
Faculty of Mathematics and Natural Sciences

Department of Informatics

Agile teams – roles,
practices, challenges
and success factors
IN5140
Marthe Nordengen Berntzen

06.09.2023

What I do
• Research topic: Coordination in large-scale agile software
development

• Fieldwork in a software dev. company in Oslo

• Write papers

• Present work at conferences and workshops

• Teaching and other department work

• Visiting researcher at Monash University in Melbourne

- Ph.D. In Software Engineering

- Msc in Leadership and Organizational
Psychology

-Industry experience in IT consulting

-Worked with research before Ph.D.

marthenb@ifi.uio.no

linkedin.com/in/martheberntzen/

About me

1) What is agile software development?

2) Agile teams
• Agile team roles
• The cross-functional agile team

3) Agile teamwork practices

4) Challenges with agile teamwork

Page 3

Topics covered in this lecture:

Relationship to other lectures and the book

• Related to the coming lectures on Lean and Agile, and Large-Scale Agile.

• This lecture will cover teamwork in agile (and a little bit of large-scale agile)
• Typical practices and activities
• Both within and across teams (inter-team)

• Curriculum: Lecture slides, book chapters 5 and 6, and 7

Page 4

Page 5

What is agile software development?

Discuss with your
neighbour:

07.09.2023 6

Have you worked in an agile
team before?

What did you do? What was
your role?

What did you think about it?
Why?

1. What is Agile software development?

•The word means “able to move quickly and
easily”

•The agile manifesto and agile principles
was put together 20 years ago

http://agilemanifesto.org/
http://agilemanifesto.org/principles.html

Page 8

What is agile software development?

• There are many ways of developing
software, and agile is one of them.

• Focus on creating small pieces of
software at the time (incremental),
repeating the process many times
(iterative) in development sprints.
• A pre-defined period of time during

which development tasks are
completed.

• Typically lasting a few weeks to a
month

There are many different approaches to agile, all with
similar underlying ideas, values and principles

• Agile methodologies

• Agile methods

• Agile processes

• Agile practices

• Agile principles

• Agile teams

• Agile organizations

• Agile transformations

• AGILE MINDSET

As software developers, we value

Individuals and interactions over processes and tools
d

Working software over comprehensive documentation
d

Customer collaboration over contract negotiation
d

Responding to change over following a plan
While there is value in the items on

the right, we value the items on the left more.

Page 10

The agile manifesto

The 12 agile
principles

1. Our highest priority is to satisfy the
customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late
in development. Agile processes harness
change for the customer's competitive
advantage.

3. Deliver working software frequently, from
a couple of weeks to a couple of months, with
a preference to the shorter timescale.

Page 11

The 12 agile
principles

4. Business people and developers must
work together daily throughout the project.

5. Build projects around motivated
individuals. Give them the environment
and support their needs, and trust them to
get the job done.

6. The most efficient and effective method
of conveying information to and within a
development team is face-to-face
conversation.

Page 12

The 12 agile
principles

7. Working software is the primary
measure of progress.

8. Agile processes promote sustainable
development. The sponsors,
developers, and users should be
able to maintain a constant pace
indefinitely.

9. Continuous attention to technical
excellence and good design enhances
agility.

Page 13

The 12 agile
principles

10. Simplicity--the art of maximizing the
amount of work not done--is
essential.

11. The best architectures, requirements,
and designs emerge from self-
organizing teams.

12. At regular intervals, the team reflects
on how to become more effective,
then tunes and adjusts
its behavior accordingly.

Page 14

2. Agile Roles

Agile roles (chapter 5)

Page 16

The self-
organizing

team
Manager Product

Owner

Members
and

observers
The

customer
Agile coach/

Scrum
Master

Why is the team so important in agile?

Most software systems and
products are developed by
groups of people who need to
interact to deliver the product

Agile principle #11:
 «The best architectures,
requirements and designs emerge
from self-organizing teams»

Two types of software development teams

https://www.slideshare.net/LelandNewsom/feb17-feature-vscomponentteams

Specialized teams (component teams)

•Focus one component, one part of the
overall product, or one part of the
development process

•The team members are all specialized in this
part of the system

•For example:
• Backend team
• Front-end team
• Test team

•Understand their own component well, but
may lack overall system understanding

Cross-functional teams (feature teams)

The ideal of agile teams
•Build features of the final product

•Team members not committed to one
specialist area (i.e., they are full-stack)

•Ideally, any developer can work on any task
•Should work together for a longer time period
(preferably co-located)

•Typically, 7 ± 2 people

The quality of teamwork influence:

1) The quality of the software product (e.g.,
Functionality, robustness, reliability, and
performance)

2) The quality of the software project (time
and cost)

3) Team member satisfaction and learning

Agile teamwork practices help address
these quality aspects in different ways

Agile roles: The manager

The agile manager does NOT

•Assign tasks

•Decide what functions and features to
implement

•Direct the work of teams or team
members

•Request status reports through
meetings or documentation

Instead, the agile manager

•Establish a good
working environment

229/7/23

•Ensure a smooth
interaction with the
rest of the organization
(that may not be doing agile)

•Handle resources, suppliers and
outsourcing partners etc.

