
Antonio Martini
Professor in Software Engineering

University of Oslo

Course IN5140
2023-09-27

Antonio Martini - PhD in Software Engineering

Agenda
� Recap

� What is Technical Debt?
� Why and how do we manage Technical Debt?

� Managing Technical Debt in Agile
� Several aspects

� Managing Technical Debt
� Guest lecture from Visma (Mili)

� Managing Security Debt
� Guest lecture from Visma (Maren)

Antonio Martini - PhD in Software Engineering

Recap

Antonio Martini - PhD in Software Engineering

What the users see

Antonio Martini - Professor in Software Engineering

Wonderful
features!

What the developers see

Antonio Martini - Professor in Software Engineering

Awful
design!

Technical Debt in a nutshell

Antonio Martini – Professor in Software Engineering

Current Definition

� In software-intensive systems, technical
debt is a design or implementation
construct that is expedient in the short
term, but sets up a technical context that
can make a future change more costly
or impossible. Technical debt is a
contingent liability whose impact is
limited to internal system qualities,
primarily maintainability and evolvability

Antonio Martini - PhD in Software Engineering

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt in Software
Engineering (Dagstuhl Seminar 16162)

First of all: What is Technical Debt?

Antonio Martini - PhD student in Software Engineering

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theory
and Practice,” IEEE Software

Expensive!

The TD landscape of kinds of TD

Antonio Martini - PhD in Software Engineering

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theory
and Practice,” IEEE Software

� TD includes internal quality issues, not external quality
� TD is not a bug!

� External quality might be influenced by internal quality
� Example: it might be more difficult to fix a bug because of the

technical debt

Antonio Martini - PhD in Software Engineering

Internal Quality External Quality

Technical Debt

Includes

Effects perceived by
the organization

• Productivity
• Reusability
• ...

Affects

Effects perceived by
the customer

• Bugs
• Usability
• …

Affects

What is technical debt in practice?

Negative effect
is the Interest of
Technical Debt

So, what happens in the end?
� Research study in 7 organizations *

Antonio Martini - PhD in Software Engineering

Time

Technica
l D

ebt

Crisis

Productivity Technica
l D

ebt

Productivity

Refactoring

AT
D

 a
cc

um
ul

at
io

n

� The accumulation of Technical Debt leads to
development crises

* Martini, A., Bosch, J., Chaudron, M., 2015. “Investigating Architectural Technical Debt Accumulation and
Refactoring over Time: a Multiple-Case Study,” Information and Software Technology.

How much is the interest?
� 269 respondents in 15 organizations
� 40 developers tracked over 3 months

� Estimated Interest (waste) of TD

� Estimated Cost of TD management

Antonio Martini - PhD in Software Engineering

30% waste

25% waste
• Martini et al.: “Technical Debt Tracking: Current State of Practice”, Journal of Science of Computer Programming, 2018
• T. Besker, A. Martini, and J. Bosch, “The Pricey Bill of Technical Debt - When and by whom will it be paid?,” in Proceeding of

ICSME 2017, Shanghai, China.

But TD can be useful in some
cases
� When high business risk is involved

� E.g. startups
○ High chances of failing
○ Need to save capital
○ They need technical debt in the beginning!*
○ But they need to remove it before they grow

� Prototyping
� Helps understanding if something is feasible
○ Problem: prototypes should not end up in

production code

Antonio Martini – Professor in Software Engineering

* T. Besker, A. Martini, R. Edirisooriya Lokuge, K. Blincoe and J. Bosch, "Embracing Technical Debt, from a Startup Company
Perspective," 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME), Madrid, 2018

You cannot avoid TD...

� But TD needs to be managed

� The most risky (with more interest)
issues need to be fixed (first)

� Prioritization is key

Antonio Martini – Professor in Software Engineering

Antonio Martini - PhD in Software Engineering

Identification
� How do we know if we have technical

debt?

� The concept of (code) “smell”
� a code smell is any characteristic in the source

code of a program that possibly indicates a
deeper problem *

� How do we find code smells?

