
i

Quality Assurance

Mette Hande and Tina Syversen

13.09.2023

2

About us

Mette Hande
Economics NTNU

Senior Test Consultant

Tina Syversen
Computer Science NTNU

Quality manager

3

Learn about the
complexity and

challenges of Quality in
software projects and
how to deal with them

Learning Objectives

4

What is quality?

Question

5

Garvin’s Five Definitions

The transcendal perspective:

Quality is something you feel or that we
learn to recognize through experience

The product perspcetive:

Quality is precise and measurable

The user perspcetive:

Quality is defined by In terms of fitness for use

1

2

3

The producer perspcetive:

Quality is the degree a product/service shows
conformity with a project or specification

4

The value perspcetive:

Quality is defined in terms of cost and prices.
Have you recieved what you paid for?

5

Many
functionalities

Reliable

Keeps
schedule

Safe

Fast

Low
cost

Fulfills all
requirements

Bug free

Documented
processes

Easy
to use

Easy to
maintain

Happy
customer

6

Possible definitions

Definitions
of Quality

Fitness for use
of purpose

To do a right
thing at first time

To do a right thing
at right-time

Find and know, what
consumer wants?Features that met

consumer needs and give
customer satisfaction

Freedom from
deficiencies or defects

Conformance
to standards

Value or
worthiness for
money, etc.

7

Do the customer know what they want?

8

Informal Requirements

9

From requirements to final product

10

From requirements to final product

11

From requirements to final product

THE PROBLEM ABOUT BEING A PROGRAMMER

MY MOM SAID:

HONEY, PLEASE GO TO THE MARKET AND BUY 1
BOTTLE OF MILK. IF THEY HAVE EGGS, BRING 6.

I CAME BACK WITH 6 BOTTLES OF MILK.

SHE SAID: WHY THE HELL DID YOU
BUY 6 BOTTLES OF MILK?

I SAID: BECAUSE THEY HAD EGGS!

QUALITY

COST TIME

Sweet
spot

13

14

Strategy

RISK

ANALYSIS
STRATEGY

PLAN

PROCESS

CONTROL
ASSESSMENTEVALUATE

REVIEW

Probability

Impact

15

What to measure?

Static testing

Dynamic testing

Code Reviews

Code Coverage

Deployment times

Number of tests going green

Up-time

Performance

Number of defects in production

16

Quality Attributes

Functionality

Reliability

Performance

Compatibility

User experience

Security

Maintainability

Portability

Documentation

Compliance

17

Measuring high-
productivity teams

Deployment Frequency

Lead Time to Changes

Mean Time to Recovery

Change Failure

18

Waterfall vs. Agile

DESIGN

TESTING DEFINING

PLANNINGDEPLOY

AGILE

REQUIREMENTS

DESIGN

IMPLEMENTATION

TESTING

MAINTENANCE

19

Where do bugs occur?

Requirements
specification

Correct
requirements

Incorrect
requirements

Design Correct design
Incorrect
design

Incorrect design
caused by
incorrect

requirements

Programming
Incorrect

code

Incorrect code
caused by

incorrect design

Incorrect code
caused by
incorrect

requirements

Correct code

Test Correct code
Remaining

bugs

20

Cost of bugs

21

7 test principles

Testing shows the
presence of defects,
not their absence

1 2 3 4

Exhaustive testing
is impossible

Early testing saves
time and money

Defect cluster
together

22

7 test principles

5

«Pesticid-paradox»

Beware of the
pesticide paradox

6 7

Testing is context
dependent

Absence of errors
is a fallacy

23

A chain is only as strong as its weakest link

Quality

24

Break – 15 min

25

• Component test tests
components, classes etc.

• Integration test tests integrations
between components and systems

• Api-test tests that services do
what they are supposed to

• E.g. rest/soap-requests

• GUI-test tests that buttons
do what is expected

• E.g selenium, cypress

• The more the merrier

• All levels can be done by developers

Testing pyramid

Manual Test
Written tests

Automated GUI Test
Smoketests, gui-tests

Integration tests
Component integration,
system integration, API tests

Component tests
Easy, cheap tests,
also calles unit tests

01

02

03

04

26

Static and dynamic testing

27

Static testing – requirements specification

Informal review

Walkthrough

Technical review

Inseption

Low

High

1 Informal review

• «Coffee-talks»

2 Walkthrough

• Review of documents

3 Technical review

• Review by specialists

4 Inseption

• Often called formal review

• Mest thorough

28

Dynamic testing - development

BLACK BOX

Specification-/Experience based

• What does the system do?

• Functional test

• Functionality

• Ease of use

WHITE BOX

Structure based

• How the system is built

• Technical test

• Development / programming

• Structure

• Components

29

How will you classify the fruit?

Equivalence partitioning

• Apple

• Grape

• Pear

• Strawberry

• Melon

• Oranges

• Blueberry

• Clementines

• Peach

• Pineapple

Technique to reduce amount of test cases

31

Boundary value
analysis

Bugs because of misunderstandings

• From or starting from

Valid and invalid boundary values

• Values on the boundary of an equivalence class

Many bugs can «hide»

Designing tests to validate values on the limits

32

How to define equivalence
classes and boundary values?