• So that the team can focus on
getting their work done

Agile roles: The Product Owner
The core tasks of the role:

•Define and maintain the product backlog
(the list of features to be developed)

• What to be made, not how to make
it. The “how” is decided by the team.

•Involved at the start and end of the sprint

Product Owners do a lot more!

•In large-scale projects, they are often
responsible for coordination and
prioritization of features across teams
(Berntzen, Moe & Stray, 2019)

•They must handle conflicting business
needs, groom and prioritize
requirements, act as release master,
risk assessor, governor, technical
architect… and more! (Bass & Haxby,
2019)

239/7/23

• Select user
stories from the
backlog

• Evaluate the
results of the
sprint

Agile roles: Members and observers
Members

•Fully committed to the project

•The success of the project is critical to
them

•Contributes actively during meetings

•Are part of making decisions

•For example, team members, product
owners, customer (sometimes)

Observers

•Involved, but from
the sideline

249/7/23

•Follow the discussions during meetings
but does not typically contribute

•Can give their opinion if invited
•But have no say on the actual project
decisions

•For example, other managers in the
organization

Agile roles: The customer
•Customer interaction is a key agile value

•Ensure that the customer get the product
they actually want

•Changing requirements is communicated
early and effectively

•In some agile approaches, the team
should include an actual, on-site,
customer representative

•Other approaches cover this idea
through the product owner roles as a
customer representative

• In practice, perhaps not
considered an actual
part of the team, but the
principle remains

259/7/23

Agile roles: Agile coach or scrum master

•Agile methods needs ongoing facilitation and
adjustment

•The central task is to remove impediments
and distractions for the team

•It is recommended to have a specific role for
this

• “Scrum master” comes from the Scrum
methodology

• “Agile coach” comes from the Extreme
Programming methodology

• In practice many teams have a
team leader, who may or may
not be a Scrum Master!

• Many companies have a
separate agile coach that works
at the organizational level

269/7/23

Discuss with your
neighbour:

07.09.2023 27

Are these the only possible
roles in a development team?

What other roles could be part
of the team?

Other possible roles in development projects
•Project manager

•Business analyst

•Team leader

•«Tech lead»

•Architects

•Testers

•Designers

•Data engineers and data scientists

…and probably more

Additional roles can be challenging

Challenges may include

• Part-time vs. fulltime roles

• Differences in competence

• Differences in mindset
• Different prioritizations

Some solutions

• Good communication practices and
regular team sessions (e.g.,
retrospectives)

• Create a team working agreement

• Make it a habit to learn about good
teamwork!

Page 29

3. Agile team Development Practices (chapters 6 and 7)

• Agile software development is
governed by social rules and
practices

• That is, the expectations of
certain behaviors in certain
contexts, in this case software
development, and the
associated activities and
behaviors

The expectations and behaviors
may stem from:
• The agile principles
• Team culture

• Company culture

• Company rules and regulations
• Experiences from previous teamwork

• Industry best practices
 …and much more

Page 30

The most popular agile organizational practices

Digital.ai, (2020) “14th Annual State of Agile Report” https://digital.ai/catalyst-blog/the-14th-annual-state-of-agile-report/ Page 31

Some of the most popular software development practices

Organizational practices (Chapter 6)

1. Development sprints

2. Daily meetings

3. Retrospective meetings
4. Documentation writing

Technical practices

5. Continuous integration

6. Test-driven development

7. Refactoring
8. Pair programming

Page 32

Organizational practices: Development sprints
What it is: A pre-defined period of time during which development tasks are completed. Typically lasting a few
weeks to a month, the purpose is to advance the development process incrementally in short cycles.

Sprints are started by planning meetings and concluded by sprint review meetings and retrospective meetings.

How it should be done:
•Before each new sprint, the team agrees
upon which tasks to solve and how long it
will take to solve them

• Using estimation techniques such as
planning poker

•“The closed-window rule”: No changes,
additions or removal, are to be made
during the sprint

In practice:

• It can be hard to say no to urgent incoming
tasks from clients (Berntzen et al., 2021).

