Antonio Martini
Professor in Software Engineering

University of Oslo

Course IN5140
2023-09-27

MANAGING TECHNICAL
DEBT

Antonio Martini - PhD in Software Engineering



Agenda

® Recap

e What is Technical Debt?
e Why and how do we manage Technical Debt?

® Managing Technical Debt in Agile
e Several aspects

® Managing Technical Debt
e Guest lecture from Visma (Mili)

® Managing Security Debt

e Guest lecture from Visma (Maren)

Antonio Martini - PhD in Software Engineering




Recap

Technical Debt

Antonio Martini - PhD in Software Engineering



What the users see

Antonio Martini - Professor in Software Engineering



What the developers see

Antonio Martini - Professor in Software Engineering



Technical Debt in a nutshell

McMeel

NO, T™M STILL
- 2 I DONE WELL,
PAYING OFF THE Z KNOW THAT

TECHNICAL DEBT WHAT EXPLAINS
FROM THE LAST THAT ALOT
PROGRAMMER YOU '
RUSHED.

DID YOU FINISH
THE SOFTWARE

Andre

g
>
®
w
@
E
@
©
£
Q
3]
w
®

Inc, /Dist. by

Dilbert.com

3-17 © 2017 Scott Adams,

Antonio Martini — Professor in Software Engineering



Current Definition

® technical
debt design or implementation
expedient short
term

future change more costly

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt in Software 5
Engineering (Dagstuhl Seminar 16162)

Antonio Martini - PhD in Software Engineering




First of all: What is Technical Debt?

Visible

Architectural,
Structural

features
—

s .
Technical
Value Debt Expensivel!

Positive
Value

A7)

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theoty

Yl

and Practice,” IEEE Software

Antonio Martini - PhD student in Software Engineering



The TD landscape of kinds of TD

architecture
Architectural debt Low internal quality

Additio SEROANE 0o Code complexity Code smells
Test debt Coding style violations

Documentation debt

Technological gap

Evolution issues: evolvability

P. Kruchten, R. L. Nord, and |. Ozkaya, “Technical Debt: From Metaphor to The
and Practice,” IEEE Software -

Antonio Martini - PhD in Software Engineering



What is technical debt in practice?

@ TD includes internal quality issues, not external quality
e TD is not a bug!
@ External quality might be influenced by internal quality

e Example: it might be more difficult to fix a bug because of the
technical debt

. Affects is the Interest of
Includes Technical Debt

Technical Debt &

A

Antonio Martini - PhD in Software Engineering




ATD accumulation

So, what happens in the end?

® Research study in 7 organizations *

® The accumulation of Technical Debt leads to
development crises

yo)
N 77
~ ~ OO'(/
\\ | \\ O[(/V
~ S 4
~ < | ~ ~
~ ~ | S ~
N | ~
/0/. DS <
o% ~ I
R I
1% ~ !
S ~
| ~ y /
Time

* Martini, A., Bosch, J., Chaudron, M., 2015. “Investigating Architectural Technical Debt Accumulz
Refactoring over Time: a Multiple-Case Study,” Information and Software Technology.

Antonio Martini - PhD in Software Engineering




How much iIs the interest?

® 269 respondents in 15 organizations

® 40 developers tracked over 3 months
e Estimated Interest (waste) of TD

30% waste

e Estimated Cost of TD management

295% waste

ICSME 2017, Shanghai, China. Antonio Martini - PhD in Software Engineering



But TD can be useful in some
cases

® When high business risk is involved
e E.g. startups
o High chances of failing
o Need to save capital
o They need technical debt in the beginning!*
o But they need to remove it before they grow

® Prototyping

e Helps understanding if something is feasible

o Problem: prototypes should not end up in
production code

%\
* T. Besker, A. Martini, R. Edirisooriya Lokuge, K. Blincoe and J. Bosch, "Embracing Technical Debt, from a Startup Con e?--g‘w» 7
Perspective," 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME), Madrid, 2018 \"\¢

Antonio Martini — Professor in Software Engineering



You cannot avoid TD...

@ But TD needs to be managed

® The most risky (with more interest)
Issues need to be fixed (first)

@ Prioritization is key

Antonio Martini — Professor in Software Engineering




Managing Technical Debt

Antonio Martini - PhD in Software Engineering



ldentification

® How do we know if we have technical
debt?

® The concept of (code) “smell”

e a code smell is any characteristic in the source
code of a program that possibly indicates a
deeper problem *

® How do we find code smells?

