
Antonio Martini

Professor of Software Engineering

University of Oslo

Course IN5140
2023-10-11

Antonio Martini - Professor of Software Engineering

Who is Antonio Martini?

Antonio Martini – Professor of Software Engineering

� Italian
� No kebab pizza! J
� 12 years in Scandinavia – survived many winters!

� Previously
� Worked as a Software Developer
� PhD in Software Engineering (Chalmers)
� Postdoc (Chalmers)
� Independent Consultant
� Advisory board on a startup (Skuld.ai)
� My own startup (AnaConDebt)
� Principal, Strategic Researcher at CA Technologies

� Currently:
� Professor at UiO

� Hobbies
� Board games, strategy computer games, pool, etc.
� Football, volleyball, beach volley, medieval fencing
� Piano, Drumset, etc.
� Travel!
� …and no time for them! J

Agenda
� Recap

� What is software architecture?
� How to think about architecture?

� Agile and Architecture
� A complicated relationship
� Current state of the art

� Agile Architecting
� Process
� Product
� Organization

� Agile and architects
� Industrial case study

� Summary

� We will use mentimeter during the lecture, participate!
� Check the following symbol during the lecture

Antonio Martini - Professor of Software Engineering

Antonio Martini - Professor of Software Engineering

First question, let’s try Menti

� What is software architecture?

Antonio Martini - Professor of Software Engineering

Software architecture is…

� All of the followings:

� Overall system structure

� The important stuff –
whatever that is

� Things that people perceive
as hard to change

� A set of architectural design
decisions

Antonio Martini - Professor of Software Engineering

Software Architecture characteristics

� Multitude of stakeholders

� Quality driven (tradeoff)

� Separation of concerns

� Recurring styles
(patterns)

� Conceptual integrity
(vision)

Antonio Martini - Professor of Software Engineering

Why software architecture?
� To get a grasp of a complex system
� Facilitates the communication among the

stakeholders about their needs
� Supports decisions about future development

and maintenance
� Reuse
� Budget

� Analysis of the product before it’s built
� Cost reduction
� Risk reduction

Antonio Martini - Professor of Software Engineering

You can’t ignore architecture
� All products HAVE an

architecture
� It can be bad
� It can be good

� In all projects we SHOULD
think about architecture
� Maybe less in small projects
� Maybe more in large projects

� Thinking about the
architecture is a necessary
(and smart) process

Antonio Martini - Professor of Software Engineering

Antonio Martini - Professor of Software Engineering

Business drives architecture

Antonio Martini - Professor of Software Engineering

Business goals

Architecture

A process to think about architecture

Antonio Martini - Professor of Software Engineering

Stakeholders analysis

Business goals

Qualities

Tradeoffs

Solution

Architectural Significant
requirements (concerns)

Who?

What do they need?

What should the system do?

What qualities are important?

What should we focus on?

How should we implement it?

System Qualities

Antonio Martini - Professor of Software Engineeringhttps://www.iso.org/standard/22749.html

System Qualities – All stakeholders

Antonio Martini - Professor of Software Engineering

System Qualities – Trade-off

Antonio Martini - Professor of Software Engineering

Tradeoff:
we need to
postpone
portability

Cost/benefits scenarios and
analysis (simplified example)

Benefit:
Users short-
term

Benefit:
User long-term

Cost Total

Solution
1

--
(vs competitor)

++
(both platforms)

-
(lack of visibility)

+
(cheaper in total)

0

Solution
2

++
(vs competitor)

+
(visibility)

-
(no users in one
platform)

-
(rewrite)

+1

Antonio Martini - Professor of Software Engineering

System Qualities – Trade-off

Antonio Martini - Professor of Software Engineering

Tradeoff:
we need to
postpone
portability

Architecture = Tradeoff
� It will never be perfect
� It’s all about doing the best tradeoff

� But what if the best tradeoff is a... moving
target?

Antonio Martini - Professor of Software Engineering

Antonio Martini - Professor of Software Engineering

Once upon a time it was Waterfall…

Antonio Martini - Professor of Software Engineering

Architecture

The enemy: Big Upfront Anything*

� Requirement engineering
� Should we do upfront requirement engineering?

