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Summary of Last Lecture

• Shared memory systems

• Parallel execution: many interleavings

• Atomic operations

• Program order, At-Most-Once, Interference

• Await-language and Critical sections

• Synchronization
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Purpose

• Lecture focuses on general concepts in a simple language

• Mainstream language embed concurrency in further structures

• How to map concepts to languages?

• Part I: Basic Java Concurrency

• Part II: Concurrency in Go

• Part III: Concurrency in Rust
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Threads Basics



Threads in Java

• Map to native threads to enable multi-core execution

Processes vs. Threads (in Java)

• A process is an independent instance running in its own memory space.

• A thread runs inside a process and shares its resources with other threads

• We focus on threads, multi-process applications in Java are possible but come with

OS/JVM specific issues

• Both are handled by OS scheduler

• Both have costly context switches but threads are more light-weight

• Only processes require full cache flushing as they change virtual memory

• Thread-switch can retain caches, only changes processor state (registers etc.)

3



Threads

• The Thread class encapsulates a system thread

• The Runnable interface is used to define thread behavior
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Threads

• The Thread class encapsulates a system thread

• The Runnable interface is used to define thread behavior

Java

c l a s s P r i n t e r implements Runnable {
pr i va te S t r i n g t e x t ;

pub l i c P r i n t e r ( S t r i n g t e x t ) { t h i s . t e x t = t e x t ; }
pub l i c void run ( ) { System . out . p r i n t l n ( t e x t ) ; }
pub l i c s t a t i c void main ( S t r i n g a r g s [ ] ) {

Thread t1 = new Thread (new P r i n t e r ( ” He l l o ” ) ) ;

Thread t2 = new Thread (new P r i n t e r ( ” Concur rency ” ) ) ;

t1 . s t a r t ( ) ; t2 . s t a r t ( ) ;

}}
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Threads

• The Thread class encapsulates a system thread

• The Runnable interface is used to define thread behavior

Start vs run

• Thread.start() starts a new concurrent thread

• Runnable.run() just executes the code sequentially

• Thread.start() calls Runnable.run() internally

• Calling Runnable.run() directly rarely makes sense
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Threads

• The Thread class encapsulates a system thread

• The Runnable interface is used to define thread behavior

Common pattern: anonymous runnables

Java

// wi th lambdas

new Thread ( ( ) −> { /∗ do t h i n g s ∗/ } ) . s t a r t ( ) ;

// pre Java 8

new Thread (new Runnable ( ){
pub l i c void run ( ) { /∗ do t h i n g s ∗/ }} ) . s t a r t ( ) ;
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Threads

Shared State

Shared state between threads is introduced through multiple means

• Static state

• Shared references to objects

• Resources, e.g., files
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Threads

Shared State

Shared state between threads is introduced through multiple means

• Static state

• Shared references to objects

• Resources, e.g., files

Java

c l a s s C { pub l i c s t a t i c i n t i = 0 }
. . .

new Thread ( ( ) −> { i++ } ) . s t a r t ( ) ;

new Thread ( ( ) −> { i++ } ) . s t a r t ( ) ;

5



Threads

Shared State

Shared state between threads is introduced through multiple means

• Static state

• Shared references to objects

• Resources, e.g., files

Java

c l a s s C { pub l i c i n t i = 0 }
. . .

f i n a l C c = new C ( ) ; // on l y f i n a l v a r i a b l e can be cap tu r ed

new Thread ( ( ) −> { c . i++ } ) . s t a r t ( ) ;

new Thread ( ( ) −> { c . i++ } ) . s t a r t ( ) ;
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Threads

Shared State

Shared state between threads is introduced through multiple means

• Static state

• Shared references to objects

• Resources, e.g., files

Java

//No i n t e r n a l s ha r i ng , path may even be d i f f e r e n t ( l i n k s )

new Thread ( ( ) −> { new F i l e ( ”/ path /” ) . d e l e t e ( ) ; } ) . s t a r t ( ) ;

new Thread ( ( ) −> { new F i l e ( ”/ path /” ) . d e l e t e ( ) ; } ) . s t a r t ( ) ;
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Threads

