Technical Debt Management
in Visma

Mili Orucevic
Chief Software Quality Engineer

D VISMA

We are shaping the
future of society
through technology

14 500 300 companies 1 600 000 Wearewhereyouare TETTE VRN AN
have joined Visma the Customers Strong local presence with y Y
Engaged employees last decade

more than 265+ 11,2 million payslips

With more than 5 500 locations 22,2 million e-invoices

developers
D VISMA

Lehman’s Law of Software Evolution

Law of Continuing Change
“A system must be continually adapted or it bg€omes progressively less satisfactory”

Law of Increasing Complexity
“As a system evolves, its

Technical Debt definition

“Shipping first time code is like going
into debt. A little debt speeds
development so long as it is paid back
promptly with a rewrite. Objects make
the cost of this transaction tolerable.
The danger occurs when the debt
is not repaid. Every minute spent on
not-quite-right code counts as
interest on that debt. Entire
engineering organizations can be
brought to a stand-still under the
debt load of an unconsolidated
implementation, object- oriented or
otherwise”

1992 Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA)

Ward Cunningham

“In software-intensive systems,
technical debt consists of design or
implementation constructs that are
expedient in the short term but
that set up a technical context that
can make a future change more
costly or impossible. Technical debt
is a contingent liability whose impact
is limited to internal system
qualities—primarily, but not only,
maintainability and evolvability.”

Kruchten, Nord, Ozkaya (p.5)

Managing Technical Debt

Software systems are prone to the
build up of cruft - deficiencies in
internal quality that make it harder
than it would ideally be to modify
and extend the system further.
Technical Debt is a metaphor, coined
by Ward Cunningham, that frames
how to think about dealing with this
cruft, thinking of it like a financial
debt. The extra effort that it takes to
add new features is the interest paid
on the debt.

Blogpost, 21.05.2019:

Martin Fowler

D VIIMA

https://martinfowler.com/bliki/TechnicalDebt.html

Visualizing Technical Debt

long D VISMA

Business

Technical Debt Landscape

—« Visible -— —« Mostly Invisible -— «—« Visible -—
. Architecture Code
. Architecture smells Code Complexity :

New Features . Pattern Violations Code Smells . Defects
: Structural Complexity Coding Style Violations

Additional Low Internal Quality

Functionality

Low External Quality

s1asn pu3j

Production Infrastructure
Build, Test and Deploy Issues

Evolvability Maintainability

Product Internal Team Work End Product
Roadmap

D VIIMA

Cause, effect and

management

Intentional
Debt

Technical
Debt

Causes

Lack of time for
development

Effects

TD reduction
prevention

Time to market

Refactoring

Unintentional
Debt

Business/ ~
~ Architectual
decisions Communication
Customer
: Satisfaction
.| Complexity of
source code .
Bug fixing days
...................................... R
Effects TD reduction
Causes prevention
Lack of coding Extra working Coding
» standards and e Standards/
guides guides
> Lack of \ Errors/Bugs Code Reviews
knowledge
Customer ..
A Lack of o : Bug fixing days
experience dissatisfaction

Complexity of
source code

Refactoring

D VISMA

Why should anyone care?

19 I
3]
- 8
o@

BT
.

OOLPEB®O® -
FoENE@ T @«
B E@EE M E)
BFeo00QCGRO00
e
“~Oa0re

a8 0@@0
00O YO® ¢« B
000000006
<NB000B03
Olajalojals Jz]ols)
DEO0O 86
E eCasOw
ciBell c@EC® -
oY JOR 101
oG] JOEsESE R |
RHGA20QEE X E

D VIIMA

X/ar

o i)
A t'\'

¥ Elon Musk &
@elonmusk - Follow

Replying to @pmarca

A small API change had massive
ramifications. The code stack is
extremely brittle for no good reason.