○ Yes
� We need to understand what the users want
� We need to understand the domain and its constraints

○ No
� Too much documents and time spent are a waste
� Requirements change anyways

� There is a middle ground, we don’t have to be
extreme

Antonio Martini - Professor of Software Engineering

* Book Chapter 3 (up to 3.3 included)

Architecture in waterfall: 3 problems

� Upfront design
� assumes a “perfect” architecture is already known

� Is this advisable/possible/realistic?
� Problem 1: Arch. / Reqs. / Impl. first?

○ Some Architecture Reqs emerge from implementation*
○ The earlier the Arch decision, the more the probability that

is wrong because of lack of information**
� Problem 2: Architects are humans

○ Several bias: some decisions are not rational*
� Anchoring

- Let’s use microservices! Let’s design OO!
- First decisions have a strong effect on other decisions

Antonio Martini - Professor of Software Engineering

* Van Vliet, Tang: Decision making in software architecture, JSS, 2016
** Poort, van Vliet: Architecting as a Risk- and Cost Management Discipline

Problem 3: Focus on the Wrong Outcome

Antonio Martini - Professor of Software Engineering

Little delivered
value!

Substantial focus on the technical system

But the solution of problem 3 is not just
doing the opposite! You need a balance…

Antonio Martini - Professor of Software Engineering

Too much focus on
delivering short-term

value!

Little focus on the
technical system

…then the Agile revolution happened

Antonio Martini - Professor of Software Engineering

Spot what can affect architecture in
the agile manifesto
1. Our highest priority is to satisfy the customer through early and continuous delivery

of valuable software.
2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.
3. Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.
4. Business people and developers must work together daily throughout the project.
5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.
6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.
7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity--the art of maximizing the amount of work not done--is essential.
11. The best architectures, requirements, and designs emerge from self-organizing

teams.
12. At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly.
Antonio Martini - Professor of Software Engineering

Spot what can affect architecture
1. Our highest priority is to satisfy the customer through early and continuous delivery

of valuable software.
2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.
3. Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.
4. Business people and developers must work together daily throughout the project.
5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.
6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.
7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity--the art of maximizing the amount of work not done--is essential.
11. The best architectures, requirements, and designs emerge from self-organizing

teams.
12. At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly.
Antonio Martini - Professor of Software Engineering

Necessary but not sufficient

� The best architectures, requirements,
and designs emerge from self-
organizing teams

Antonio Martini - Professor of Software Engineering

Different architecture management in
different contexts…
� Small projects:

� 1 team can
○ understand few stakeholders
○ manage their concerns
○ handle complexity
○ grasp the overall view

� Large projects:
� Many teams need to coordinate on

○ understanding many stakeholders
○ tradeoff among many concerns
○ handle high complexity
○ share the same view

Antonio Martini - Professor of Software Engineering

Meanwhile, in practice…

Software coding

System & architecture
design

Requirements analysis

Module design

”The agile
loop”

Module
test

Product validation

System test

* Eklund, Olsson, Strøm - Industrial Challenges of Scaling Agile in Mass-Produced Embedded Systems, 2014

What about architecture?

Antonio Martini - Professor of Software Engineering

Software coding

System & architecture
design

Requirements analysis

Module design

”The agile
loop”

Module
test

Product validation

System test

Not in the
Agile loop!

* Eklund, Olsson, Strøm - Industrial Challenges of Scaling Agile in Mass-Produced Embedded Systems, 2014

Architecture in Agile?

� Not emphasized in Agile practices
� “Just enough architecture/design”

�But what does that mean?
�Are there studies?