• Estimation is hard, and it is common to take on
too many tasks during sprints (Jørgensen,
2014)

Page 33

Organizational practices: Daily meetings
What it is: A short status meeting where team members share what they work on.

Also known as the daily stand-up meeting or daily scrum.

How it should be done:
•The meeting is to be held every morning

•Face-to-face

•15 minutes only

•Everyone must be standing up

•No problem-solving or discussion

•Everyone answer “the three questions”
only

In practice:

• Teams should (and do) adapt the daily meeting to
meet their specific needs

• Time zone differences
• Flexible work schedules and work locations
• Team size (a large team may need more time)

• For example, having the meeting just before lunch
and focus only on the questions “what will I do” and
“what impediments” may be more efficient (Stray et
al. 2016).

Page 34

Organizational practices: Retrospective meetings
What it is: A meeting held at the end of a sprint or a project where team members share thoughts on the
development process and the teamwork. Directly connected to the 12th agile principle: At regular intervals, the
team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.

How it should be done:
•The team reviews “what went well”, and
“what went less well” and create action
points for the next sprint

•Everyone share their opinions on equal
terms – typically by using post-its

•The meeting should be long enough for a
proper discussion (but not too long)

In practice:

• It can be hard to get everyone to contribute
• People have to feel safe to share

(Andriyani et al., 2017)

• The meeting can often be too short*

• It is challenging for the facilitator to manage the
time well, especially if some points cause a lot
of discussion*

*Own observations of 14 retrospective meetings during 2018-2020
Page 35

Organizational practices: Writing documentation
What it is: Software process documentation refers to information that describes the product and how it has been
developed. For example, product requirement and feature descriptions, technical manuals, tutorials and how-to-
guides, templates and so forth.

How it should be done:
•The second point in the agile manifesto
states that software developers should
value “working software over
comprehensive documentation”

• This has often been interpreted as
“writing documentation is not
important”, and even that
documentation is not needed in agile
projects.

In practice:

• Many developers find documentation
important, and that too little documentation was
available (Stettina & Heijstek, 2011)

• Technical documentation was often consulted
more often for information and less for
maintenance purposes (Garousi et al., 2015)

• Abandoning documentation was not desirable
when implementing agile methods (Hummel et
al., 2015)

Page 36

Page 37

The most popular technical practices

Digital.ai, (2020) “14th Annual State of Agile Report” https://digital.ai/catalyst-blog/the-14th-annual-state-of-agile-report/

Some of the most popular technical development practices

Organizational practices

1. Daily meetings

2. Development sprints

3. Retrospective meetings
4. Documentation writing

Technical practices (chapter 7)

5. Continuous integration

6. Pair programming

7. Test-driven development
8. Refactoring

Page 38

Technical practices: Continuous integration/deployment (CI/CD)
What it is: Rather than waiting until the end of the sprint/project before putting “everything” together, continuous
integration refers to frequently committing changes, assembling and testing code. Continuous deployment
involves releasing the code into production.

How it should be done:
• Principle no 3: “Deliver working
software frequently, from a couple of
weeks to a couple of months, with
a preference to the shorter timescale.”

• Integration cycles has increasingly gone
shorter

• Microsoft’s daily builds
• XP: “integrate changes after no more

than a couple of hours”

In practice:

• CI is generally considered to increase
productivity and efficiency

• But can also bring technical and organizational
challenges such as increased complexity in the
development environment

• CI is associated with increased confidence in
the software quality, sometimes even a false
sense of confidence (Soares et al., 2022)

Page 39

Technical practices: Pair programming
What it is: When two developers work together in real-time at the same workstation, ideally co-located, with one
person writing the code (driver) and the other reviewing (navigator).

How it should be done:
• Pair programming is a co-located practice

• “write all programs with two people
sitting at one machine” (Beck, 2003)

• “cover your mouth when you cough”(!)

• encouraged

In practice

• Pair-programming works well in WFH and
hybrid work (Smite et al., 2021, Tkalich et al., 2023)

• Many developers prefer to work with the same
people most of the time (Tkalich et al., 2023)

• Do not use it as a mentoring activity!
• Many developers prefer a partner who

have complementary skills to their own,
(Begel & Nagappan, 2008)

Page 40

• Changing roles
and changing
pairs is
encouraged

Technical practices: Test-Driven Development (TDD)
What it is: An approach to software development where tests are always written before the actual code. TDD
can be considered a software development method in itself.