Will ultimately need a complete rewrite.
7:27 PM - Mar 6, 2023 ®

® 14K @ Reply 1 Share

Read 2.3K replies

Despite the company’s shrinking workforce,
Musk has continued to push for new features,
including promising changes that haven’t yet
appeared, like last month’s call for ad revenue
sharing with creators who post on the
platform or a plan to introduce a new paid tier
for its APL.

Menu +

Some current employees are sympathetic to
that view, which places at least part of the
blame for Twitter’s problems on technical
failures that predate Musk’s ownership of the
company. The fail whale became an icon of
the old Twitter for a reason.

“There’s so much tech debt from Twitter 1.0
that if you make a change right now,
everything breaks,” one current employee
says.

Menu +

Monday’s errant configuration change was at
least the sixth high-profile service outage at
Twitter this year:

On January 23rd, Android users
temporarily couldn’t load new tweets or
post them.

On February 8th, an error message told
users that they were “over the daily limit
for sending Tweets,” preventing them
from posting.

On February 15th, tweets stopped loading.

On February 18th, the timeline broke and
replies disappeared.

On March 1st, the timeline stopped
working.

TeECHNICAL DEBT

T DoN'T
UNDERSTAND
WHY IT TAKES
50 LONG TO
ADD A NEW

WINDOW.

=R
S —

Technical debt causes an average productivity loss of 40%
(peaking at 90% in some projects)’,
costing the world $5.82 trillion (5 820 000 000 000) 2

1 -T. Besker, A. Martini, and J. Bosch, ‘Software developer productivity loss due to technical debt—A replication and extension study examining developers’ development work’, Journal of Systems and Software, vol. 156, pp. 41-61, Oct. 2019, doi: 10.1016/j.js5.2019.06.004.
2 - CISQ Consortium for Information & Software Quality | The Cost of Poor Software Quality in the US: A 2020 Report, page 42 VI s A

Recent studies from 39 commercial codebases

Q£
©
3]
(2]
o
>
2
o
0]
o

additional time spent
compared to healthy cod

L
€
)
£
o

o
S
°

o

£
o

£

L2
o
0
©
o
>

<

Healthy
code

Warning
code

Implementing a feature or fixing a
bug is in Red
Code

e

)

additional time spent

compared to healthy codj)

additional time spent

compared to healthy code)

0n
]
7]
2
°©
a
-
°
B
@
a
3
S
=z

2
©
o
2]
[

=
£=]

3
[}

-4

Maximum time in development

Relative scale

Healthy
code

Warning
code

Healthy
code

Warning
code

More than

average maximum time leads
to uncertainty during
development

compared
to high-quality code

https://codescene.com/blog/measuring-the-business-impact-of-low-code-quality

Measuring Technical Debt

Static Code Analysis (SonarQube)
of technical debt, for 1623 projects

In of effort of technical debt was
introduced

Technical Debt Landscape

«« Visible —— «—« Mostly Invisible >— «—« Visible -»—

Architecture Code
Archit e smells Code

Defects

Low External Quality

siasn pu3

Production Infrastructure
Build, Test and Deploy Issue:

Evolvability Maintainability
O VIIMA

Product Internal Team Work End Product
LGELET

-~
&
<«

THITITTIET

BEES

EESEEEEE

g
«

EHE

174
175
176
1w
178
1
180
181
182
183

Technical debt matters!

Customer-centricity vs. Technical Innovation vs. Technical Debt

Debt (quartiles) (quartiles) Products with more technical debt
are developed by teams with lower
customer-centricity and innovation

scores.

Presumably, it's difficult to have time
and energy for being innovative and
customer-centric when you have
work with and around old technology
and practices.

Top 25% 2nd Quartile 3rd Quartile Bottom 25% Top 25% 2nd Quartile 3rd Quartile Bottom 25%
(low technical (high (low technical (high
debt) technical debt) technical
debt) debt)

O VISMA

https://docs.google.com/presentation/d/1g6SKQexdPRZ0c5Q2k9A4typrexn8JJthAITjH7NLUmE/edit#slide=id.g14701d4b933_0_5

Technical debt matters!

