
IN5170 Models of Concurrency

Lecture 2: Java

Einar Broch Johnsen, S. Lizeth Tapia Tarifa, Eduard Kamburjan, Juliane Päßler

August 28, 2023

University of Oslo

Summary of Last Lecture

• Shared memory systems

• Parallel execution: many interleavings

• Atomic operations

• Program order, At-Most-Once, Interference

• Await-language and Critical sections

• Synchronization

1

Purpose

• Lecture focuses on general concepts in a simple language

• Mainstream language embed concurrency in further structures

• How to map concepts to languages?

• Part I: Basic Java Concurrency

• Part II: Concurrency in Go

• Part III: Concurrency in Rust

2

Threads Basics

Threads in Java

• Map to native threads to enable multi-core execution

Processes vs. Threads (in Java)

• A process is an independent instance running in its own memory space.

• A thread runs inside a process and shares its resources with other threads

• We focus on threads, multi-process applications in Java are possible but come with

OS/JVM specific issues

• Both are handled by OS scheduler

• Both have costly context switches but threads are more light-weight

• Only processes require full cache flushing as they change virtual memory

• Thread-switch can retain caches, only changes processor state (registers etc.)

3

Threads

• The Thread class encapsulates a system thread

• The Runnable interface is used to define thread behavior

4

Threads

• The Thread class encapsulates a system thread

• The Runnable interface is used to define thread behavior

Java

c l a s s P r i n t e r implements Runnable {
pr i va te S t r i n g t e x t ;

pub l i c P r i n t e r (S t r i n g t e x t) { t h i s . t e x t = t e x t ; }
pub l i c void run () { System . out . p r i n t l n (t e x t) ; }
pub l i c s t a t i c void main (S t r i n g a r g s []) {

Thread t1 = new Thread (new P r i n t e r (” He l l o ”)) ;

Thread t2 = new Thread (new P r i n t e r (” Concur rency ”)) ;

t1 . s t a r t () ; t2 . s t a r t () ;

}}

4

Threads

• The Thread class encapsulates a system thread

• The Runnable interface is used to define thread behavior

Start vs run

• Thread.start() starts a new concurrent thread

• Runnable.run() just executes the code sequentially

• Thread.start() calls Runnable.run() internally

• Calling Runnable.run() directly rarely makes sense

4

Threads

• The Thread class encapsulates a system thread

• The Runnable interface is used to define thread behavior

Common pattern: anonymous runnables

Java

// wi th lambdas

new Thread (() −> { /∗ do t h i n g s ∗/ }) . s t a r t () ;

// pre Java 8

new Thread (new Runnable (){
pub l i c void run () { /∗ do t h i n g s ∗/ }}) . s t a r t () ;

4

Threads

Shared State

Shared state between threads is introduced through multiple means

• Static state

• Shared references to objects

• Resources, e.g., files

5

Threads

Shared State

Shared state between threads is introduced through multiple means

• Static state

• Shared references to objects

• Resources, e.g., files

Java

c l a s s C { pub l i c s t a t i c i n t i = 0 }
. . .

new Thread (() −> { i++ }) . s t a r t () ;

new Thread (() −> { i++ }) . s t a r t () ;

5

Threads

Shared State

Shared state between threads is introduced through multiple means

• Static state

• Shared references to objects

• Resources, e.g., files

Java

c l a s s C { pub l i c i n t i = 0 }
. . .

f i n a l C c = new C () ; // on l y f i n a l v a r i a b l e can be cap tu r ed

new Thread (() −> { c . i++ }) . s t a r t () ;

new Thread (() −> { c . i++ }) . s t a r t () ;

5

Threads

Shared State

Shared state between threads is introduced through multiple means

• Static state

• Shared references to objects

• Resources, e.g., files

Java

//No i n t e r n a l s ha r i ng , path may even be d i f f e r e n t (l i n k s)

new Thread (() −> { new F i l e (”/ path /”) . d e l e t e () ; }) . s t a r t () ;

new Thread (() −> { new F i l e (”/ path /”) . d e l e t e () ; }) . s t a r t () ;