• Java offers some additional operations that are abstracted away in Await

• Static methods of Thread refer to current thread

• join waits for the thread to finish

• sleep suspends the thread for at least n milliseconds

• yield gives the scheduler the signal to schedule someone else first
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Threads

• Java offers some additional operations that are abstracted away in Await

• Static methods of Thread refer to current thread

• join waits for the thread to finish

• sleep suspends the thread for at least n milliseconds

• yield gives the scheduler the signal to schedule someone else first

Java

pub l i c s t a t i c void main ( S t r i n g a r g s [ ] ) {
Thread t1 = new Thread (new P r i n t e r ( ” He l l o ” ) ) ;

Thread t2 = new Thread (new P r i n t e r ( ” Concur rency ” ) ) ;

t1 . s t a r t ( ) ; t1 . j o i n ( ) ; // wa i t s f o r t1 to f i n i s h

t2 . s t a r t ( ) ;

}
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Threads

• Java offers some additional operations that are abstracted away in Await

• Static methods of Thread refer to current thread

• join waits for the thread to finish

• sleep suspends the thread for at least n milliseconds

• yield gives the scheduler the signal to schedule someone else first

Java

i n t i = 0 ; // sha r ed

. . .

return m(){
whi le ( i == 0) Thread . s l e e p ( 1 0 ) ; //some con s t an t chosen

return 10/ i ;

}
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Threads

• Java offers some additional operations that are abstracted away in Await

• Static methods of Thread refer to current thread

• join waits for the thread to finish

• sleep suspends the thread for at least n milliseconds

• yield gives the scheduler the signal to schedule someone else first

Await

i n t i = 0 ; // sha r ed

. . .

r e t u r n m(){
whi le ( i == 0) Thread . y i e l d ( ) ;

r e t u r n 10/ i ;

}
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Quiz: Java and Async

Await

co s1 | | s2 oc ; s3

Java

Thread t1 = new Thread ( ( ) −> { s1 } ) ;
Thread t2 = new Thread ( ( ) −> { s2 } ) ;
Thread t3 = new Thread ( ( ) −> { s3 } ) ;
??
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Quiz: Java and Async

Await

co s1 | | s2 oc ; s3

Java

Thread t1 = new Thread ( ( ) −> { s1 } ) ;
Thread t2 = new Thread ( ( ) −> { s2 } ) ;
Thread t3 = new Thread ( ( ) −> { s3 } ) ;
t1 . s t a r t ( ) ; t2 . s t a r t ( ) ;

t1 . j o i n ( ) ; t2 . j o i n ( ) ;

t3 . s t a r t ( ) ;
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Quiz: Java and Async

Await

co <s1> | | <s2> oc

Java

pub l i c c l a s s C( ) {
??

s1

??

s2

??

}
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Quiz: Java and Async

Await

co <s1> | | <s2> oc

Java

pub l i c c l a s s C( ) {
pub l i c s t a t i c synchronized void m1(){ s1 }
pub l i c s t a t i c synchronized void m2(){ s2 }
. . .

new Thread ( ( ) −> {C .m1 ( ) ; } ) . s t a r t ( ) ;
new Thread ( ( ) −> {C .m2 ( ) ; } ) . s t a r t ( ) ;
}
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Quiz: Java and Async

In the following, we mostly show the code inside the threads and omit the Thread/Runnables
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Atomic Blocks and synchronized



Synchronization

• Java does not have atomic blocks in the same form

• Instead: synchronized methods and blocks

Java

pub l i c c l a s s Synch ron i z edCounte r {
pr i va te i n t c = 0 ;

pub l i c synchronized void i n c r ement ( ) {c++;}
pub l i c synchronized void decrement ( ) {c−−;}
pub l i c synchronized i n t v a l u e ( ) { return c ;}

}

• Synchronized methods are atomic per object

• Only one thread can execute such a method at any time
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Synchronization

• All synchronized methods are synchronized with each other

• I.e., no two synchronized methods can be executed at the same time on one instance
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Synchronization

• All synchronized methods are synchronized with each other

• I.e., no two synchronized methods can be executed at the same time on one instance