MIN MAX

Invalid
boundary/class

Valid
boundary/class

Invalid
boundary/class

Systemdata is divided into categories

Equivalence class is an amount of data
where all elements is treated equally.
It can be identified by specification

Boundary values are values at the
edge of equivalence classes

If tests on boundary value fails, we can
check whether equivalence class also
fails, or if it is only the boundary value –
both techniques should be used

33

The field for usernames has a legal
length of 6 characters minimum,
and 20 characters maximum.

What are the valid and invalid equivalence classes?
What are the valid and invalid boundary values?

Young Talents Community at UIO is for everyone
under the age of 30. Alcoholic beverage can only
be served to those who are 20 or older.

What are the valid and invalid equivalence classes?
What are the valid and invalid boundary values?

Username

Min 6 Max 20

20

Young talents

Exercises

34

Experience based testing

Based on expectation, instinct, and the testers experience.

Informal test technique in combination
with more formal techniques.

Hard to measure test coverage. ​

Techniques

• Error guessing

• List of usual bugs

• Exploratory testing

• Non-premade tests

• Can be tested session-based

• Checklist-based

• Based om domain knowledge and experience

• Can be used as a guideline

35

Retest/ confirmation test
Testing a bug that you found in the first test of the issue

36

Regression:

”when you fix one bug, you

introduce several newer bugs.”

37

Security testing

Difference between:

• Authentication – checks that the user has access to
the system – correct username and password.

• Authorization - is the user supposed to have acces
to this part of the system?

Often done by specialized testers

Firewall

• Blocks unauthorized traffic

Encryption

• Everything from password etc should be encrypted

IDS (Intrusion Detection System)

• discovers security violations

XSS - Cross site scripting

• Can you insert scripts in the site and/or fields?

Results from security testing should
be given on need-to-know-basis

38

Validation vs verification

Verification and validation is the process of checking

that the software meets specification and requirements

that fulfill the purpose.

Verification

• Process for checking that documents, design, code
and software is build according to requirements

• Static testing

Validation

• Mechanism for testing and validate that the
software actually fullfill user needs

• Dynamic testing

39

Building Quality

40

DevOps

A way to close the gap between development
and operations

Tby utilizing tooling, Continous Integration and
delivery the responsibility to maintain a system
is shared with the development team.

«You build it, you run it!»

It’s been a thing for over a decade

41

Knowledge – about what?

42

44

DevOps – how to test?

Goal:

Minimize functional testing
and make development
process as agile as possible.

Testers:

Advisors and test developers.

Focus:

Technical tests and automated
tests.
Roll-forward in stead of
roll-back.
Domain knowledge.
High level of code- and test-
coverage.
Monitoring processes in
mandatory.
Requires continous dialogue
with operations and users.

45

DevOps – how to test?

Different terms

Continous testing:

• Dependent on tools, team, individuals and services

• Runs automated tests as part of the pipeline for
quick feedback on release-candidate

Continous integration:

• Tool-driven

• Code from different developers are often integrated
– several times a day

Continous deployment:

• Dependent on product owners and developers

• Makes the code always deployable

Continous delivery:

• Tools and team-driven

• Release of any approved build to production

47

Devops and testing

48

Remember!

Communication is key

Specifications are challenging

There won’t be enough time – get your priorities straight is key

There will be uncertainties, talk about them loudly

Stuff will fail – learn from it!

Insight is crucial

49

Questions?

Dagen@ifi September 15th

https://www.soprasteria.no/bli-en-av-oss

https://www.soprasteria.no/bli-en-av-oss

50

Thank you!

	Slide 1: Quality Assurance
	Slide 2: About us
	Slide 3
	Slide 4
	Slide 5: Garvin’s Five Definitions
	Slide 6: Possible definitions
	Slide 7: Do the customer know what they want?
	Slide 8: Informal Requirements
	Slide 9: From requirements to final product
	Slide 10: From requirements to final product
	Slide 11: From requirements to final product
	Slide 12
	Slide 13
	Slide 14: Strategy
	Slide 15: What to measure?
	Slide 16: Quality Attributes
	Slide 17: Measuring high-productivity teams
	Slide 18: Waterfall vs. Agile
	Slide 19: Where do bugs occur?
	Slide 20: Cost of bugs
	Slide 21: 7 test principles
	Slide 22: 7 test principles
	Slide 23
	Slide 24
	Slide 25: Testing pyramid
	Slide 26: Static and dynamic testing
	Slide 27: Static testing – requirements specification
	Slide 28: Dynamic testing - development
	Slide 29: Equivalence partitioning
	Slide 31: Boundary value analysis
	Slide 32: How to define equivalence classes and boundary values?
	Slide 33: Exercises
	Slide 34: Experience based testing
	Slide 35: Retest/ confirmation test
	Slide 36
	Slide 37: Security testing
	Slide 38: Validation vs verification
	Slide 39: Building Quality
	Slide 40: DevOps
	Slide 41: Knowledge – about what?
	Slide 42
	Slide 44: DevOps – how to test?
	Slide 45: DevOps – how to test?
	Slide 47: Devops and testing
	Slide 48: Remember!
	Slide 49
	Slide 50

