
IN5170 Models of Concurrency

Lecture 1: Introduction

Einar Broch Johnsen, S. Lizeth Tapia Tarifa, Eduard Kamburjan, Juliane Päßler

August 21, 2023

University of Oslo

Question

Why parallel programs?

• Better? Faster?

• More natural? More abstract?

1

Motivation

Concurrency is Everywhere and Challenging

• Multiple computations at the same time

• Networks, programs, even single-threaded application!

• Source of serious flaws in systems: safety, security, privacy

• Hard or impossible to test concurrent systems – enormous amount of executions

Concurrency has Many Facets

• Programming languages use many different concurrency mechanisms

• Multi-threading with shared state

• Message passing, channels

• Go-routines, async/await, futures

• . . .

• Modern languages build on these concurrency mechanisms, cf. Go, Swift, Rust, . . .

• What is the essence of these mechanisms and how should we use them? 2

IN5170 - Models of Concurrency

Learning Outcomes

• Fundamental issues related to cooperating parallel software

• How to think when developing parallel/concurrent software

• Language mechanisms, design patterns, and

paradigms for programming concurrent systems

• Examples in modern mainstream programming languages

What this course is not about . . .

• Exploiting data parallelism

• Hardware-level concurrency

3

General Info

Structure

• Part 1: Shared Memory (and Java)

• Part 2: Message Passing (and Go)

• Part 3: Analyses and Tool Support (and Rust)

Exercises, Obligs, Exam

• (Almost) weekly exercise sessions, two obligatory assignments, six optional assignments

• Exam 28.11.2023, check website for details

Literature

• First part: G. R. Andrews. Foundations of Multi-threaded, Parallel, and

Distributed Programming. Addison Wesley, 2000 (Chapters 1 to 10).

• Second and third part: Slides from the lectures, supplementary material

The course is being modernized, some topics from the last years have been replaced 4

General Info

Rooms

• Lectures: 12:15 on mondays in Python

• Exercises: 14:15 on thursdays in Pascal

• First exercise next week

Teaching Team

For questions, contact as follows:

• Einar Broch Johnsen (Part 1, Exam)

• Silvia Lizeth Tapia Tarifa (Part 2)

• Eduard Kamburjan (Part 3, Organization)

• Juliane Päßler (Exercises, Obligs)

5

Today’s Agenda

• Overview ✓

• Motivation and Considerations

• Critical Sections and the await-language

Reading material: Chapter 1 of Andrews

6

Shared Memory Concurrency

Parallel Processes

• Sequential program: one thread of control, full control over the whole memory

• Parallel/concurrent program: several threads of control, which need to exchange

information and coordinate execution

Communication between processes

We will study two different ways to organize

communication between processes:

• Reading from and writing to shared

variables (Now)

• Communication with messages between

processes (Part 2)
shared memory

thread0 thread1

7

Course Overview — Part 1: Shared variables

Content

• Problems that occur in concurrent systems with shared variables

• Patterns to solve these problems

• Atomic operations

• Interference

• Deadlock, livelock, liveness, fairness

• Locks, critical sections and (active) waiting

• Semaphores and passive waiting

• Monitors

• Java: threads and synchronization

• Rust: ownership of program variables

In contrast to last year: we have removed Hoare logic and formal analysis with invariants

8

Why Shared Variables?

Why shared (global) variables?

• Reflected in conventional hardware architectures, e.g., multi-core systems

• Reflected in most programming languages as a default (e.g., multi-threading).

Notes

• Even with a single processor and one thread, you may want to use many processes, in

order to get a natural partitioning, e.g., several active windows at the same time

• As all concurrency: potentially greater efficiency and/or better latency if several things

happen/appear to happen “at the same time”.

• Natural interaction for tightly coupled systems

9

Simple Example

Consider 3 global variables x, y, and z and the following program: x := x+z; y := y+z;

• Can we use parallelism here (without changing the results)?
• If operations can be performed independently then performance may increase
• What are the results?

Await

Befo r e : {x = a & y = b & z = c}
x := x+z ; y := y+z ;

A f t e r : {x = a+c & y = b+c & z = c}

Pre/post-conditions

• We use brackets {...} to describe conditions before or after a statement
• These conditions are describing the state, but are not executed
• Java has assert that can check such conditions at runtime and the

JML language to specify more complex conditions than expressions

10

Parallel Operator ∥

• Consider shared and non-shared program variables, assignment.

• We extend the language with a construction for parallel composition:

Await

co S1 | | S2 | | . . . | | Sn oc

• The execution of a parallel composition happens via the concurrent execution

of the component processes S1, . . . , Sn.