The reduced innovation and customer-centricity in products with high technical debt drives
down customer satisfaction and revenue growth.

1. In general, products with less
technical debt are more successful
e Higher product NPS

e Higher product growth rate

2. Product lines in the bottom 25% of
technical debt have higher growth
rate than expected. These product
lines tend to have lower CBV, and
could be smaller products that have

Top 2nd 3rd Bottom Top 2nd 3rd Bottom accumulated technical debt through
25% Quartile Quartile 25% 25% Quartile Quartile 25% rapid growth.
(Low TD) (High TD) (Low TD) (High TD)

O VISMA

Creating awareness
and working with
Technical Debt

Raise the awareness Create visibility of
of technical debt in technical debt
teams
Common process for Keep a technical debt
dealing with technical register
debt

Ensure that technical debt
is planned and repaid
where reasonable

D VIIMA

§¥ Repayment

How is technical debt repaid?

b Planning

How is technical debt included and
prioritized in the improvement plans?

. Communication

How is technical debt communicated =
outside the team, f.ex. towards =

stakeholders?

EN Monitoring

How is technical debt monitored over
time, f.ex. trends, top TD issues

33 Prevention

How is introduction of unintentional
technical debt prevented?

v

Identification
How, and where is technical debt

identified?

Technical Debt Assessment

& Documentation

How is technical debt documented and
labeled?

@, Analysis

How is technical debt analyzed with
emphasis on risk likelihood, impact and
severity?

Example assessment

Workflow

Create

Create an
assessment from the
template

Do and learn

Go through the
assessment, learn
about the capabilities
and do a gap analysis

Follow ups
Follow up on
discovered
improvements. Start
to track technical
debt issues

Review

Request a review with
a reviewer

Complete

After async orin
meeting review,
assessment is set to
completed

Continuously follow
up through index,
re-assessment will be
recommended, if
needed

D VIIMA

(© Technical Debt Maturity

Overview

Expiration date Open follow-up
Not specified actions
Repeats every

365

Contents

Technical Debt Maturity Assessment

TDMAO1

Prevention

Not started

TDMAO04
Analysis

Not started

TDMAO07
Planning

Not started

Request review @ @

Follow up actions

Your actions points and statuses will be available here once you start your assessment and will
link to your tracking system (if access granted).

R e mmentcd ity \ 4=

TDMAO02 TDMAO03

Identification Documentation

Not started Not started

TDMAO05 TDMAO06
Monitoring Communication

Not started Not started

TDMAO08

Repayment

N VISMA

© Technical Debt Maturity Task10f8 | < (3]
=

Prevention

o Prevention capabilites ®

Q1 The team follows coding standards and performs code review for all non-trivial changes Open (0) comments
*Answer
Yes x:
Q2 The intention of impl ting any workaround or corner-cutting is discussed within the team before Open (0) comments

any code is written; team decides together if the workaround will be implemented or more time will
be allocated to avoid it

*Answer

Yes v

Comments

Send a comment %
e
o L

e ey D VISMA

Be the first to comment by typing your message for all to see.

© Technical Debt Maturity

Overview [in progress

Expiration date Open follow-up
Not specified actions
Repeats every O

365

31%

Overall progress

Contents

Technical Debt Maturity Assessment

TDMAO1
Prevention

C—— 100%

TDMAO5
Monitoring

Not started

| Request review ‘ @ @

-
per=
—r

Follow up actions

=,

¥

Your actions points and statuses will be available here once you start your assessment and will link to your tracking
system (if access granted).

TDMAO02 TDMAO3 TDMAO04

Identification Documentation Analysis
G 100% e] 66% N 100%
TDMAO06 TDMAO07 TDMAO8

Communication Planning Repayment
G 100% | S—— 50% G 100%

D VIIMA

Dashboard - team A

Filter Results: TDMA Example

=

Risk Impact Risk Likelihood Risk Severity J

<]

3 3 9

<]

—@— Accumulated Risk Severity
—— Threshold

k 1 5

[]
- =N N .