5

Threads

• Java offers some additional operations that are abstracted away in Await

• Static methods of Thread refer to current thread

• join waits for the thread to finish

• sleep suspends the thread for at least n milliseconds

• yield gives the scheduler the signal to schedule someone else first

6

Threads

• Java offers some additional operations that are abstracted away in Await

• Static methods of Thread refer to current thread

• join waits for the thread to finish

• sleep suspends the thread for at least n milliseconds

• yield gives the scheduler the signal to schedule someone else first

Java

pub l i c s t a t i c void main (S t r i n g a r g s []) {
Thread t1 = new Thread (new P r i n t e r (” He l l o ”)) ;

Thread t2 = new Thread (new P r i n t e r (” Concur rency ”)) ;

t1 . s t a r t () ; t1 . j o i n () ; // wa i t s f o r t1 to f i n i s h

t2 . s t a r t () ;

}

6

Threads

• Java offers some additional operations that are abstracted away in Await

• Static methods of Thread refer to current thread

• join waits for the thread to finish

• sleep suspends the thread for at least n milliseconds

• yield gives the scheduler the signal to schedule someone else first

Java

i n t i = 0 ; // sha r ed

. . .

return m(){
whi le (i == 0) Thread . s l e e p (1 0) ; //some con s t an t chosen

return 10/ i ;

}

6

Threads

• Java offers some additional operations that are abstracted away in Await

• Static methods of Thread refer to current thread

• join waits for the thread to finish

• sleep suspends the thread for at least n milliseconds

• yield gives the scheduler the signal to schedule someone else first

Await

i n t i = 0 ; // sha r ed

. . .

r e t u r n m(){
whi le (i == 0) Thread . y i e l d () ;

r e t u r n 10/ i ;

}

6

Quiz: Java and Async

Await

co s1 | | s2 oc ; s3

Java

Thread t1 = new Thread (() −> { s1 }) ;
Thread t2 = new Thread (() −> { s2 }) ;
Thread t3 = new Thread (() −> { s3 }) ;
??

7

Quiz: Java and Async

Await

co s1 | | s2 oc ; s3

Java

Thread t1 = new Thread (() −> { s1 }) ;
Thread t2 = new Thread (() −> { s2 }) ;
Thread t3 = new Thread (() −> { s3 }) ;
t1 . s t a r t () ; t2 . s t a r t () ;

t1 . j o i n () ; t2 . j o i n () ;

t3 . s t a r t () ;

7

Quiz: Java and Async

Await

co <s1> | | <s2> oc

Java

pub l i c c l a s s C() {
??

s1

??

s2

??

}

7

Quiz: Java and Async

Await

co <s1> | | <s2> oc

Java

pub l i c c l a s s C() {
pub l i c s t a t i c synchronized void m1(){ s1 }
pub l i c s t a t i c synchronized void m2(){ s2 }
. . .

new Thread (() −> {C .m1 () ; }) . s t a r t () ;
new Thread (() −> {C .m2 () ; }) . s t a r t () ;
}

7

Quiz: Java and Async

In the following, we mostly show the code inside the threads and omit the Thread/Runnables

7

Atomic Blocks and synchronized

Synchronization

• Java does not have atomic blocks in the same form

• Instead: synchronized methods and blocks

Java

pub l i c c l a s s Synch ron i z edCounte r {
pr i va te i n t c = 0 ;

pub l i c synchronized void i n c r ement () {c++;}
pub l i c synchronized void decrement () {c−−;}
pub l i c synchronized i n t v a l u e () { return c ;}

}

• Synchronized methods are atomic per object

• Only one thread can execute such a method at any time

8

Synchronization

• All synchronized methods are synchronized with each other

• I.e., no two synchronized methods can be executed at the same time on one instance

9

Synchronization

• All synchronized methods are synchronized with each other

• I.e., no two synchronized methods can be executed at the same time on one instance

Java

Synch ron i z edCounte r c1 = new Synch ron i z edCounte r () ;