• Terminates normally if all component processes terminate normally.

Example
Await

{x = a & y = b & z = c}
x := x+z ; y := y+z ;

{x = a+c & y = b+c & z = c}

Await

{x = a & y = b & z = c}
co x := x+z | | y := y+z oc

{x = a+c & y = b+c & z = c}

11

Interaction Between Parallel Processes

Processes can interact with each other in two different ways:

• Cooperation to obtain a result

• Competition for common resources

To organize their interactions, we use synchronization

Synchronization

Synchronization restricts the possible interleavings of parallel processes

to avoid unwanted behavior and enforce wanted behavior.

Example

• Increasing atomicity and mutual exclusion (Mutex) to introduce critical sections which can

not be executed concurrently

• Condition synchronization enforces that processes must wait for a specific condition to be

satisfied before execution can continue.

12

Concurrent Processes: Atomic Operations

Definition (Atomic)

An operation is atomic if it cannot be subdivided into smaller operations.

• We can ignore concurrency inside atomic operations as they cannot be interleaved

• A statement with at most one atomic operation, in addition to operations on local

variables, can be considered atomic

• What is atomic depends on the language/setting:

fine-grained and coarse-grained atomicity.

• Accessing global variables is atomic for this lecture.

(In general, this may not be the case, e.g., for long int.)

• Assignments x := e are not atomic

13

Atomic Operations on Global Variables

Enabling atomic operations on global variables is fundamental for shared memory concurrency

• Process communication may be realized by variables:

a communication channel corresponds to a variable of type vector (or similar)

• Associated with global variables is a set of atomic operations

• Typically: read and write, in hardware, e.g. LOAD/STORE to registers

• Channels can also be seen as global variables: send and receive

• Atomic operations on a variable x are called x-operations

Our goal:

Mutual exclusion

Make composed statements atomic so they cannot happen simultaneously.

. . . but observe: the more atomic we make the program, the less parallel execution can occur!

14

Example

Await

P1 P2

{x = 0} co x := x+1 | | x := x−1 oc {?}

Each statement actually consists of 3 operations, e.g., P1 is

r ead x ; i n c ; w r i t e x ;

Atomic x-operations:

• P1 reads value of x (R1)

• P1 writes a value into x (W1)

• P2 reads value of x (R2)

• P2 writes a value into x (W2)

What is the final state of our program?

15

Interleaving & Possible Execution Sequences (I)

The four operations cannot be executed in any order, the program order gives two constraints

• R1 must happen before W1

• R2 must happen before W2

Definition (Program Order)

• Two statements S1,S2 are program-ordered if they are in the same thread of the

program, and S1 occurs before S2.

• Two operations O1,O2 from the same statement are program-ordered if O1 occurs

before O2 in the translation of the statement.

In the example, inc and dec (“-1”) are process-local, so we can ignore them

16

Interleaving & Possible Execution Sequences (II)

Definition (Interleaving)

An interleaving of two sequences A,B is a sequence C , such that

• exactly all elements of A and B are elements of C , and

• the order of elements in A (resp. B) is respected in C

An interleaving may have additional constraints (for us, e.g, program order).

Interleavings for our example:

R1 R1 R1 R2 R2 R2

W1 R2 R2 R1 R1 W2

R2 W1 W2 W1 W2 R1

W2 W2 W1 W2 W1 W1

0 -1 1 -1 1 0

17

Non-determinism

• Final values for x : {0, 1,−1}
• As (post)-condition: −1 ≤ x ≤ 1

• Which one is chosen during an execution?

Await

{x = 0} co x := x+1 | | x := x−1 oc {−1 <= x <= 1}

• Non-determinism: some choices for the program are decided during execution

• For us: the exact interleaving of instructions

• In practice, choices are not “random”, but depend on factors outside the program code:

• Timing of the threads

• Scheduler of the operating system

• . . .

18

Execution-space Explosion

How many interleavings of statements are possible for one given input?

• Assume that we have 3 processes, each with the same number of atomic operations, and

the same starting state

• Consider executions of P1 ∥ P2 ∥ P3

nr. of atomic op’s nr. of executions

2 90

3 1680

4 34 650

5 756 756

• Factorial growth!

• Different executions can lead to different final states.

• Even for simple systems: impossible to consider every possible execution in isolation

19

Factorial Explosion

The number of executions grows exponentially!

For n processes with m atomic statements each:

number of executions =
(n ∗m)!

m!n

• n=m=5 gives 311680371562560, i.e. > 3 ∗ 1014

• It would take ten million years to check, checking one execution each second!

