IN5170 Models of Concurrency

Lecture 2: Java

Einar Broch Johnsen, S. Lizeth Tapia Tarifa, Eduard Kamburjan, Juliane PaBler
August 28, 2023

University of Oslo

Summary of Last Lecture

Shared memory systems

Parallel execution: many interleavings

Atomic operations

Program order, At-Most-Once, Interference

Await-language and Critical sections

Synchronization

e Lecture focuses on general concepts in a simple language
e Mainstream language embed concurrency in further structures

e How to map concepts to languages?

e Part I: Basic Java Concurrency

e Part Il: Concurrency in Go

e Part lIl: Concurrency in Rust

Threads Basics

Threads in Java

e Map to native threads to enable multi-core execution

Processes vs. Threads (in Java)

e A process is an independent instance running in its own memory space.

e A thread runs inside a process and shares its resources with other threads

e We focus on threads, multi-process applications in Java are possible but come with
0S/JVM specific issues

e Both are handled by OS scheduler

e Both have costly context switches but threads are more light-weight

e Only processes require full cache flushing as they change virtual memory

e Thread-switch can retain caches, only changes processor state (registers etc.)

e The Thread class encapsulates a system thread

e The Runnable interface is used to define thread behavior

e The Thread class encapsulates a system thread
e The Runnable interface is used to define thread behavior

_ Java

class Printer implements Runnable {

private String text;

public Printer(String text) { this.text = text; }

public void run() { System.out.printin(text); }

public static void main(String args|[]) {
Thread t1 = new Thread(new Printer (" Hello"));
Thread t2 = new Thread(new Printer(” Concurrency”));
tl.start(); t2.start();

1

e The Thread class encapsulates a system thread

e The Runnable interface is used to define thread behavior

Thread.start () starts a new concurrent thread

Runnable.run() just executes the code sequentially

e Thread.start() calls Runnable.run() internally

Calling Runnable.run() directly rarely makes sense

e The Thread class encapsulates a system thread

e The Runnable interface is used to define thread behavior
Common pattern: anonymous runnables

_Java

// with lambdas
new Thread (() — { /* do things %/ }).start();
//pre Java 8
new Thread(new Runnable(){
public void run() { /* do things x/ }}).start();

Shared State

Shared state between threads is introduced through multiple means

Threads

Shared State

Shared state between threads is introduced through multiple means

e Static state

_ Java

class C { public static int i =0 }

new Thread (() — { i++ }).start();
new Thread (() — { i++ }).start();

Threads

Shared State

Shared state between threads is introduced through multiple means

e Static state

e Shared references to objects

_ Java

class C { public int i =0 }

final C ¢c = new C(); //only final variable can be captured
new Thread (() — { c.i++ }).start();
new Thread (() = { c.i++ }).start();

Threads

Shared State

Shared state between threads is introduced through multiple means

e Static state
e Shared references to objects

e Resources, e.g., files

_ Java

//No internal sharing, path may even be different (links)

new Thread (() — { new File("/path/").delete();}).start();
new Thread (() — { new File(”/path/").delete();}).start();

e Java offers some additional operations that are abstracted away in Await

e Static methods of Thread refer to current thread

e Java offers some additional operations that are abstracted away in Await
e Static methods of Thread refer to current thread
e join waits for the thread to finish

_ Java

public static void main(String args[]) {
Thread t1 = new Thread(new Printer (" Hello"));
Thread t2 = new Thread(new Printer(” Concurrency”));
tl.start (); tl.join(); // waits for tl to finish
t2.start ();

e Java offers some additional operations that are abstracted away in Await
Static methods of Thread refer to current thread

e join waits for the thread to finish
e sleep suspends the thread for at least n milliseconds

_ Java

int i = 0; //shared

return m(){
while (i = 0) Thread.sleep (10); //some constant chosen
return 10/i;

e Java offers some additional operations that are abstracted away in Await

Static methods of Thread refer to current thread

e join waits for the thread to finish

e sleep suspends the thread for at least n milliseconds

yield gives the scheduler the signal to schedule someone else first

_ Await
int i = 0; //shared

return m(){
while(i = 0) Thread.yield ();
return 10/1i;

Quiz: Java and Async

Await — Java
’7 co sl || s2 oc; s3

Thread t1 = new Thread (() — {sl1});
Thread t2 = new Thread (() — {s2});

Thread t3 = new Thread (() — {s3});
77

Quiz: Java and Async

Await — Java
(co sl || s2 oc; s3

Thread t1 = new Thread (() — {sl1});
Thread t2 = new Thread (() — {s2});
Thread t3 = new Thread (() — {s3});
tl.start (); t2.start();

tl.join (); t2.join();

t3.start ();

Quiz: Java and Async

Await — Java
(co <sl> || <s2> oc

public class C() {
77
sl
77
s2
77

}

Quiz: Java and Async

Await — Java
’7 co <sl> || <s2> oc

public class C() {
public static synchronized void ml(){sl}

public static synchronized void m2(){s2}

new Thread(() — {C.ml();}).start();
new Thread(() — {C.m2();}).start();

}

Quiz: Java and Async

In the following, we mostly show the code inside the threads and omit the Thread/Runnables

