
Mili Orucevic
Chief Software Quality Engineer

Technical Debt Management

in Visma

We are shaping the
future of society
through technology

300 companies
have joined Visma the
last decade

14 500
Engaged employees

With more than 5 500
developers

1 600 000
Customers

Running through Visma’s
systems every month

11,2 million payslips
22,2 million e-invoices

We are where you are
Strong local presence with
more than 265+
locations

Lehman’s Law of Software Evolution

Law of Continuing Change
“A system must be continually adapted or it becomes progressively less satisfactory”

Law of Increasing Complexity
“As a system evolves, its complexity increases unless work is done to maintain or reduce it.”

Technical Debt definition
“Shipping first time code is like going
into debt. A little debt speeds
development so long as it is paid back
promptly with a rewrite. Objects make
the cost of this transaction tolerable.
The danger occurs when the debt
is not repaid. Every minute spent on
not-quite-right code counts as
interest on that debt. Entire
engineering organizations can be
brought to a stand-still under the
debt load of an unconsolidated
implementation, object- oriented or
otherwise”

1992 Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA)

Ward Cunningham

“In software-intensive systems,
technical debt consists of design or
implementation constructs that are
expedient in the short term but
that set up a technical context that
can make a future change more
costly or impossible. Technical debt
is a contingent liability whose impact
is limited to internal system
qualities—primarily, but not only,
maintainability and evolvability.”

Kruchten, Nord, Ozkaya (p.5)

Managing Technical Debt

Software systems are prone to the
build up of cruft - deficiencies in
internal quality that make it harder
than it would ideally be to modify
and extend the system further.
Technical Debt is a metaphor, coined
by Ward Cunningham, that frames
how to think about dealing with this
cruft, thinking of it like a financial
debt. The extra effort that it takes to
add new features is the interest paid
on the debt.

Blogpost, 21.05.2019:
https://martinfowler.com/bliki/TechnicalDebt.html

Martin Fowler

https://martinfowler.com/bliki/TechnicalDebt.html

Visualizing Technical Debt

Time available
for new feature
development

Time needed for
dealing with
complexity and debt

No one is here Won’t be here for
long

Technical Debt Landscape
←← Visible →→ ←← Mostly Invisible →→ ←← Visible →→

New Features

Additional
Functionality

Architecture Code
Architecture smells Code Complexity
Pattern Violations Code Smells
Structural Complexity Coding Style Violations

Low Internal Quality

Production Infrastructure
 Build, Test and Deploy Issues

Defects

Low External Quality

Product
Roadmap

Internal Team Work End Product

Evolvability Maintainability

Bu
si

ne
ss

End U
sers

Effects

TD reduction
prevention

Effects

TD reduction
prevention

Causes

Causes
Cause, effect and
management

Technical
Debt

Intentional
Debt

Unintentional
Debt

Lack of time for
development

Business/
Architectual

decisions

Complexity of
source code

Time to market

Customer
Satisfaction

Refactoring

Communication

Bug fixing days

Lack of coding
standards and

guides

Lack of
knowledge

Lack of
experience

Extra working
hours

Errors/Bugs

Coding
standards /

guides

Code Reviews

Bug fixing daysCustomer
dissatisfaction

Complexity of
source code Refactoring

Why should anyone care?

Technical debt causes an average productivity loss of 40%
(peaking at 90% in some projects)1,

costing the world $5.82 trillion (5 820 000 000 000) 2

1 - T. Besker, A. Martini, and J. Bosch, ‘Software developer productivity loss due to technical debt—A replication and extension study examining developers’ development work’, Journal of Systems and Software, vol. 156, pp. 41–61, Oct. 2019, doi: 10.1016/j.jss.2019.06.004.
2 - CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2020 Report, page 42

Recent studies from 39 commercial codebases

Implementing a feature or fixing a
bug is twice as expensive in Red
Code

More than 9 times longer
average maximum time leads
to uncertainty during
development

15 times more defects compared
to high-quality code

https://codescene.com/blog/measuring-the-business-impact-of-low-code-quality

https://codescene.com/blog/measuring-the-business-impact-of-low-code-quality

Measuring Technical Debt
Static Code Analysis (SonarQube)

● 21.185 days or 58 years of technical debt, for 1623 projects

● In March 2023, 241 days of effort of technical debt was
introduced

Should not be the only way to
measure technical debt

Lessons learned from own research

Why Technical Debt Matter?

Technical debt matters!

Products with more technical debt
are developed by teams with lower
customer-centricity and innovation
scores.