• ... for each choice of input

• Testing hopeless as a validation technique!

How can we reduce the complexity?

20

The “at-most-once” Property

Fine-grained atomicity

Only the most basic operations (R/W) are atomic

• However, some non-atomic interactions appear to be atomic

• Note expressions only perform read-accesses (unlike statements)

• A critical reference in an expression e is a variable that is changed by another process

• An expression without critical references is evaluated as if atomic

Definition (At-most-once property)

x := e satisfies the amo-property if either

1. e contains no critical reference, or

2. e contains at most one critical reference and x is not referenced by other processes

Assignments with the at-most-once property can be considered atomic!

21

At-most-once examples

x, y shared variables, r, s local variables

Await

{x=y=0} co x := x+1 | | y := x+1 oc {x = 1 & (y = 1 | y = 2)}
{x=y=0} co x := y+1 | | y := x+1 oc {(x , y) ∈ { (1 , 1) , (1 , 2) , (2 , 1)}}
{x=y=0} co x := y+1 | | x := y+3 | | y := 1 oc {y = 1 & 1<=x<=4}
{x=y=0} co r := y+1 | | s := y−1 | | y := 5 oc {?}

Beware of unintuitive behavior:

Await

{ x = 0 } co r := x−x | | x := 5 oc { r = 0? }
{ x = 0 } co x := x | | . . . oc { ? }

22

A Minimal Language for

Concurrency

The Await Language

• Await is used to illustrate basic ideas about concurrency without

boilerplate from mainstream languages

• Their implementation in mainstream languages is shown afterwards

Features of Await

• Standard imperative constructs: sequence (;), assignment, branching, loops

• co .. || .. oc for parallel execution

• < .. > for atomic sections

• await for synchronization

23

Syntax: The Sequential Part

We use the following syntax for non-parallel control-flow

Declarations

int i = 3

int a[1:n]

int a[n] (= int a[0:n-1])

Assignments

x := e

a[i] := e

x++

sum +:= i

• Sequential composition

statement; statement

• Compound statement (block)

{statement}
• Conditional

if (condition) statement

• While-loop

while (condition) statement

• For-loop

for [i=0 to n−1] statement

24

Parallel Statements

Await

co S1 | | S2 | | . . . | | Sn oc

• The statements Si are executed in parallel with each other

• The parallel statement terminates when all Si have terminated (“join” synchronization)

Await

{x = 0 & y = 0} co x := 1 | | y := 1 oc ; z := x+y { z = 2 }

25

Parallel Processes

For modularity, we also allow processes

Await

process f oo {
i n t sum := 0 ;

f o r [i=1 to 10]

sum +:= 1 ;

x := sum ;

}

• Processes are declared globally

• All declared processes are started in the beginning and evaluated in an arbitrary order

26

Example

Await

process bar1 {
f o r [i = 1 to n]

w r i t e (i) ;

}

Starts one process

The numbers are printed in

increasing order.

Await

process bar2a { w r i t e (1) ; }
process bar2b { w r i t e (2) ; }

Starts two processes

The numbers are printed in arbitrary order

because the execution order of the processes

is non-deterministic.

Await

process barn [i=1 to n]{
w r i t e (i) ;

}

Starts n processes

The numbers are printed in arbitrary order.

27

Semantic Concepts (“Interleaving Semantics”)

• A state in a parallel program consists of the values of the variables at a given moment in

the execution.

• Each process executes independently of the others by modifying global variables using

atomic operations.

• Do we really need to consider all interleavings to reason about possible states?

• How to exclude some interleavings?

• How to make reasoning modular and compositional?

Next, a first helping concept: interference

28

Read- and Write-variables

• V : statement ∪ expression → P(variable): set of global variables in a statement or

expression

• W : statement → P(variable): set of global write–variables

Read-variables

V(x := e) = V(e) ∪ {x}
V(S1; S2) = V(S1) ∪ V(S2)

V(if (b) then S) = V(b) ∪ V(S)
V(while(b)S) = V(b) ∪ V(S)

Remaining cases analogous

W analogously, except the only difference for read-only expressions.

W(expression) = ∅
Example
W(x := e) = {x}

29

Disjoint Processes

Interference freedom

Processes without common global variables are interference-free

V(S1) ∩ V(S2) = ∅

• Statements obviously cannot perform any action that influence each other
• As all interleavings are the same, one can just run S1;S2 for analysis
• Sequence S1;S2 is of course less performant

• If variables accessed by both processes are read-only variables, the same holds

• Is the following interference criterion is sufficient?