Java

Synch ron i z edCounte r c1 = new Synch ron i z edCounte r ( ) ;

Synch ron i z edCounte r c2 = new Synch ron i z edCounte r ( ) ;

Runnable r1 = new Runnable ( ){
pub l i c void run ( ) { c1 . i n c r ement ( ) ; } }

Runnable r2 = new Runnable ( ){
pub l i c void run ( ) { c1 . i n c r ement ( ) ; } }

Runnable r3 = new Runnable ( ){
pub l i c void run ( ) { c1 . decrement ( ) ; } }

Runnable r4 = new Runnable ( ){
pub l i c void run ( ) { c2 . i n c r ement ( ) ; } }
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Synchronization

• All synchronized methods are synchronized with each other

• I.e., no two synchronized methods can be executed at the same time on one instance

The following will not interleave on c1:

Java

new Thread ( r1 ) . s t a r t ( ) ;

new Thread ( r2 ) . s t a r t ( ) ;
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Synchronization

• All synchronized methods are synchronized with each other

• I.e., no two synchronized methods can be executed at the same time on one instance

The following will also not interleave on c1:

Java

new Thread ( r1 ) . s t a r t ( ) ;

new Thread ( r3 ) . s t a r t ( ) ;
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Synchronization

• All synchronized methods are synchronized with each other

• I.e., no two synchronized methods can be executed at the same time on one instance

The following will interleave – the call is to two different objects

Java

new Thread ( r1 ) . s t a r t ( ) ;

new Thread ( r4 ) . s t a r t ( ) ;

9



Synchronization

• Synchronized static methods are per class

• This is almost a global atomic block
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Synchronization

• Synchronized static methods are per class

• This is almost a global atomic block

Java

pub l i c c l a s s Sta t i cSyncCoun t e r {
pr i va te s t a t i c i n t c = 0 ;

pub l i c synchronized s t a t i c void i n c r ement ( ) {c++;}
pub l i c synchronized s t a t i c void decrement ( ) {c−−;}
pub l i c synchronized s t a t i c i n t v a l u e ( ) { return c ;}

}
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Synchronization

• Synchronized static methods are per class

• This is almost a global atomic block

Java

Runnable s1 = new Runnable ( ){
pub l i c void run ( ) { Sta t i cSyncCoun t e r . i n c r ement ( ) ; } }

Runnable s2 = new Runnable ( ){
pub l i c void run ( ) { Sta t i cSyncCoun t e r . decrement ( ) ; } }
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Synchronization

• Synchronized static methods are per class

• This is almost a global atomic block

The following will not interleave

Java

new Thread ( s1 ) . s t a r t ( ) ;

new Thread ( s2 ) . s t a r t ( ) ;
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Synchronization

• Synchronized blocks can be used outside methods with explicit lock

• Any object can be a lock, just need some identity

• Synchronized methods have this as the lock
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Synchronization

• Synchronized blocks can be used outside methods with explicit lock

• Any object can be a lock, just need some identity

• Synchronized methods have this as the lock

Java

pub l i c c l a s s C(){
i n t l = 0 ;

i n t r = 0 ;

void method ( Object lock , boolean l e f t ){
synchronized ( l o c k ){

i f ( l e f t ) l++ e l s e r++;

}
}

}

Java

C c = new C ( ) ;

Object o1 = new Object ( ) ;

Object o2 = new Object ( ) ;

// th r ead 1 :

c . method ( o1 , true ) ;

// th r ead 2 :

c . method ( o2 , f a l s e ) ;
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Synchronization

• Synchronized blocks can be used outside methods with explicit lock

• Any object can be a lock, just need some identity

• Synchronized methods have this as the lock

Java

pub l i c c l a s s C(){
synchronized void method ( ){ . . . }
void method ( ){ synchronized ( t h i s ) { . . . } }

}

11



Atomic Expressions

JVM

Java is compiled down to JVM bytecode, which does not correspond

1-to-1 to machine instructions

Java

x++; // x i s on l y l o c a l v a r i a b l e , d e c l a r e d as l ong

How many machine instructions will this be?
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Atomic Expressions