Presumably, it's difficult to have time
and energy for being innovative and
customer-centric when you have
work with and around old technology
and practices.

https://docs.google.com/presentation/d/1g6SKQexdPRZ0c5Q2k9A4typrexn8JJthAITjH7NLUmE/edit#slide=id.g14701d4b933_0_5

https://docs.google.com/presentation/d/1g6SKQexdPRZ0c5Q2k9A4typrexn8JJthAITjH7NLUmE/edit#slide=id.g14701d4b933_0_5

Technical debt matters!

Top
25%

(Low TD)

2nd
Quartile

3rd
Quartile

Bottom
25%

(High TD)

1. Product NPS by
technical debt (quartiles)

Increasing technical debt

The reduced innovation and customer-centricity in products with high technical debt drives
down customer satisfaction and revenue growth.

Increasing technical debt

10.82

-6.56-6.46

9.81

-12.6

Top
25%

(Low TD)

2nd
Quartile

3rd
Quartile

Bottom
25%

(High TD)

2. CBV Growth Rate (%) by
technical debt (quartiles)

16.51

7.35

1.51

1. In general, products with less
technical debt are more successful
• Higher product NPS
• Higher product growth rate

2. Product lines in the bottom 25% of
technical debt have higher growth
rate than expected. These product
lines tend to have lower CBV, and
could be smaller products that have
accumulated technical debt through
rapid growth.

Raise the awareness
of technical debt in

teams

Creating awareness
and working with
Technical Debt

Create visibility of
technical debt

Common process for
dealing with technical

debt

Keep a technical debt
register

Ensure that technical debt
is planned and repaid

where reasonable

👀 Prevention
How is introduction of unintentional

technical debt prevented?

✋
Identification

How, and where is technical debt
identified?

📑 Documentation
How is technical debt documented and

labeled?

🔍 Analysis
How is technical debt analyzed with

emphasis on risk likelihood, impact and
severity?

📉 Monitoring
How is technical debt monitored over

time, f.ex. trends, top TD issues

📣 Communication
How is technical debt communicated

outside the team, f.ex. towards
stakeholders?

📐 Planning
How is technical debt included and

prioritized in the improvement plans?

💱 Repayment
How is technical debt repaid?

Technical Debt Assessment

Example assessment

Create

Create an
assessment from the

template

Go through the
assessment, learn

about the capabilities
and do a gap analysis

Follow up on
discovered

improvements. Start
to track technical

debt issues

Request a review with
a reviewer

After async or in
meeting review,

assessment is set to
completed

Continuously follow
up through index,

re-assessment will be
recommended, if

needed

Do and learn Follow ups Review Complete Re-assess

Workflow

Dashboard - team A

Dashboard - team B

Technical debt dashboard

Out of the box

Examples from SonarQube

Examples from SonarQube

“Not our fault”
Example of a bigger technical debt

● Unintentional
● External factors
● Time

“Move from AngularJS to new
version of Angular”

~ 1583 hours = 66 days

“Afterall, won’t do”
Example of a technical debt

● External factors
● Time
● Changing priorities

“‘Integration’ is written in .NET 5 but support
for .NET 5 ended on May 2022 after which no
security updates are released for this version
of .NET. Plan to upgrade to .NET 6.”

Conclusion: “Going to use another sync
mechanism which will make this API obsolete,
and we will delete it.”

Do all teams in Visma work like this?

● Most of the teams working in a
modern way (Visma Cloud
Delivery Model) do this

● There is no one size fits all
● It depends

Visma Index

Automatically track
deviations

Visma Index

Innovation Project for the Industrial Sector

SINTEF, University of Oslo, Akva Group, KnowIT and Visma

Data-driven continuous
management of technical debt
for sustainable software
development

● 3 years
● 15.2MNOK funding from Norwegian Research Council
● Visma, AkvaGroup, Knowit, UiO, SINTEF

Research

● Novel data-driven methods and software tools aimed at aiding companies to control
technical debt systematically and continuously

● Methods and software tools to improve current software engineering practices and validate
the novel approaches, saving million of wasted working hours yearly, for many years to
come

Data-driven continuous management of technical debt for
sustainable software development

Summary

● Visualise your technical debt, so you know about it
● Think about what makes sense for your service (mature

vs startup)
● Having some technical debt is ok, keep it under control
● Never try to repay all technical debt
● Focus on actual debt first, then potential debt
● Don’t treat the symptoms, find the root cause

Mili Orucevic
Chief Software Quality Engineer

https://www.linkedin.com/in/milio

https://www.linkedin.com/in/milio

Make progress happen

Entrepreneurial

Dedicated

Responsible

Inclusive