0]
a
a

g "N

——— N

8 B @8

<]

]

01/4/20 29/7/20 30/11/20 30/3/21 30/8/21 01/12/21

<]

Filter Results: TOMA Example 2

Risk Impact ~ Risk Likelihood

>IN o Nl o Nl

<]

Dashboard - team B

< oIl o}

aoaBe

—8— Accumulated Risk Severity
—— Threshold

> B N o Al o R 0]

(< I o NI o NI < NN < H o NI o N> I o}
-

aen
-

30/11/17 20/8/18 21/5/19 18/12/19 27/7/20 12/2/21 01/9/21

SR 8B BE
=111

oMol o}

Technical Debt

Resolution E Risk Likelinood

- § e selecte e pe t e time pe d

Created Issues

Running Sum the filters above

Technical debt dashboard

Net Risk Severity (Created - Resolved) per year i Risk Severity per Resolution Risk Severity per Likelihood & Impact i
R Ris

linood

erity
e

s 2 5
45 Severity verity 15 Severity
Sissues Lissues

s 6
36Severity 36 Severity
sissues

9issues

QOut of the box

Click on the sort icon beside each column header to sort the data. You can see, for example, Newest/0ldest

i Red issues = Severity at least 15 and older than 1 year i
issues by sorting on Created. Default sorting is on highest Risk Severity Issues Details & P

High Severity

Project Created Impact Likelihood verity T Resolution

Examples from SonarQube

QUALITY GATE STATUS MEASURES Conditions

Passed New Code Overall Code Conditions on New Code

Since November 10 i
Al conditions passed 2020 Conditions on New Code apply to all branches and to Pull Requests.

QUALITY GATE STATUS MEASURES i
Metric Operator Value
i New Code Overall Code
Failed Coverage is less than 60.0%

EREi SR QUALITY GATE STATUS MEASURES))

Duplicated Lines (%) is greater than 3.0%
Fa"ed New Code Overall Code
Since 1.0.217- Conditions on Overall Code

1 conditions failed SNAPSHOT 2
Started 6 hours ago Conditions on Overall Code apply to branches only.

On New Code

On New Code Metric Operator Value

New Critical Issues is greater than 0 1 1 ¥¥ Bugs Coverage is less than 80.0%
Duplicated Lines (%) is greater than 2.0%
Maintainability Rating is worse than
4 6 Vuinerabiliies Reliability Rating is worse than
Security Rating is worse than
Unit Test Errors is greater than

O © Security Hotspots Unit Test Failures is greater than

1 3d Debt 340 ® Code Smells Maintainabilty (Y

O 77.7% 994 O 2.0% 53

Duplications on 41K Lines Duplicated Blocks

Coverage on 17k Lines to cover Unit Tests

Examples from SonarQube

'System.Exception’ should not be
thrown by user code.

& Code Smell private async Task<A| IName)
{

'System.Exception’ should not be

thrown by user code. 3 var request = new GetSecretValueRequest {SecretId = secretName};

@ Code Smell

Remove the unused local variable ‘request’. Why is this an issue? lastyear v L73 %

Refactor this code to not nest more &® code smell @ Major O open ~ | NI 5rin <fort Comment @ unused v

than 3 control flow statements.
Q@ Code Smell

'System.Exception’ should not be
thrown by user code. W N M N BN N -

: .
& Code Smell g | TR i o

Remove the unused local variable
‘request’.

@ Code Smell

=
Fix this implementation of

‘IDisposable’ to conform to the
dispose pattern.

& Code Smell
Unused local variables should be removed

Unused local variables should be removed

& Code Smell Minor Q@ unused Available Since Aug 14,2015 SonarQube (C#) ~Constant/issue: Smin

If a local variable is declared but not used, it is dead code and should be removed. Doing so will improve maintainability because developers will not wonder what the variable is used for.