Tufano, Michele; Palomba, Fabio; Bavota, Gabriele; Oliveto, Rocco; Di Penta, Massimiliano; De Lucia, Andrea; Poshyvanyk
Denys "When and Why Your Code Starts to Smell Bad" 37th IEEE International Conference on Software EngineerinZ

Antonio Martini - PhD in Software Engineering



ldentification of different kinds of TD

architecture
Architectural debt Low internal quality

Structural debt Code complexity Cots daian

Testd Coding style violations

montatinn daht

Technological gap

Quality issues: mair ‘ainability

Manual or
Invisible

Antonio Martini - PhD in Software Engineering



Static code analyzers (e.g. SonarQube)

A
1K N 10
& Code Smells New Debt & New Code Smells

Code Smells

Coverage
77.9% 82.1%
Coverage on
Coverage 2.8K New Lines to Cover
Duplications

0.3% 36 0.0%

Duplications on
Duplications Duplicated Blocks 5.5K New Lines




Architectural smells (e.g. Arcan)

50% increment
awareness of
Architectural Debt

* Martini, Antonio; Arcelli Fontana, Francesca; Biaggi, Andrea & Roveda, Riccardo (2018). Identifying and
Prioritizing Architectural Debt Through Architectural Smells, ECSA 2018

Antonio Martini - PhD in Software Engineering




Refactoring

® restructure (the source code of an

appl/cat/on or piece of software) so as to
Improve operation without altering

functionality
(Oxford dictionary)

@ It's a reactive approach

e Agile mostly advocate it to compensate when
avoiding “big upfront”

e Most of the time overlooked
e Large refactorings

Antonio Martini - PhD in Software Engineering




Maintainability and complexity

® Complex files need to be decreased and encapsulated

Encapsulated complexit

. refactoring?
Complex files

often changed Component

l Interest paid I | Interest NOT paid '

Antonio Martini - PhD in Software Engineering



How do large companies manage TD?

® Companies manage TD with different
levels of maturity*

* Martini, Besker, Bosch: “Introducing Technical Debt Tracking in Large Software Comp &5 @) \z
accepted at APSEC 2016 and in press

Antonio Martini - PhD in Software Engineering




Level O - Unaware

Antonio Martini - PhD in Software Engineering

® Thereis no

awareness of
TD in the

organization




Level 1 - No Tracking

® We know what TD
IS. ..

® ...but we dont do
much in our
organization...

Antonio Martini - PhD in Software Engineering



Level 2 - Ad-hoc tracking

® No budget
allocated

. @ Driven by
individual initiative

® Use of “improper”
tools

Antonio Martini - PhD in Software Engineering



Level 3 - Systematic tracking

Antonio Martini - PhD in Software Engineering

®©

@ Budget allocated

to TD
management

® TD-specific

documentation

Iterative process
to monitor TD
ISsues

. © Continuous TD

process
iImprovement.. .




Level 4 - Measured

Total public debt v

Higher debt NN

I Lower debt

Antonio Martini - PhD in Software Engineering

Use of automated
TD identification
tools

Use of automated
Indicators to
measure the
interest of TD

Integration of
several
measurements




Level 5 - Institutionalized

® Process
standardized across
the organization

® Spread to the whole
organization

® Used for lifecycle
planning

® Prioritization done

among different
kinds of TD

Antonio Martini - PhD in Software Engineering



Level 6 - Fully automated

Antonio Martini - PhD in Software Engineering

Automated data-
driven decisions

statistical data
from the history of
the system

assessment with
existing
benchmarks

(Still a research




Goal about Technical Debt Tracking*

ully automated
-
Vleasured
Systematic

No tracking

|

* Martini, Antonio; Besker, Terese & Bosch, Jan (2018). Technical Debt tracking: Current state of practice: A survey
and multiple case study in 15 large organizations. Science of Computer Programming.

Antonio Martini - PhD in Software Engineering




Agile Technical Debt management

DAILY SCRUM
MEETINGS

SPRINT

POTENTIALLY SHIPPABLE
CYCLE

PRODUCT INCREMENT

PRODUCT SPRINT

BACKLOG BACKLOG

&

DAILY SCRUM
MEETINGS

POTENTIALLY SHIPPABLE
PRODUCT INCREMENT

’l’

PRODUCT

BACKLOG

Antonio Martini - PhD in Software Engineering



Proactive approaches

- Education

- Culture

- Organization
- Process

- Guidelines

- Visualization

Antonio Martini - PhD in Software Engineering



Continuous approaches

- Semi-automatic ldentification
- Code Reviews

- Retrospectives

- Technical leadership

- Dedicated refactoring sprints and % of
time

Antonio Martini - PhD in Software Engineering



Reactive approaches

- Impact Map

- Roadmap evaluation

- Resources to remove TD
- Business case

- TD information used in planning and
budget

- Agile: Refactoring

Antonio Martini - PhD in Software Engineering



Proactive, continuous or reactive...?

® We need all of them!

® Systematically managing TD means
keeping an eye on different aspects

Antonio Martini - PhD in Software Engineering



Climbing the TD management
maturity ladder

Awareness

Antonio Martini - PhD in Software Engineering



Assessing TD management*

® Management maturity
® Alignment across different roles

Maturity Management Misalignment Management -
Technical

» Awareness

Process Education

Organization
Organization

* A. Martini, T. Besker, T. Posch and J. Bosch, "TD Pulse: Assessing the Systematic Management of Technical Debt," in |
Software, vol. 40, no. 3, pp. 54-62, May-June 2023
Antonio Martini - PhD in Software Engineering