JVM

Java is compiled down to JVM bytecode, which does not correspond

1-to-1 to machine instructions

Java

x++; // x i s on l y l o c a l v a r i a b l e , d e c l a r e d as l ong

How many machine instructions will this be? 4-6
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Atomic Expressions

JVM

Java is compiled down to JVM bytecode, which does not correspond

1-to-1 to machine instructions

Java

x++; // x i s on l y l o c a l v a r i a b l e , d e c l a r e d as l ong

JVM

The JVM has no registers, but loads from variables/heap onto a stack. All computations

target the top values on the stack.
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Atomic Expressions

JVM

Java is compiled down to JVM bytecode, which does not correspond

1-to-1 to machine instructions

Java

x++; // x i s on l y l o c a l v a r i a b l e , d e c l a r e d as l ong

LLOAD_1 // push value from local variable #1

LCONST_1 // push value 1

LADD // add 2 top-most values

LSTORE_1 // store value into local variable #1
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Atomic Expressions

JVM

Java is compiled down to JVM bytecode, which does not correspond

1-to-1 to machine instructions

Java

x++; // x i s on l y l o c a l v a r i a b l e , d e c l a r e d as l ong

• Reference reads and writes are atomic

• Basic type reads and writes except long and double are guaranteed to be atomic

• On 64bit machines, long and double reads and writes might be atomic, might be two

instructions

• Accessing variables modified by volatile is always atomic
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Weak Memory and volatile



Weak Memory

Java Memory Model

The JVM defines a weak memory model.

A weak memory model allows certain reorderings in read and write operations.

• Mainly targeting performance, e.g., for cache optimization

x := a; y := 1; z := x; //y := 1 might flush cache

x := a; r := x; y := 1; z := r; //r is a register, not memory

• Can be done statically (by compiler) or dynamically (by processor)

• Which reorderings are allowed exactly, is defined by the memory model

• Strong memory model = no reorderings are allowed

13



Weak Memory

Java Memory Model

The JVM defines a weak memory model.

A weak memory model allows certain reorderings in read and write operations.

• Mainly targeting performance, e.g., for cache optimization

x := a; y := 1; z := x; //y := 1 might flush cache

x := a; r := x; y := 1; z := r; //r is a register, not memory

• Can be done statically (by compiler) or dynamically (by processor)

• Which reorderings are allowed exactly, is defined by the memory model

• Strong memory model = no reorderings are allowed
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Weak Memory

Independence

Reordering must take into account whether the operations are independent

• x := 1; r := x; cannot be reordered

• r := x; x := 1; cannot be reordered

• Read-read reordering can reorder reads

• Write-read reordering can move a read before a write

• Read-write reorderings can move a write before a read

• Write-write reorderings change order of stores

• Some architectures also reorder other atomic operations
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Weak Memory

Independence

Reordering must take into account whether the operations are independent

• x := 1; r := x; cannot be reordered

• r := x; x := 1; cannot be reordered

• Read-read reordering can reorder reads

• Write-read reordering can move a read before a write

• Read-write reorderings can move a write before a read

• Write-write reorderings change order of stores

• Some architectures also reorder other atomic operations
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Weak Memory

Weak Memory Models can lead to very unintuitive results in concurrent settings

int x,y; //default 0

x := 1; //shared variable

r1 := y; //register

print r1;

y := 1; //shared variable

r2 := x;

print r2;

15



Weak Memory

Weak Memory Models can lead to very unintuitive results in concurrent settings

int x,y; //default 0

x := 1; //shared variable

r1 := y; //register

print r1;

y := 1; //shared variable

r2 := x;

print r2;

What are possible outputs?
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Weak Memory

Weak Memory Models can lead to very unintuitive results in concurrent settings

int x,y; //default 0

x := 1; //shared variable

r1 := y; //register

print r1;

y := 1; //shared variable

r2 := x;

print r2;

Is 0,0 possible?

15



Weak Memory

Weak Memory Models can lead to very unintuitive results in concurrent settings

int x,y; //default 0

x := 1; //shared variable

r1 := y; //register

print r1;

y := 1; //shared variable

r2 := x;

print r2;

• If the read of x in the second thread is reordered, then 0,0 is possible

• This output cannot be explained by reasoning about interleavings

• If the language does not require variables to be initialized, we get out-of-thin-air values.