Antonio Martini - Professor of Software Engineering

Antonio Martini - Professor of Software Engineering

Current studies
� Most of the papers are not

based on industrial
experience or evaluation

� Not much on “Continuous”
and “Agile”
� 1% Agile
� 11% SOA
� 37% Software Product Lines

○ require upfront design

Antonio Martini - Professor of Software Engineering

* Qureshi, Usman, Ikram: Evidence in Software Architecture, a Systematic Literature Review,

What do companies want? A
balanced approach*
� X = where they are now
� O = where they would like to be

Antonio Martini - Professor of Software Engineering

Company A

Company B

Company C

Upfr
on

t d
es

ign

Emerg
en

t d
es

ign

Bala
nc

ed
 App

roa
ch

T. Mårtensson, D. Ståhl, A. Martini and J. Bosch, "Continuous Architecture: Towards the Goldilocks Zone and Away from
Vicious Circles" 2019 IEEE International Conference on Software Architecture (ICSA) 2019

Why is it so difficult to balance the
right upfront design?

Antonio Martini - Professor of Software Engineering

* Waterman, Noble, Allan - How Much Up-Front? A Grounded Theory of Agile Architecture, ICSE, 2015

Why is it so difficult to balance the
right upfront design?

Antonio Martini - Professor of Software Engineering

* Waterman, Noble, Allan - How Much Up-Front? A Grounded Theory of Agile Architecture, ICSE, 2015

Conflict

Frameworks embed architectural
decisions and help agility
� "many of the architectural decisions are

embedded in the framework, and hence
architectural changes can be made with
a lot less effort"

� Examples:
� Apache Kafka – message streaming
� JUnit – Java unit testing framework
� Django – python web applications
� …

Antonio Martini - Professor of Software Engineering

Prioritizing architectural
significant concerns (backlog)
� Architecture is a risk- and cost

management activity*

� Significance depends on Risk (Decision)

� Risk:
� Prob (Failure) x Impact (Failure)

○ An example of impact is the necessity of re-
architecting because of a probable failure

Antonio Martini - Professor of Software Engineering

* Poort, van Vliet: Architecting as a Risk- and Cost Management Discipline

Example of risk
� Is it higher the riski to suffer from a flu or from malaria taking a

bus in Oslo?
� Disclaimer: numbers are just examples, they are not real
� Impact is represented as 1-5 (5 = worst)

� Malaria
� Prob (Malaria) = 0.0000001
� Impact (Malaria) = 4
� Risk = 0 x 4 = 0.0000004

� Flu
� Prob (Flu) = 0.6
� Impact (Flu) = 1
� Risk = 0.6 x 1 = 0.6

� When taking the subway in Oslo, one should be more worried to
get a flu than to get malaria
� 0.6 >> 0.0000004

Antonio Martini - Professor of Software Engineering

Architectural example (1)
� We build an app that supports other apps

� We need to develop
a gateway

� Architectural concern: scalability
� Significant?

� We don’t know how many
apps we will need to support
� Is it going to be 1 or 100?

� We might waste a lot of engineering effort
in planning a scalable gateway that is not used

� The risk of not being able to support apps (unhappy customers) has
� A high impact (4)
� A low probability at this stage (0.3)

� Result: at the moment the risk of this concern is low
� 0.3 (probability of failure) x 4 (high impact) = 1.2

Antonio Martini - Professor of Software Engineering

Our app

External
app 1

External
app 2 … External

app n

Gateway

Architectural example (2)

� The risk is low,
so the scalability
concern
is not significant

� We decide to develop the
gateway to support up
to 20 apps
� Architectural decision that costs less and

doesn’t address the scalability concern

Antonio Martini - Professor of Software Engineering

Our app

External
app 1

External
app 2 … External

app 20

Gateway

Architectural example (3)
� After some time, we receive new information: now more than 30

new apps want to
use our gateway

� What happens now?

� Now our solution will be certainly
wrong (failure)

� The risk is high
� 1 (prob of failure) x 4 (impact) = 4
� 4 >> 1.2 (previous risk)
� The concern is significant

� We need to re-architect as soon as possible to address the
scalability concern
� The more we wait the more re-architecting costs
� The more we wait the more customers could experience connectivity issues

Antonio Martini - Professor of Software Engineering

Our app

External
app 1

External
app 2 … External

app 50

Gateway

Other considerations *
� The probability of an architectural decision D to be wrong

decreases over time
� More information can become available

� At the same time, the probability of D to be wrong can increase
over time after we have
taken a decision
� More information can

become available from
implementation

� The impact of failure
increases over time after
we have taken a decision D
� If we need to change such

decision, it has a cost of
re-architecting

Antonio Martini - Professor of Software Engineering
* Poort, van Vliet: Architecting as a Risk- and Cost Management Discipline

So what should we do?