How it should be done:
1. Quickly add a test

2. Run all tests and see the new one fail.

3. Make a little change.

4. Run all tests and see them all succeed

5. Refactor to remove duplication (Beck,
2003)

In practice

• Very few development projects apply TDD in
this original form

• The test-first principle has become widespread

• Practical challenges with TDD include
• Difficulties with adopting the mindset
• Lack of knowledge and experience with

this way of working
• Tests are written to be passed rather than

actively finding issues (Staegemann et al.,
2022)

Page 41

Technical practices: Refactoring
What it is: The process of restructuring code with the goal of improving the internal quality without changing the
code’s functionality.

How it should be done:
•Refactoring is only about improving the
quality of the architecture

•Refactoring should “make the design
simpler”

• No duplication of code
• As few classes and methods as

possible

•Refactoring should be done in small,
incremental steps

In practice:

• Over time, technical debt is likely accumulate,
and a “Big refactoring” may be needed to fix it

• The cost of managing technical debt, including
refactoring, in large software organizations is
estimated to be, on average, 25% of the whole
development time (Martini et al., 2018)

• Refactoring is increasingly being automated
(Baquais & Alshayeb, 2020)

Page 42

Discuss with your
neighbour:

07.09.2023 43

What do you think can be
challenging about working in an
an agile development team?

Page 44

4. Challenges with agile teamwork

Moe, N. B., Stray, V., & Hoda, R. (2019).

Hybrid work arrangements?

For example

Different work location

Different work schedule

Inter-team challenges

•Very few real-life agile teams work in
isolation. They are part of larger
development projects or organizations
with many teams (Large-scale agile)

•All the above (and many other!)
challenges re-appear between teams!

•Above all: Coordination challenges

COORDINATION

Coordination challenges between teams

We found four types of challenges:
1) Teams work with different agile

methods and different routines
2) Having overview across teams
3) Prioritizing tasks and clients

across teams
4) Managing technical

dependencies between teams

Berntzen, M., Stray, V., & Moe, N. B. (2021).

1) Teams work with different agile methods and
different routines

Some solutions:
-Having shared
documentation routines

-Shared definition of done
-Common testing routines
-Inter-team meetings

If there are sixteen teams here,
there are sixteen different ways
of doing things” [Manager].

“It is great that the teams are free and have a
lot of responsibility. But it is also essential to
have arenas where we can discuss and share
knowledge across teams so that it’s not
spinning out of control” [Tech Lead].

2) Overview across teams

Some solutions:
•Shared backlog
•Confluence page with everyone’s
name, team and photo

•Open office spaces
•Slack channels for each team
and other relevant topics

Berntzen, M., Stray, V., & Moe, N. B. (2021).

Many developers found it hard to know who,
in which team, has what information,
where, and how to find them.

“Right now, it is a bit hard to know the status of
any given team. I don’t know where to find it. You
need to play detective to find out”
 [Product Owner].

3) Prioritizing tasks and clients across teams

Some solutions:
•Prioritization task board
•Inter-team stand-up meetings
(for team leaders, product
owners)

•Temporary “task force” teams
that work on specific features

“Things come up from different clients
that they all expect us to solve.
Sometimes we have not managed the
expectations well enough, and we may
simply not have finished on time”
[Manager].

“We were so close to finishing the
feature! And then one of the teams had to
prioritize something else” [Tech Lead].

4) Managing technical dependencies
between teams

Some solutions:
•Mapping all technical challenges
across teams

•Tech lead forum for knowledge
sharing about architecture across
teams

•A platform team that supported
development teams with shared
technologies

“If one application goes down, the
whole system goes down”
[Team Leader].

“I think the forum is great! It is very
good to learn about other teams and
what they do and what challenges they
have. It’s very helpful” [Tech Lead].

Large-scale agile bring additional challenges

•These challenges are characteristic of
large-scale agile software development

•There are approaches to large-scale agile
that aims to address inter-team
coordination challenges

More on this in the lectures on large-scale agile
(04.10) and agile transformation (11.10)

COORDINATION

We need to use “the right” mechanisms to manage
dependencies between teams

Page 53

Framework for Analyzing Large-scale
agile Coordination mechanisms (FALC)

Step 1
• Identify

coordination
mechanisms

Step 2 • Map the TOPS
characteristics

Step 3
• Understand

how
dependencies
are managed

Step 4
• Analyze

change in
coordination
mechanisms

Step 5
• Develop

coordination
strategies

FALC

• What are “the right” coordination
mechanisms will vary by context,
and over time.

• It is useful for organizations to be
aware of which mechanisms they
use, when and for what

• So that they may change and
adjust their coordination as
needed

o
• So

Berntzen, M., (2023).

What about when people work from other places?