Synch ron i z edCounte r c2 = new Synch ron i z edCounte r () ;

Runnable r1 = new Runnable (){
pub l i c void run () { c1 . i n c r ement () ; } }

Runnable r2 = new Runnable (){
pub l i c void run () { c1 . i n c r ement () ; } }

Runnable r3 = new Runnable (){
pub l i c void run () { c1 . decrement () ; } }

Runnable r4 = new Runnable (){
pub l i c void run () { c2 . i n c r ement () ; } }

9

Synchronization

• All synchronized methods are synchronized with each other

• I.e., no two synchronized methods can be executed at the same time on one instance

The following will not interleave on c1:

Java

new Thread (r1) . s t a r t () ;

new Thread (r2) . s t a r t () ;

9

Synchronization

• All synchronized methods are synchronized with each other

• I.e., no two synchronized methods can be executed at the same time on one instance

The following will also not interleave on c1:

Java

new Thread (r1) . s t a r t () ;

new Thread (r3) . s t a r t () ;

9

Synchronization

• All synchronized methods are synchronized with each other

• I.e., no two synchronized methods can be executed at the same time on one instance

The following will interleave – the call is to two different objects

Java

new Thread (r1) . s t a r t () ;

new Thread (r4) . s t a r t () ;

9

Synchronization

• Synchronized static methods are per class

• This is almost a global atomic block

10

Synchronization

• Synchronized static methods are per class

• This is almost a global atomic block

Java

pub l i c c l a s s Sta t i cSyncCoun t e r {
pr i va te s t a t i c i n t c = 0 ;

pub l i c synchronized s t a t i c void i n c r ement () {c++;}
pub l i c synchronized s t a t i c void decrement () {c−−;}
pub l i c synchronized s t a t i c i n t v a l u e () { return c ;}

}

10

Synchronization

• Synchronized static methods are per class

• This is almost a global atomic block

Java

Runnable s1 = new Runnable (){
pub l i c void run () { Sta t i cSyncCoun t e r . i n c r ement () ; } }

Runnable s2 = new Runnable (){
pub l i c void run () { Sta t i cSyncCoun t e r . decrement () ; } }

10

Synchronization

• Synchronized static methods are per class

• This is almost a global atomic block

The following will not interleave

Java

new Thread (s1) . s t a r t () ;

new Thread (s2) . s t a r t () ;

10

Synchronization

• Synchronized blocks can be used outside methods with explicit lock

• Any object can be a lock, just need some identity

• Synchronized methods have this as the lock

11

Synchronization

• Synchronized blocks can be used outside methods with explicit lock

• Any object can be a lock, just need some identity

• Synchronized methods have this as the lock

Java

pub l i c c l a s s C(){
i n t l = 0 ;

i n t r = 0 ;

void method (Object lock , boolean l e f t){
synchronized (l o c k){

i f (l e f t) l++ e l s e r++;

}
}

}

Java

C c = new C () ;

Object o1 = new Object () ;

Object o2 = new Object () ;

// th r ead 1 :

c . method (o1 , true) ;

// th r ead 2 :

c . method (o2 , f a l s e) ;

11

Synchronization

• Synchronized blocks can be used outside methods with explicit lock

• Any object can be a lock, just need some identity

• Synchronized methods have this as the lock

Java

pub l i c c l a s s C(){
synchronized void method (){ . . . }
void method (){ synchronized (t h i s) { . . . } }

}

11

Atomic Expressions

JVM

Java is compiled down to JVM bytecode, which does not correspond

1-to-1 to machine instructions

Java

x++; // x i s on l y l o c a l v a r i a b l e , d e c l a r e d as l ong

How many machine instructions will this be?

12

Atomic Expressions

JVM

Java is compiled down to JVM bytecode, which does not correspond

1-to-1 to machine instructions

Java

x++; // x i s on l y l o c a l v a r i a b l e , d e c l a r e d as l ong

How many machine instructions will this be? 4-6

12

Atomic Expressions

JVM

Java is compiled down to JVM bytecode, which does not correspond

1-to-1 to machine instructions

Java

x++; // x i s on l y l o c a l v a r i a b l e , d e c l a r e d as l ong

JVM

The JVM has no registers, but loads from variables/heap onto a stack. All computations

target the top values on the stack.