� Postponing architectural decisions can
increase the probability of being correct
� Only if possible and in case there is uncertainty

� More information can change our
perception of the risks
� Architectural decisions need to be monitored

and revisited

� Architectural Backlog should be
continuously re-prioritized based on risk
(and cost)

Antonio Martini - Professor of Software Engineering

Re-prioritize your architecture backlog

Antonio Martini - Professor of Software Engineering

Concern Rank

Portability 1

Maintainability 2

Performance 3

Scalability 4

… …

Continuous
Re-prioritization

Concern Rank

Scalability 1

Maintainability 2

Performance 3

Portability 4

… …

we need to
postpone
portability

Antonio Martini - Professor of Software Engineering

What is Agile Architecting?

� Architecting that supports Continuous
Delivery *

� Continuous Delivery is:
○ “Continuous Delivery is the ability to get

changes of all types—including new features,
configuration changes, bug fixes and
experiments—into production, or into the
hands of users, safely and quickly in a
sustainable way.”

Antonio Martini - Professor of Software Engineering

* Murat Erder, Pierre Pureur “Continuous Architecture”, Elsevier, 2015
* various blogs online, https://continuousdelivery.com/

https://continuousdelivery.com/

Agile Architecting: 3 dimensions

Antonio Martini - Professor of Software Engineering

Agile
Architecting

Agile Architecting *
(Process)

Agile Architects **
(Organization)

Agile Architecture *
(Product)

* Bellomo, Kruchten, Nord, Ozkaya: How to Agilely Architect an Agile Architecture
** A. Martini and J. Bosch, “A Multiple Case Study of Continuous Architecting in Large
Agile Companies: Current Gaps and the CAFFEA Framework,”

Product architecture needs support

Antonio Martini - Professor of Software Engineering

T. Mårtensson, D. Ståhl, A. Martini and J. Bosch, "Continuous Architecture: Towards the Goldilocks Zone and
Away from Vicious Circles" 2019 IEEE International Conference on Software Architecture (ICSA) 2019

Agile Architecting – Process*
� An Agile way to define an architecture, using an

iterative lifecycle, allowing the architectural design to
tactically evolve over time, as the problem and the
constraints are better understood

Antonio Martini - Professor of Software Engineering

* Bellomo, Kruchten,
Nord, Ozkaya: How to
Agilely Architect an
Agile Architecture

Continuous
Re-prioritization

Agile Architecting – Product*

� Product Architecture enables Agility
� Layered architecture
� Service Oriented Architecture

○ Microservices
� Frameworks
� Other tactics*

Antonio Martini - Professor of Software Engineering

* Bellomo, Kruchten, Nord, Ozkaya: How to Agilely Architect an Agile Architecture

Organization: who is in charge of the
overall design?

Antonio Martini - Professor of Software Engineering

Antonio Martini - Professor of Software Engineering

* A. Martini and J. Bosch, “A Multiple Case Study of Continuous Architecting in Large Agile
Companies: Current Gaps and the CAFFEA Framework”, Working International Conference on
Software Architecture, 2016, Venice, Italy

Literature

Research Design – gaps and framework

Antonio Martini - Professor of Software Engineering
* P. Kruchten, “What do software architects really do?” Journal of Systems and Software, Dec. 2008

literature review

“What do software
architects really do?” *

Literature

Research Design – Gaps and Solution

Antonio Martini - Professor of Software Engineering
* P. Kruchten, “What do software architects really do?” Journal of Systems and Software, Dec. 2008

literature review

“What do software
architects really do?” *

Architecture
Activities

Architecture activity examples

Antonio Martini - Professor of Software Engineering

Sub-Activities Meaning
Architect Examines concerns and context in order to compe up with

architectureally significant requirements.
Integrate Integrates software engineering and knowledge engineering

tools and repositories into the development process.
Share Shares the AK with implementers to facilitate their

understanding.
Trace Creates necessary links (fwd., bwd., formal, informal)

between reasoning-, design-, genera-, and context
knowledge.