Then, even 12,13 is a possible output.

15



Weak Memory

Sequential Consistency

Most weak memory models guarantee sequential consistency: If there is no data race, then

the observable behavior of the program is as if under a strong memory model.

• “No data race” may be a very strong restriction and lead to unnecessary synchronization

• The term observable behavior depends on the programming language

• We need more fine-grained control – volatile

16



Weak Memory

Sequential Consistency

Most weak memory models guarantee sequential consistency: If there is no data race, then

the observable behavior of the program is as if under a strong memory model.

• “No data race” may be a very strong restriction and lead to unnecessary synchronization

• The term observable behavior depends on the programming language

• We need more fine-grained control – volatile
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Weak Memory

Java

pub l i c c l a s s C {
pr i va te v o l a t i l e long l = 5 ;

long i n cRe t ( ) { return l ++; } // c a l l e d from two th r e ad s

}

• All read and write accesses to l are atomic

• All write accesses to l are immediately visible to all threads

• In terms of memory model: no reads and writes to l are reordered before any write

• In terms of memory: l is read and written from global memory, not thread caches

• Does not introduce synchronization, but removes opportunities for optimization and makes

access more expensive
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Weak Memory

Weak memory is a complex topic, mostly relevant to low level architectures and compilers

• Further operations: read-own-write-early, read-others-write-early

• Leaks to programmer in concurrent settings

• Hard to debug, most languages have no clearly defined memory model

• Often hardware-dependent solutions

Rough guideline on when to use volatile

• If a field is not supposed to have data races, do not use volatile

• If a field will have data races, and you do not want to remove them, consider using volatile

to avoid unintuitive behavior
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Weak Memory

Weak memory is a complex topic, mostly relevant to low level architectures and compilers

• Further operations: read-own-write-early, read-others-write-early

• Leaks to programmer in concurrent settings

• Hard to debug, most languages have no clearly defined memory model

• Often hardware-dependent solutions

Rough guideline on when to use volatile

• If a field is not supposed to have data races, do not use volatile

• If a field will have data races, and you do not want to remove them, consider using volatile

to avoid unintuitive behavior
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Further Concepts



Java’s Standard Library

• Java’s standard library offers further data structures for common patterns or to

encapsulate complex but efficient solutions

• Thread-safe collections are less efficient, but internally race-free versions of collections

• Atomic classes encapsulate data with efficient, atomic access
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Standard Library

• Atomic classes are available for data and references

• Fixed operations that are atomic without synchronized blocks

• Are more efficient (less blocking), but less clear control flow

Java

pub l i c c l a s s Synch ron i z edCounte r {
pr i va te i n t c = 0 ;

pub l i c synchronized void i n c r ement ( ) {c++;}
pub l i c synchronized void decrement ( ) {c−−;}
pub l i c synchronized i n t v a l u e ( ) { return c ;}

}
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Standard Library

• Atomic classes are available for data and references

• Fixed operations that are atomic without synchronized blocks

• Are more efficient (less blocking), but less clear control flow

Java

pub l i c c l a s s Synch ron i z edCounte r {
pr i va te Atom i c I n t eg e r c = new Atom i c I n t eg e r ( 0 ) ;

pub l i c void i n c r ement ( ) {c . incrementAndGet ( ) ; }
pub l i c void decrement ( ) {c . decrementAndGet ( ) ; }
pub l i c i n t v a l u e ( ) { return c . ge t ( ) ; }

}

20



Standard Library

• Atomic classes are available for data and references

• Fixed operations that are atomic without synchronized blocks

• Are more efficient (less blocking), but less clear control flow

AtomicReference does not make the called methods of its content atomic.

Java

AtomicRefe rence<C> cache = new AtomicRefe rence<C>() ;

cache . ge t ( ) ; // atomic

cache . ge t ( ) .m( ) ; // m i s not atomic

20



Standard Library

21



Standard Library

• Thread-safe collections provide atomic methods to access lists etc.