There are additional challenges
when working as a distributed
team…

…And hybrid versions which may
be part of the post-pandemic
work life

More on this in the lecture on Global
Software Development (18.10)

1) What is agile software development?

2) Agile teams
• Agile team roles
• The cross-functional agile team

3) Agile teamwork practices

4) Challenges with agile teamwork

Page 55

Topics covered in this lecture:

There will be also be a
lecture on agile and lean
software engineering on

November 15th!

References
• Meyer, B. (2014). Agile!: The good, the hype and the ugly. Springer Science & Business Media

• Berntzen, M., Moe, N. B., & Stray, V. (2019). The product owner in large-scale agile: an empirical study through the lens of relational
coordination theory. In Agile Processes in Software Engineering and Extreme Programming: 20th International Conference, XP 2019,
Montréal, QC, Canada, May 21–25, 2019, Proceedings 20 (pp. 121-136). Springer International Publishing.

• Bass, J. M., & Haxby, A. (2019). Tailoring product ownership in large-scale agile projects: managing scale, distance, and governance. IEEE
Software, 36(2), 58-63.

• Berntzen, M., Stray, V., & Moe, N. B. (2021, June). Coordination strategies: managing inter-team coordination challenges in large-scale agile.
In International Conference on Agile Software Development (pp. 140-156). Cham: Springer International Publishing.

• Jørgensen, M. (2014). What we do and don't know about software development effort estimation. IEEE software, 31(2), 37-40.

• Stray, V., Moe, N. B., & Sjoberg, D. I. (2018). Daily stand-up meetings: start breaking the rules. IEEE Software, 37(3), 70-77

• Andriyani, Y., Hoda, R., & Amor, R. (2017). Reflection in agile retrospectives. In Agile Processes in Software Engineering and Extreme
Programming: 18th International Conference, XP 2017, Cologne, Germany, May 22-26, 2017, Proceedings 18 (pp. 3-19). Springer
International Publishing.

• Stettina, C. J., & Heijstek, W. (2011, October). Necessary and neglected? An empirical study of internal documentation in agile software
development teams. In Proceedings of the 29th ACM international conference on Design of communication (pp. 159-166).

• Garousi, G., Garousi-Yusifoğlu, V., Ruhe, G., Zhi, J., Moussavi, M., & Smith, B. (2015). Usage and usefulness of technical software
documentation: An industrial case study. Information and software technology, 57, 664-682.

• Hummel, M., Rosenkranz, C., & Holten, R. (2015). The role of social agile practices for direct and indirect communication in information
systems development teams. Communications of the Association for Information Systems, 36(1), 15.

Page 56

References
• Soares, E., Sizilio, G., Santos, J., da Costa, D. A., & Kulesza, U. (2022). The effects of continuous integration on software development: a

systematic literature review. Empirical Software Engineering, 27(3), 78.

• Smite, D., Mikalsen, M., Moe, N. B., Stray, V., & Klotins, E. (2021, June). From collaboration to solitude and back: Remote pair programming
during COVID-19. In International Conference on Agile Software Development (pp. 3-18). Cham: Springer International Publishing.

• Tkalich, A., Moe, N. B., Andersen, N. H., Stray, V., & Barbala, A. M. (2023). Pair Programming Practiced in Hybrid Work.

• Begel, A., & Nagappan, N. (2008, October). Pair programming: what's in it for me?. In Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and measurement (pp. 120-128).

• Beck, K. (2003). Test-driven development: by example. Addison-Wesley Professional.

• Staegemann, D., Volk, M., Perera, M., Haertel, C., Pohl, M., Daase, C., & Turowski, K. (2022). A Literature Review on the Challenges of
Applying Test-Driven Development in Software Engineering. Complex Systems Informatics and Modeling Quarterly, (31), 18-28.

• Martini, A., Besker, T., & Bosch, J. (2018). Technical Debt tracking: Current state of practice: A survey and multiple case study in 15 large
organizations. Science of Computer Programming, 163, 42-61.

• Baqais, A. A. B., & Alshayeb, M. (2020). Automatic software refactoring: a systematic literature review. Software Quality Journal, 28(2), 459-
502.

• Moe, N. B., Stray, V., & Hoda, R. (2019). Trends and updated research agenda for autonomous agile teams: a summary of the second
international workshop at XP2019. In International Conference on Agile Software Development (pp. 13-19). Springer, Cham.

• Berntzen, M (2023). Coordination Mechanisms in Large-Scale Agile Software Development: A Longitudinal Empirical Investigation. Doctoral
thesis, University of Oslo. https://www.duo.uio.no/handle/10852/103637

Page 57