Synthesize Extends or modifies the design knowlede through creation of
detailed design for the architecture.

Distill Examines design to turn patterns therein into general
knowledge for future reuse.

Apply Uses existing solutions, patterns, templates (general
knowledge) to solve problems at hand.

Activity: Architecture Knowledge Production

ContextLiterature

Research Design – Gaps and Solution

Antonio Martini - Professor of Software Engineering
* P. Kruchten, “What do software architects really do?” Journal of Systems and Software, Dec. 2008

Roles

PO

CA

GA

PM

TA

Chief Arch.
Governance Arch.

Team Arch.
Product Manager

Product Owner

literature review

“What do software
architects really do?” *

Architecture
Activities

Mapping

Activity Meaning
Architect Examines concerns and context in order to compe up with

architectureally significant requirements.
Integrate Integrates software engineering and knowledge engineering

tools and repositories into the development process.
Share Shares the AK with implementers to facilitate their

understanding.
Trace Creates necessary links (fwd., bwd., formal, informal) between

reasoning-, design-, genera-, and context knowledge.
Synthesize Extends or modifies the design knowlede through creation of

detailed design for the architecture.
Distill Examines design to turn patterns therein into general

knowledge for future reuse.
Apply Uses existing solutions, patterns, templates (general

knowledge) to solve problems at hand.

Interactive mapping in 5 companies
� Who is responsible now?
� Is this activity missing?
� Who should do it?

Antonio Martini - Professor of Software Engineering

Relationship

Gap

ContextLiterature

Gaps and Solution

Antonio Martini - Professor of Software Engineering
* P. Kruchten, “What do software architects really do?” Journal of Systems and Software, Dec. 2008

Roles

PO

CA

GA

PM

TA

Chief Arch.
Governance Arch.

Team Arch.
Product Manager

Product Owner

literature review

“What do software
architects really do?” *

Gaps:

Activities
Roles

Architecture
Activities

Mapping

Relationships

ContextLiterature

Gaps and Solution

Antonio Martini - Professor of Software Engineering
* P. Kruchten, “What do software architects really do?” Journal of Systems and Software, Dec. 2008

Roles

PO

CA

GA

PM

TA

Chief Arch.
Governance Arch.

Team Arch.
Product Manager

Product Owner

literature review

“What do software
architects really do?” *

Gaps:

Activities
Roles

Architecture
Activities

Mapping

Solution:

CAFFEA
Roles
Teams

Relationships

Antonio Martini - Professor of Software Engineering

Did it work? – First Evaluation

Gaps:

Activities
Roles

Framework:

CAFFEA
Roles
Teams

Evaluation Survey

Suitable?
Clarifications

Antonio Martini - Professor of Software Engineering

Did it work? – Empirical Evaluation

Gaps:
Activities

Roles

CAFFEA
Gaps:

Activities
Roles

1 year

4. Comparison

1. Status
Interviews

2. Implementation
3. Evaluation

Interviews

Changes?
Benefits?

Antonio Martini - Professor of Software Engineering

� Risk management

� Architectural decisions and
changes

� Providing architectural
knowledge

� Monitor the current status of
the system

Antonio Martini - Professor of Software Engineering

Findings: challenges in activities
Short-term or

long-term value
delivery?

What is worth
changing in our
architecture?

What qualities
are really

important?

How much
technical debt do

we have?

� Missing activities (and needed!) due to:
� Roles not present in the organization
� Roles overloaded with activities
� Roles not aware of the need for the activities

� Needed roles:

� Chief Architect

� Governance Architect

� Team Architect
Antonio Martini - Professor of Software Engineering

Findings: roles in CAFFEA

TA

GA

CA

Findings: Teams in CAFFEA
� Risk management
� Architectural decisions and changes
� Providing architectural knowledge
� Monitor the current status

of the system

Antonio Martini - Professor of Software Engineering

Careful, we
have

Technical
Debt!

Careful, we
have

Technical
Debt!