Antonio Martini - PhD in Software Engineering

Tufano, Michele; Palomba, Fabio; Bavota, Gabriele; Oliveto, Rocco; Di Penta, Massimiliano; De Lucia, Andrea; Poshyvanyk,
Denys "When and Why Your Code Starts to Smell Bad" 37th IEEE International Conference on Software Engineering 2015

Identification of different kinds of TD

Antonio Martini - PhD in Software Engineering

Automatic Tools

(Do not show impact
of Technical Debt)

Manual or
Invisible

Static code analyzers (e.g. SonarQube)

Architectural smells (e.g. Arcan)

Antonio Martini - PhD in Software Engineering

* Martini, Antonio; Arcelli Fontana, Francesca; Biaggi, Andrea & Roveda, Riccardo (2018). Identifying and
Prioritizing Architectural Debt Through Architectural Smells, ECSA 2018

50% increment
awareness of
Architectural Debt

Refactoring
� restructure (the source code of an

application or piece of software) so as to
improve operation without altering
functionality
(Oxford dictionary)

� It’s a reactive approach
� Agile mostly advocate it to compensate when

avoiding “big upfront”
� Most of the time overlooked
� Large refactorings

Antonio Martini - PhD in Software Engineering

Component

Maintainability and complexity
� Complex files need to be decreased and encapsulated

Antonio Martini - PhD in Software Engineering

Functionality

Component

Functionality

refactoring?

Encapsulated complexity

Complex files
often changed

Interest paid Interest NOT paid

How do large companies manage TD?

� Companies manage TD with different
levels of maturity*

Antonio Martini - PhD in Software Engineering

* Martini, Besker, Bosch: “Introducing Technical Debt Tracking in Large Software Companies”,
accepted at APSEC 2016 and in press

Level 0 - Unaware

� There is no
awareness of
TD in the
organization

Antonio Martini - PhD in Software Engineering

Level 1 - No Tracking

� We know what TD
is…

� …but we dont do
much in our
organization...

Antonio Martini - PhD in Software Engineering

Level 2 – Ad-hoc tracking

� No budget
allocated

� Driven by
individual initiative

� Use of “improper”
tools

Antonio Martini - PhD in Software Engineering

Level 3 – Systematic tracking

� Budget allocated
to TD
management

� TD-specific
documentation

� Iterative process
to monitor TD
issues

� Continuous TD
process
improvement

Antonio Martini - PhD in Software Engineering

Level 4 – Measured
� Use of automated

TD identification
tools

� Use of automated
indicators to
measure the
interest of TD

� Integration of
several
measurements

Antonio Martini - PhD in Software Engineering

Level 5 – Institutionalized
� Process

standardized across
the organization

� Spread to the whole
organization

� Used for lifecycle
planning

� Prioritization done
among different
kinds of TD

Antonio Martini - PhD in Software Engineering

Level 6 – Fully automated
� Automated data-

driven decisions
� statistical data

from the history of
the system

� assessment with
existing
benchmarks

� (Still a research
work in progress)

Antonio Martini - PhD in Software Engineering

Ad-hoc

No tracking

Systematic

Measured

Institutionlized

Fully automated

Unaware

Goal about Technical Debt Tracking*

Antonio Martini - PhD in Software Engineering

* Martini, Antonio; Besker, Terese & Bosch, Jan (2018). Technical Debt tracking: Current state of practice: A survey
and multiple case study in 15 large organizations. Science of Computer Programming.

Sprint X

Agile Technical Debt management

Antonio Martini - PhD in Software EngineeringSprint X + 1

Sprint X

Antonio Martini - PhD in Software Engineering

Got TD?

CONTINUOUS
• APPROACHES

Urgent?
Quick to fix?
High impact?

Sprint X + 1

PROACTIVE
APPROACHES

REACTIVE
APPROACHES

Avoid TD?

Monitor TD?

Proactive approaches

• Education
• Culture
• Organization
• Process
• Guidelines
• Visualization

Antonio Martini - PhD in Software Engineering

Continuous approaches

• Semi-automatic Identification
• Code Reviews
• Retrospectives
• Technical leadership
• Dedicated refactoring sprints and % of

time

Antonio Martini - PhD in Software Engineering

Reactive approaches

• Impact Map
• Roadmap evaluation
• Resources to remove TD
• Business case
• TD information used in planning and

budget

• Agile: Refactoring

Antonio Martini - PhD in Software Engineering

Proactive, continuous or reactive…?

� We need all of them!

� Systematically managing TD means
keeping an eye on different aspects

Antonio Martini - PhD in Software Engineering

Climbing the TD management
maturity ladder

Antonio Martini - PhD in Software Engineering

Awareness Culture
and

Mindset

Organization

Process

Tools

Knowledge

Assessing TD management*

� Management maturity
� Alignment across different roles

Antonio Martini - PhD in Software Engineering

0
2
4
6
8
10
12
14
Knowledge

Awareness

Education

Organization

Process

Tools

Maturity Management

0

1

2

3

4

5
Knowledge

Awareness

Education

Organization

Process

Tools

Misalignment Management -
Technical

* A. Martini, T. Besker, T. Posch and J. Bosch, "TD Pulse: Assessing the Systematic Management of Technical Debt," in IEEE
Software, vol. 40, no. 3, pp. 54-62, May-June 2023