Concurrent Collections

Provide concurrent implementations that enable concurrent access

• ConcurrentHashMap vs ConcurrentMap

• ConcurrentLinkedQueue and variants for lists without random access

• CopyOnWriteArrayList makes an arraylist concurrent by making a copy on every

write, is not efficient
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Standard Library

Synchronized Collections

Normal implementations, but add synchronized at the right places

Java

<T> Co l l e c t i o n<T> s y n c h r o n i z e dC o l l e c t i o n ( C o l l e c t i o n<T> c )

Usage:

Java

Ar r a yL i s t<Object> a = new Ar r a yL i s t <>();

C o l l e c t i o n<Object> b = C o l l e c t i o n s . s y n c h r o n i z e dC o l l e c t i o n ( a ) ;

// a c c e s s through a i s s t i l l u n s a f e
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Thread Management

• In bigger applications, you may need to manage sets of threads

• We consider three concepts

• Lifecycle of a thread object

• Interrupts

• Thread pools

22



Lifecycle

• A created thread object is New

• After calling start the thread is either

• Running, i.e., executes right now

• Runnable, i.e., waits to be scheduled (yields gets you here)

• Waiting/Sleeping/Blocked, i.e., waits for time to pass or some notification or lock

• Once the internal run method terminates, the object is Dead

• Once a thread is dead it cannot be restarted

23



Interrupts

An interrupt is an indication to a thread that it should stop what it is doing and reconsider.

• Can be invoked using t.interrupt();

• This sets the Thread.interrupted flag,

• Some methods, like Thread.sleep() will throw a InterruptedException if active

• The run method does not – programmer must take care of reacting to this flag

Java

( ) −> {
// long computat ion 1

i f ( Thread . i n t e r r u p t e d ){ /∗ hand l e r ∗/ }
// long computat ion 2

}
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Thread Pools

• Creating and starting threads is costly

• Dead threads cannot be reused

• Solution: create a set of threads that do not terminate, but wait for new runnables to

execute

• Automatic scaling

25



Thread Pools

An ExecutorService manages a set of threads, and accepts Runnable instance submissions

26



Thread Pools

An ExecutorService manages a set of threads, and accepts Runnable instance submissions

Java

// has e x a c t l y 2 t h r e ad s

Ex e c u t o r S e r v i c e s e r v i c e = Execu to r s . newFixedThreadPool ( 2 ) ;

s e r v i c e . submit ( ( ) −> { /∗ do t h i n g s ∗/ } ) ;
s e r v i c e . submit ( ( ) −> { /∗ do t h i n g s ∗/ } ) ;
s e r v i c e . submit ( ( ) −> { /∗ do t h i n g s ∗/ } ) ;
// l a s t r unnab l e put i n query , w i l l be execu ted l a t e r
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Thread Pools

An ExecutorService manages a set of threads, and accepts Runnable instance submissions

Java

Ex e c u t o r S e r v i c e s e r v i c e = Execu to r s . newCachedThreadPool ( 0 , 3 ) ;

// s t a r t s w i th 0 t h r e ad s

s e r v i c e . submit ( ( ) −> { /∗ do t h i n g s ∗/ } ) ;
s e r v i c e . submit ( ( ) −> { /∗ do t h i n g s ∗/ } ) ;
s e r v i c e . submit ( ( ) −> { /∗ do t h i n g s ∗/ } ) ;
//up to 3 t h r e ad s runn ing
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Thread Pools

• To join on such a task, we get a Future

• We will investigate futures in more detail in Part 2 of the course

Java

// has e x a c t l y 2 t h r e ad s

Ex e c u t o r S e r v i c e s e r v i c e = Execu to r s . newFixedThreadPool ( 2 ) ;

Future<I n t> f = s e r v i c e . submit ( ( ) −> { /∗ do ∗/ return 1 ; } ) ;
. . .

I n t = f . ge t ( ) ; // e s s e n t i a l l y a j o i n

• Thread pools have further capabilities (shutdown)

• Details very java-specific, omitted here
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Outlook

• We use the material taught so far as the basis for obligs and exercises

• Next lectures connect concepts with corresponding Java concept

• Bigger projects use other concurrency libraries that build on java.util.concurrent,

e.g., Google Guava
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