� Risk management
� Architectural decisions and changes
� Providing architectural knowledge
� Monitor the current status

of the system

Antonio Martini - Professor of Software Engineering

Careful, we
have

Technical
Debt!

What to do next?
Refactoring or

features?

Careful, we
have

Technical
Debt! Governance Team

Findings: Teams in CAFFEA

� Risk management
� Architectural decisions and changes
� Providing architectural knowledge
� Monitor the current status

of the system

Antonio Martini - Professor of Software Engineering

Careful, we
have

Technical
Debt!

What to do next?
Refactoring or

features?

Careful, we
have

Technical
Debt!

What do we really
need to refactor?

Governance Team Architecture Team

Findings: Teams in CAFFEA

� A feature team dynamically appointed when
the architecture needs improvement

Antonio Martini - Professor of Software Engineering

Findings: Runway Team in CAFFEA

We need
Refactoring of
architecture!

Governance Team

Runway Team

Antonio Martini - Professor of Software Engineering

Legend

AT1

...

FT1 d d t TA

FTm+1d d t

...

...

TA

GA

GA

CA

...

FTm d d t TA...

FTl d d t TA...

... ...

AT2

d d t

d d ta

...

RT1

RTn

...

...

TA

TA

d d t

d d ta

...

RTn+1

RTk

...

...

TA

TA

GT1

GT3

GT2

...

FT1 d d t TA

FTm+1 d d t

...

d d t

d d ta

...

RT1

RTn

... ...

...

TA

TA

TA

GA

GA

CA

...

FTm d d t TA...

FTl d d t TA...
... ...

d d t

d d ta

...

RTn+1

RTk

...

...

TA

TA

PO

PO

PM

Architecture Teams Governance Teams

TA – team architect
GA – governance
architect
CA – chief architect FT – feature team

RT – runway team

PM – Prod. Manager
PO – Product Owner

d – designer
t – tester

AT – Architecture Team
GT – Governance Team

Bi-directional
communication

Prioritization through
backlogs

Overall CAFFEA framework

* A. Martini and J. Bosch, “A Multiple Case Study of Continuous Architecting in Large Agile
Companies: Current Gaps and the CAFFEA Framework”, Working International Conference on
Software Architecture, 2016, Venice, Italy

Antonio Martini - Professor of Software Engineering

Improvement in risk management

� Architectural Technical Debt discovered
and managed
� Architecture Team

� Long-term perspective
� Governance Team
� Allocation of Runway Team

Antonio Martini - Professor of Software Engineering

Improvement in managing decisions

� Informal tracking of decisions during
meetings

� Conflicts discovered and solved
� Between architects related to different teams

and different views
� Follow up on “bad” decisions

Antonio Martini - Professor of Software Engineering

Improved communication

� Necessary inter-team socio-technical
communication facilitated
� Architecture Team as opportunity to share

○ Improvements
○ Needs

� Better communication about the current
status of the system

� Enforcement and capillary distribution of
Architectural Knowledge

Antonio Martini - Professor of Software Engineering

Other improvements

� The formalized framework in place
provided:
� Clear knowledge references
� Clear architecture responsibilities
� Architecture activities not overlooked

Antonio Martini - Professor of Software Engineering

Summary

Antonio Martini - Professor of Software Engineering

Architectural decisions and changes

Risk management

Providing architectural knowledge

Monitor the current status of the system

Agile Changes in

Lack of focus

Practices

Organization

Architecture

Gaps in Architecture PracticesCAFFEA Framework

Roles

Teams

Responsibilities

Improves

Compliant

Antonio Martini - Professor of Software Engineering

Summary

Antonio Martini - Professor of Software Engineering

• Continuously re-prioritize
architectural concerns

according to risks
• Use frameworks

Communication among roles
and stakeholders is key

Agile

Ar
ch

ite
ct

ur
e

Upfr
on

t

Emerg
en

t

Bala
nc

ed
Agile

Architecting

Process

Organization

Product

Don’t underestimate architecture
(and architects)...

Antonio Martini - Professor of Software Engineering

Antonio Martini - Professor of Software Engineering

� antonio.martini@ifi.uio.no

Questions?
Comments?

mailto:antonio.martini@ifi.uio.no