12

Atomic Expressions

JVM

Java is compiled down to JVM bytecode, which does not correspond

1-to-1 to machine instructions

Java

x++; // x i s on l y l o c a l v a r i a b l e , d e c l a r e d as l ong

LLOAD_1 // push value from local variable #1

LCONST_1 // push value 1

LADD // add 2 top-most values

LSTORE_1 // store value into local variable #1

12

Atomic Expressions

JVM

Java is compiled down to JVM bytecode, which does not correspond

1-to-1 to machine instructions

Java

x++; // x i s on l y l o c a l v a r i a b l e , d e c l a r e d as l ong

• Reference reads and writes are atomic

• Basic type reads and writes except long and double are guaranteed to be atomic

• On 64bit machines, long and double reads and writes might be atomic, might be two

instructions

• Accessing variables modified by volatile is always atomic

12

Weak Memory and volatile

Weak Memory

Java Memory Model

The JVM defines a weak memory model.

A weak memory model allows certain reorderings in read and write operations.

• Mainly targeting performance, e.g., for cache optimization

x := a; y := 1; z := x; //y := 1 might flush cache

x := a; r := x; y := 1; z := r; //r is a register, not memory

• Can be done statically (by compiler) or dynamically (by processor)

• Which reorderings are allowed exactly, is defined by the memory model

• Strong memory model = no reorderings are allowed

13

Weak Memory

Java Memory Model

The JVM defines a weak memory model.

A weak memory model allows certain reorderings in read and write operations.

• Mainly targeting performance, e.g., for cache optimization

x := a; y := 1; z := x; //y := 1 might flush cache

x := a; r := x; y := 1; z := r; //r is a register, not memory

• Can be done statically (by compiler) or dynamically (by processor)

• Which reorderings are allowed exactly, is defined by the memory model

• Strong memory model = no reorderings are allowed

13

Weak Memory

Independence

Reordering must take into account whether the operations are independent

• x := 1; r := x; cannot be reordered

• r := x; x := 1; cannot be reordered

• Read-read reordering can reorder reads

• Write-read reordering can move a read before a write

• Read-write reorderings can move a write before a read

• Write-write reorderings change order of stores

• Some architectures also reorder other atomic operations

14

Weak Memory

Independence

Reordering must take into account whether the operations are independent

• x := 1; r := x; cannot be reordered

• r := x; x := 1; cannot be reordered

• Read-read reordering can reorder reads

• Write-read reordering can move a read before a write

• Read-write reorderings can move a write before a read

• Write-write reorderings change order of stores

• Some architectures also reorder other atomic operations

14

Weak Memory

Weak Memory Models can lead to very unintuitive results in concurrent settings

int x,y; //default 0

x := 1; //shared variable

r1 := y; //register

print r1;

y := 1; //shared variable

r2 := x;

print r2;

15

Weak Memory

Weak Memory Models can lead to very unintuitive results in concurrent settings

int x,y; //default 0

x := 1; //shared variable

r1 := y; //register

print r1;

y := 1; //shared variable

r2 := x;

print r2;

What are possible outputs?

15

Weak Memory

Weak Memory Models can lead to very unintuitive results in concurrent settings

int x,y; //default 0

x := 1; //shared variable

r1 := y; //register

print r1;

y := 1; //shared variable

r2 := x;

print r2;

Is 0,0 possible?

15

Weak Memory

Weak Memory Models can lead to very unintuitive results in concurrent settings

int x,y; //default 0

x := 1; //shared variable

r1 := y; //register

print r1;

y := 1; //shared variable

r2 := x;

print r2;

• If the read of x in the second thread is reordered, then 0,0 is possible

• This output cannot be explained by reasoning about interleavings

• If the language does not require variables to be initialized, we get out-of-thin-air values.