Noncompliant Code Example

public int NumberofMinutes(int hours)

int seconds = 0; // nds is never used

return hours * 60;

General exceptions should never be thrown X \/ Utility classes should not

[n

our fFault

Example of a bigger technical debt
e Unintentional
e External factors
e T[ime

“Move from Angular]S to new
version of Angular”

~ 1583 hours = 66 days

L

ANGULARJS

A

ANGULAR

D VIIMA

“Afterall, won't do”

Example of a technical debt
o External factors
e T[ime
o Changing priorities

“Integration’ is written in .NET 5 but support
for .NET 5 ended on May 2022 after which no

security updates are released for this version
of .NET. Plan to upgrade to .NET 6.”

Conclusion: “Going to use another sync
mechanism which will make this APl obsolete,
and we will delete it.”

D VIIMA

Do all teams in Visma work like this?

"

B

=11

Most of the teams working in a

modern way (Visma Cloud
Delivery Model) do this
There is no one size fits all
It depends

D VIIMA

Automatically track
JAE

Visma Index

D VIIMA

Visma Index

A&T - Technical Debt Maturity Assessment (TDMA) [/

1. Technical Debt Maturity Assessment not done or report older than 12 months

2 . Technical Debt Maturity Assessment not done or report older than 18 months

3. Unresolved critical and blocker issues from the Tech Debt Assessment older than 30
days

4. Unresolved high issues from the Tech Debt Assessment older than 90 days
5 . Unresolved medium issues from the Tech Debt Assessment older than 90 days

6 . Unresolved low and minor issues from the Tech Debt Assessment older than 90
days

7 . Data Quality - Open technical debt cases, older than 14 days, missing severity score

8 . Data Quality - Closed technical debt cases without severity score (closed last 12
months)

9 . Data Quality - Open technical debt cases with severity score, missing NFR label
10 . Data Quality - Closed technical debt with severity score but missing NFR label
11. 0 technical debt cases created last 3 months

12. Less than 5 technical debt cases created last 12 months

13. 0 technical debt cases resolved last 3 months

14 . Less than 5 technical debt cases resolved last 12 months

Hubble/Confluence [

Hubble/Confluence
Due date in 6 months

Jira [| Total:0 [

‘ Total: 0 [4

=
(8

Jira 4 | Total:0
Jira 4 | Total:0 [
Jira (4
Jira
Jira (4
Jira
Jira @ | Total:3 [
Jira [| Total: 20
Jira [| Total: 4

Jira 4 | Total: 14

450

200

100

20

O 0 0 60 6 0 ©6 © 0 0 o o

Mo

o) ()
—
-
-

Innovation Project for the Industrial Sector

Data-driven continuous
management of technical debt
For sustainable software

development

SINTEF, University of Oslo, Akva Group, KnowIT and Visma

D VISMA

Data-driven continuous management of technical debt for
sustainable software development

e 3years
e 15.2MNOK funding from Norwegian Research Council

e Visma, AkvaGroup, Knowit, UiO, SINTEF

Research

Novel data-driven methods and software tools aimed at aiding companies to control

technical debt systematically and continuously
Methods and software tools to improve current software engineering practices and validate

the novel approaches, saving million of wasted working hours yearly, for many years to

EnATOn ECONMD RO 13 &iov 17 faeticaons
W i 0D B

come

Summary

Visualise your technical debt, so you know about it
Think about what makes sense for your service (mature
Vs startup)

Having some technical debt is ok, keep it under control
Never try to repay all technical debt

Focus on actual debt first, then potential debt

Don't treat the symptoms, find the root cause

D VIIMA

Mili Orucevic
Chief Software Quality Engineer

D VIIMA

https://www.linkedin.com/in/milio

L —
_We speak many language'

Entrepreneurla! Sp Entrepreneurial
¢ Responsible
Typescrlpt = Dedicated
Objective C, Nor
PHP Inclusive

thuanlan Dedlca

Make progress happen Y VISMA

