensor(temp)

WaitforTemp

value(temp, val)/value(temp,val)

get_sensor(humid)/get_sensor(humid)

WaitforHumid

value(humid,val) /value(humid,val)

WaitforVib

get_sensor(vib)/get_sensor(vib)

value(vib,val) /value(vib,val)

Figure 8: State machine of the Sensor Controller
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Figure 8 represents the behavior state machine of the Sensor Controller corresponding to the
sequence diagram in figure 7. As can be seen from these figures, each message received by the
controller corresponds to one event which triggers the transition of the state machines. Specifically,
there are 6 messages received by the controller which corresponds to 6 state transitions in the state
machine. Also, the controller forwards messages to relevant sensors or the gateway after receiving
these messages, which corresponds to the 6 actions of the transitions. Therefore, the state machine
is consistent with the controller lifeline in the sequence diagram.

QUESTION IV

Figure 8 is sufficient to model the behavior of the controller. However, there are also situations
that are not handled by this state machine which could lead to errors or deadlock during the
runtime of the controller. For example, if the sensors never return observed value to the controller,
the controller would get stuck in waiting states forever. Therefore, it is better to return back to
Idle state after some time waiting for the sensor values. Also, the controller should also handle
the situation in which sensors return incorrect values (e.g. requesting for temperature value but
receiving humidity values). Figure 9 illustrates the enhanced state machine which represents those
aforementioned situations.

sm EnhancedSensorCo ntroIIer) value(!=temp,val)/get_sensor(temp)

get_sensor(temp)/get_sensor(temp) “
WaitforTemp

value(temp, val)/value(temp,val) Time expired/
value(!=humid,val)/get_sensor(humid)

et_sensor(humid)/get_sensor(humid
IDLE ge- ( /et ( ) WaitforHumid

value(humid,val)/value(humid,val)

Time expired

value(vib,val)/value(vib,val)
Time expired/

value(!=vib,val)/get_sensor(vib)
get_sensor(vib)/get_sensor(vib)

WaitforVib

Figure 9: Enhanced state machine of the Sensor Controller
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