W(S1) ∩W(S2) = ∅

• Write-variables are important for race conditions, critical references/amo-property, ...

• If only read-only variables are accessed, no races or critical references exist

30

Critical Sections and Invariants

Properties

Read-only variables are a very coarse way to think,

how to express more specific properties?

• A property is a predicate over a program, resp. its execution and reachable states

• A program has a property, if the property is true for all possible executions of the program

Classification (I)

• Safety property: program will never reach an undesirable state

• Liveness property: program will eventually reach a desirable state

Classification (II)

• Termination: all histories are finite.

• Partial correctness: If the program terminates, it is in a desired final state (safety

property).

• Total correctness: The program terminates and is partially correct.
31

How to Check Properties of Programs?

• Testing or debugging increases confidence in a program,

but gives no guarantee of correctness.

• Operational reasoning considers all executions of a program explicitly

• Formal analyses reason about the properties of a program

without considering the executions one by one.

Dijkstra’s dictum:

A test can only show errors, but never prove that a program is correct!

32

Properties: Invariants (I)

Definition (Invariant)

An invariant is a property of program states, that holds for all reachable states of a program.

• Invariant (adj): constant, unchanging

• Prototypical safety property

• Appropriate for non-terminating systems (does not require a final state)

• All reachable states often too strong

Kinds of Invariants

• Strong invariant: Holds for all reachable states

• Weak invariant: Holds for all states where an atomic block starts or ends

• Loop invariant: Holds at the start and end of a loop body

• Global invariant: Reasons about state of many processes

• Local invariant: Reasons about state of one process

33

Properties: Invariants (II)

• How to show that a program has a weak invariant?

• Without exploring all executions?

Induction for Invariants

One can show that a program has a weak invariant by

1. Showing that the invariant property holds initially,

2. and that each atomic statement maintains the property

34

Critical Sections

To enforce atomicity, we have a special construct in the language : <S> performs S atomically

Use of Critical Sections

• When the processes interfere: synchronization to restrict the possible interleavings

• Synchronization gives coarser grained atomic operations (“atomic blocks”)

• Combines operations into an atomic lock where the process shall not be interrupted

Characteristics of Atomic Operations

• Internal states are not visible to other processes.

• Variables cannot be changed underway by other processes.

• S : executed like a transaction

Await

i n t x :=0; co <x :=x+1> | | <x :=x−1> oc {x=0}

35

Conditional Critical Sections

Await statement

The <await (B) S > statement executes the statement S once the boolean condition B holds.

• Boolean condition B: await condition, evaluated atomically

• Body S : critical section executed atomically

The following delays the decrement until y > 0 holds – or does not terminate if it never holds

Await

<await (y > 0) y := y−1> { y >= 0 }

• Important that B has no side-effects!

36

Typical Pattern for Critical Sections

• One wants to avoid using atomic blocks as much as possible

• Use them in certain places to enable correct, interleaved executions

Await

i n t coun t e r = 1 ; // g l o b a l v a r i a b l e

// s t a r t CS

< await (coun t e r > 0) coun t e r := counte r −1; >

critical statements ;

// end CS

coun t e r := coun t e r+1

• “Critical statements” not enclosed in atomic block

• Invariant: 0 ≤ counter ≤ 1 (= counter acts as binary lock)

• Next lectures: patterns for correctness while minimizing atomic blocks 37

Example: Synchronization of Strongly Coupled Producer-Consumer System

Await

i n t buf , p := 0 ; c := 0 ;

Await

process Producer {
i n t a [N] ; . . .

whi le (p < N){
<await (p = c) >;

bu f := a [p] ;

p := p+1;

}}

Await

process Consumer {
i n t b [N] ; . . .

whi le (c < N) {
<await (p>c) >;

b [c] := buf ;

c := c+1;

}}

• buf as only shared variable, acting as a one element buffer

• Tasks of synchronization:

• Coordinating the “speed” of the two processes

• Avoiding to read data which is not yet produced

38

Example (Continued)

a:

buf: p: c: N:

b:

• A strong invariant holds in all states in all executions of the program.

• Global invariant : c ≤ p ≤ c+1

• Local invariant (Producer) : 0 ≤ p ≤ N

39

Wrap-Up

Summary

• Shared memory

• Synchronization

• Atomic operations,

• Interleavings

• await-language and critical sections

40

	Shared Memory Concurrency
	A Minimal Language for Concurrency
	Critical Sections and Invariants

