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Agenda

® Recap

e What is Technical Debt?
e Why and how do we manage Technical Debt?

® Managing Technical Debt in Agile
e Several aspects

® Managing Technical Debt
e Guest lecture from Visma (Mili)

® Managing Security Debt

e Guest lecture from Visma (Maren)
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Recap

Technical Debt
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What the users see
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What the developers see
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Technical Debt in a nutshell
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Current Definition

® technical
debt design or implementation
expedient short
term

future change more costly

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt in Software 5
Engineering (Dagstuhl Seminar 16162)
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First of all: What is Technical Debt?
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P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theoty

Yl

and Practice,” IEEE Software
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The TD landscape of kinds of TD

architecture
Architectural debt Low internal quality

Additio SEROANE 0o Code complexity Code smells
Test debt Coding style violations

Documentation debt

Technological gap

Evolution issues: evolvability

P. Kruchten, R. L. Nord, and |. Ozkaya, “Technical Debt: From Metaphor to The
and Practice,” IEEE Software -
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What is technical debt in practice?

@ TD includes internal quality issues, not external quality
e TD is not a bug!
@ External quality might be influenced by internal quality

e Example: it might be more difficult to fix a bug because of the
technical debt

. Affects is the Interest of
Includes Technical Debt

Technical Debt &

A
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ATD accumulation

So, what happens in the end?

® Research study in 7 organizations *

® The accumulation of Technical Debt leads to
development crises
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* Martini, A., Bosch, J., Chaudron, M., 2015. “Investigating Architectural Technical Debt Accumulz
Refactoring over Time: a Multiple-Case Study,” Information and Software Technology.
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How much iIs the interest?

® 269 respondents in 15 organizations

® 40 developers tracked over 3 months
e Estimated Interest (waste) of TD

30% waste

e Estimated Cost of TD management

295% waste

ICSME 2017, Shanghai, China. Antonio Martini - PhD in Software Engineering



But TD can be useful in some
cases

® When high business risk is involved
e E.g. startups
o High chances of failing
o Need to save capital
o They need technical debt in the beginning!*
o But they need to remove it before they grow

® Prototyping

e Helps understanding if something is feasible

o Problem: prototypes should not end up in
production code

%\
* T. Besker, A. Martini, R. Edirisooriya Lokuge, K. Blincoe and J. Bosch, "Embracing Technical Debt, from a Startup Con e?--g‘w» 7
Perspective," 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME), Madrid, 2018 \"\¢
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You cannot avoid TD...

@ But TD needs to be managed

® The most risky (with more interest)
Issues need to be fixed (first)

@ Prioritization is key
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Managing Technical Debt
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ldentification

® How do we know if we have technical
debt?

® The concept of (code) “smell”

e a code smell is any characteristic in the source
code of a program that possibly indicates a
deeper problem *

® How do we find code smells?

Tufano, Michele; Palomba, Fabio; Bavota, Gabriele; Oliveto, Rocco; Di Penta, Massimiliano; De Lucia, Andrea; Poshyvanyk
Denys "When and Why Your Code Starts to Smell Bad" 37th IEEE International Conference on Software EngineerinZ
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ldentification of different kinds of TD

architecture
Architectural debt Low internal quality

Structural debt Code complexity Cots daian

Testd Coding style violations

montatinn daht

Technological gap

Quality issues: mair ‘ainability

Manual or
Invisible

Antonio Martini - PhD in Software Engineering



Static code analyzers (e.g. SonarQube)

A
1K N 10
& Code Smells New Debt & New Code Smells

Code Smells

Coverage
77.9% 82.1%
Coverage on
Coverage 2.8K New Lines to Cover
Duplications

0.3% 36 0.0%

Duplications on
Duplications Duplicated Blocks 5.5K New Lines




Architectural smells (e.g. Arcan)

50% increment
awareness of
Architectural Debt

* Martini, Antonio; Arcelli Fontana, Francesca; Biaggi, Andrea & Roveda, Riccardo (2018). Identifying and
Prioritizing Architectural Debt Through Architectural Smells, ECSA 2018

Antonio Martini - PhD in Software Engineering




Refactoring

® restructure (the source code of an

appl/cat/on or piece of software) so as to
Improve operation without altering

functionality
(Oxford dictionary)

@ It's a reactive approach

e Agile mostly advocate it to compensate when
avoiding “big upfront”

e Most of the time overlooked
e Large refactorings
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Maintainability and complexity

® Complex files need to be decreased and encapsulated

Encapsulated complexit

. refactoring?
Complex files

often changed Component

l Interest paid I | Interest NOT paid '
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How do large companies manage TD?

® Companies manage TD with different
levels of maturity*

* Martini, Besker, Bosch: “Introducing Technical Debt Tracking in Large Software Comp &5 @) \z
accepted at APSEC 2016 and in press
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Level O - Unaware
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® Thereis no

awareness of
TD in the

organization




Level 1 - No Tracking

® We know what TD
IS. ..

® ...but we dont do
much in our
organization...
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Level 2 - Ad-hoc tracking

® No budget
allocated

. @ Driven by
individual initiative

® Use of “improper”
tools
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Level 3 - Systematic tracking
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®©

@ Budget allocated

to TD
management

® TD-specific

documentation

Iterative process
to monitor TD
ISsues

. © Continuous TD

process
iImprovement.. .




Level 4 - Measured

Total public debt v

Higher debt NN

I Lower debt
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Use of automated
TD identification
tools

Use of automated
Indicators to
measure the
interest of TD

Integration of
several
measurements




Level 5 - Institutionalized

® Process
standardized across
the organization

® Spread to the whole
organization

® Used for lifecycle
planning

® Prioritization done

among different
kinds of TD
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Level 6 - Fully automated
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Automated data-
driven decisions

statistical data
from the history of
the system

assessment with
existing
benchmarks

(Still a research




Goal about Technical Debt Tracking*

ully automated
-
Vleasured
Systematic

No tracking

|

* Martini, Antonio; Besker, Terese & Bosch, Jan (2018). Technical Debt tracking: Current state of practice: A survey
and multiple case study in 15 large organizations. Science of Computer Programming.
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Agile Technical Debt management
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Proactive approaches

- Education

- Culture

- Organization
- Process

- Guidelines

- Visualization
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Continuous approaches

- Semi-automatic ldentification
- Code Reviews

- Retrospectives

- Technical leadership

- Dedicated refactoring sprints and % of
time
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Reactive approaches

- Impact Map

- Roadmap evaluation

- Resources to remove TD
- Business case

- TD information used in planning and
budget

- Agile: Refactoring
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Proactive, continuous or reactive...?

® We need all of them!

® Systematically managing TD means
keeping an eye on different aspects
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Climbing the TD management
maturity ladder

Awareness
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Assessing TD management*

® Management maturity
® Alignment across different roles

Maturity Management Misalignment Management -
Technical

» Awareness

Process Education

Organization
Organization

* A. Martini, T. Besker, T. Posch and J. Bosch, "TD Pulse: Assessing the Systematic Management of Technical Debt," in |
Software, vol. 40, no. 3, pp. 54-62, May-June 2023
Antonio Martini - PhD in Software Engineering