Then, even 12,13 is a possible output.

15

Weak Memory

Sequential Consistency

Most weak memory models guarantee sequential consistency: If there is no data race, then

the observable behavior of the program is as if under a strong memory model.

• “No data race” may be a very strong restriction and lead to unnecessary synchronization

• The term observable behavior depends on the programming language

• We need more fine-grained control – volatile

16

Weak Memory

Sequential Consistency

Most weak memory models guarantee sequential consistency: If there is no data race, then

the observable behavior of the program is as if under a strong memory model.

• “No data race” may be a very strong restriction and lead to unnecessary synchronization

• The term observable behavior depends on the programming language

• We need more fine-grained control – volatile

16

Weak Memory

Java

pub l i c c l a s s C {
pr i va te v o l a t i l e long l = 5 ;

long i n cRe t () { return l ++; } // c a l l e d from two th r e ad s

}

• All read and write accesses to l are atomic

• All write accesses to l are immediately visible to all threads

• In terms of memory model: no reads and writes to l are reordered before any write

• In terms of memory: l is read and written from global memory, not thread caches

• Does not introduce synchronization, but removes opportunities for optimization and makes

access more expensive

17

Weak Memory

Weak memory is a complex topic, mostly relevant to low level architectures and compilers

• Further operations: read-own-write-early, read-others-write-early

• Leaks to programmer in concurrent settings

• Hard to debug, most languages have no clearly defined memory model

• Often hardware-dependent solutions

Rough guideline on when to use volatile

• If a field is not supposed to have data races, do not use volatile

• If a field will have data races, and you do not want to remove them, consider using volatile

to avoid unintuitive behavior

18

Weak Memory

Weak memory is a complex topic, mostly relevant to low level architectures and compilers

• Further operations: read-own-write-early, read-others-write-early

• Leaks to programmer in concurrent settings

• Hard to debug, most languages have no clearly defined memory model

• Often hardware-dependent solutions

Rough guideline on when to use volatile

• If a field is not supposed to have data races, do not use volatile

• If a field will have data races, and you do not want to remove them, consider using volatile

to avoid unintuitive behavior

18

Further Concepts

Java’s Standard Library

• Java’s standard library offers further data structures for common patterns or to

encapsulate complex but efficient solutions

• Thread-safe collections are less efficient, but internally race-free versions of collections

• Atomic classes encapsulate data with efficient, atomic access

19

Standard Library

• Atomic classes are available for data and references

• Fixed operations that are atomic without synchronized blocks

• Are more efficient (less blocking), but less clear control flow

Java

pub l i c c l a s s Synch ron i z edCounte r {
pr i va te i n t c = 0 ;

pub l i c synchronized void i n c r ement () {c++;}
pub l i c synchronized void decrement () {c−−;}
pub l i c synchronized i n t v a l u e () { return c ;}

}

20

Standard Library

• Atomic classes are available for data and references

• Fixed operations that are atomic without synchronized blocks

• Are more efficient (less blocking), but less clear control flow

Java

pub l i c c l a s s Synch ron i z edCounte r {
pr i va te Atom i c I n t eg e r c = new Atom i c I n t eg e r (0) ;

pub l i c void i n c r ement () {c . incrementAndGet () ; }
pub l i c void decrement () {c . decrementAndGet () ; }
pub l i c i n t v a l u e () { return c . ge t () ; }

}

20

Standard Library

• Atomic classes are available for data and references

• Fixed operations that are atomic without synchronized blocks

• Are more efficient (less blocking), but less clear control flow

AtomicReference does not make the called methods of its content atomic.

Java

AtomicRefe rence<C> cache = new AtomicRefe rence<C>() ;

cache . ge t () ; // atomic

cache . ge t () .m() ; // m i s not atomic

20

Standard Library

21

Standard Library

• Thread-safe collections provide atomic methods to access lists etc.

Concurrent Collections

Provide concurrent implementations that enable concurrent access

• ConcurrentHashMap vs ConcurrentMap

• ConcurrentLinkedQueue and variants for lists without random access

• CopyOnWriteArrayList makes an arraylist concurrent by making a copy on every

write, is not efficient

21

Standard Library

Synchronized Collections

Normal implementations, but add synchronized at the right places

Java

<T> Co l l e c t i o n<T> s y n c h r o n i z e dC o l l e c t i o n (C o l l e c t i o n<T> c)

Usage:

Java

Ar r a yL i s t<Object> a = new Ar r a yL i s t <>();

C o l l e c t i o n<Object> b = C o l l e c t i o n s . s y n c h r o n i z e dC o l l e c t i o n (a) ;

// a c c e s s through a i s s t i l l u n s a f e

21

Thread Management

• In bigger applications, you may need to manage sets of threads

• We consider three concepts

• Lifecycle of a thread object

• Interrupts

• Thread pools

22

Lifecycle

• A created thread object is New

• After calling start the thread is either

• Running, i.e., executes right now

• Runnable, i.e., waits to be scheduled (yields gets you here)

• Waiting/Sleeping/Blocked, i.e., waits for time to pass or some notification or lock

• Once the internal run method terminates, the object is Dead

• Once a thread is dead it cannot be restarted

23

Interrupts

An interrupt is an indication to a thread that it should stop what it is doing and reconsider.

• Can be invoked using t.interrupt();

• This sets the Thread.interrupted flag,

• Some methods, like Thread.sleep() will throw a InterruptedException if active

• The run method does not – programmer must take care of reacting to this flag

Java

() −> {
// long computat ion 1

i f (Thread . i n t e r r u p t e d){ /∗ hand l e r ∗/ }
// long computat ion 2

}

24

Thread Pools

• Creating and starting threads is costly

• Dead threads cannot be reused

• Solution: create a set of threads that do not terminate, but wait for new runnables to

execute

• Automatic scaling

25

Thread Pools

An ExecutorService manages a set of threads, and accepts Runnable instance submissions

26

Thread Pools

An ExecutorService manages a set of threads, and accepts Runnable instance submissions

Java

// has e x a c t l y 2 t h r e ad s

Ex e c u t o r S e r v i c e s e r v i c e = Execu to r s . newFixedThreadPool (2) ;

s e r v i c e . submit (() −> { /∗ do t h i n g s ∗/ }) ;
s e r v i c e . submit (() −> { /∗ do t h i n g s ∗/ }) ;
s e r v i c e . submit (() −> { /∗ do t h i n g s ∗/ }) ;
// l a s t r unnab l e put i n query , w i l l be execu ted l a t e r

26

Thread Pools

An ExecutorService manages a set of threads, and accepts Runnable instance submissions

Java

Ex e c u t o r S e r v i c e s e r v i c e = Execu to r s . newCachedThreadPool (0 , 3) ;

// s t a r t s w i th 0 t h r e ad s

s e r v i c e . submit (() −> { /∗ do t h i n g s ∗/ }) ;
s e r v i c e . submit (() −> { /∗ do t h i n g s ∗/ }) ;
s e r v i c e . submit (() −> { /∗ do t h i n g s ∗/ }) ;
//up to 3 t h r e ad s runn ing

26

Thread Pools

• To join on such a task, we get a Future

• We will investigate futures in more detail in Part 2 of the course

Java

// has e x a c t l y 2 t h r e ad s

Ex e c u t o r S e r v i c e s e r v i c e = Execu to r s . newFixedThreadPool (2) ;

Future<I n t> f = s e r v i c e . submit (() −> { /∗ do ∗/ return 1 ; }) ;
. . .

I n t = f . ge t () ; // e s s e n t i a l l y a j o i n

• Thread pools have further capabilities (shutdown)

• Details very java-specific, omitted here

27

Outlook

• We use the material taught so far as the basis for obligs and exercises

• Next lectures connect concepts with corresponding Java concept

• Bigger projects use other concurrency libraries that build on java.util.concurrent,

e.g., Google Guava

28

	Threads Basics
	Atomic Blocks and synchronized
	Weak Memory and volatile
	Further Concepts