Atomic Blocks and synchronized

Synchronization

e Java does not have atomic blocks in the same form
e Instead: synchronized methods and blocks

_ Java

public class SynchronizedCounter {

private int c = 0;
public synchronized void increment() {c++;}
public synchronized void decrement() {c——;}

public synchronized int value() {return c;}

e Synchronized methods are atomic per object
e Only one thread can execute such a method at any time

Synchronization

e All synchronized methods are synchronized with each other

e l.e., no two synchronized methods can be executed at the same time on one instance

Synchronization

e All synchronized methods are synchronized with each other
e |.e., no two synchronized methods can be executed at the same time on one instance

_ Java

SynchronizedCounter cl = new SynchronizedCounter ();
SynchronizedCounter c2 = new SynchronizedCounter ();
Runnable rl1 = new Runnable(){

public void run() { cl.increment(); } }
Runnable r2 = new Runnable(){

public void run() { cl.increment(); } }
Runnable r3 = new Runnable(){

public void run() { cl.decrement(); } }
Runnable r4 = new Runnable(){

public void run() { c2.increment(); } }

Synchronization

e All synchronized methods are synchronized with each other

e l.e., no two synchronized methods can be executed at the same time on one instance
The following will not interleave on c1:

Java

new Thread(rl).start();
new Thread(r2).start();

Synchronization

e All synchronized methods are synchronized with each other

e l.e., no two synchronized methods can be executed at the same time on one instance
The following will also not interleave on c1:

Java

new Thread(rl).start();
new Thread(r3).start();

Synchronization

e All synchronized methods are synchronized with each other

e l.e., no two synchronized methods can be executed at the same time on one instance
The following will interleave — the call is to two different objects

Java

new Thread(rl).start();
new Thread(r4).start();

Synchronization

e Synchronized static methods are per class

e This is almost a global atomic block

10

Synchronization

e Synchronized static methods are per class

e This is almost a global atomic block

_ Java

public class StaticSyncCounter {
private static int c = O0;
public synchronized static void increment() {c++;}
public synchronized static void decrement() {c——;}
public synchronized static int value() {return c;}

10

Synchronization

e Synchronized static methods are per class

e This is almost a global atomic block

_ Java

Runnable sl = new Runnable(){

public void run() { StaticSyncCounter.increment(); } }
Runnable s2 = new Runnable(){

public void run() { StaticSyncCounter.decrement(); } }

10

Synchronization

e Synchronized static methods are per class

e This is almost a global atomic block
The following will not interleave

Java

new Thread(sl).start();
new Thread(s2).start();

10

Synchronization

e Synchronized blocks can be used outside methods with explicit lock

11

Synchronization

e Synchronized blocks can be used outside methods with explicit lock
e Any object can be a lock, just need some identity

_Java

public class C(){
int | = 0;
int r = 0;
void method(Object lock, boolean left){
synchronized (lock){
if(left) I4++ else r++;

11

Synchronization

e Synchronized blocks can be used outside methods with explicit lock
e Any object can be a lock, just need some identity

e Synchronized methods have this as the lock

_ Java

public class C(){
synchronized void method(){ ... }
void method(){ synchronized(this) {...} }

}

11

Atomic Expressions

JVM

Java is compiled down to JVM bytecode, which does not correspond
1-to-1 to machine instructions

_ Java

x++; // x is only local variable, declared as long

How many machine instructions will this be?

Atomic Expressions

JVM

Java is compiled down to JVM bytecode, which does not correspond

1-to-1 to machine instructions

_ Java

x++; // x is only local variable, declared as long

How many machine instructions will this be? 4-6

Atomic Expressions

JVM

Java is compiled down to JVM bytecode, which does not correspond

1-to-1 to machine instructions

_ Java

x++; // x is only local variable, declared as long

JVM

The JVM has no registers, but loads from variables/heap onto a stack. All computations
target the top values on the stack.

Atomic Expressions

JVM

Java is compiled down to JVM bytecode, which does not correspond

1-to-1 to machine instructions

_ Java

x++; // x is only local variable, declared as long

LLOAD_1 // push value from local variable #1
LCONST_1 // push value 1
LADD // add 2 top-most values

LSTORE_1 // store value into local variable #1

Atomic Expressions

JVM
Java is compiled down to JVM bytecode, which does not correspond
1-to-1 to machine instructions

_ Java

x++; // x is only local variable, declared as long

o Reference reads and writes are atomic
e Basic type reads and writes except long and double are guaranteed to be atomic

On 64bit machines, long and double reads and writes might be atomic, might be two

instructions

e Accessing variables modified by volatile is always atomic

Weak Memory and volatile

Weak Memory

Java Memory Model

The JVM defines a weak memory model.
A weak memory model allows certain reorderings in read and write operations.

13

Weak Memory

Java Memory Model

The JVM defines a weak memory model.
A weak memory model allows certain reorderings in read and write operations.

e Mainly targeting performance, e.g., for cache optimization
X 1=a; y:=1; z 1= x; //y := 1 might flush cache
X :=a; r ::=x;y:=1; z :=1r; //r is a register, not memory

e Can be done statically (by compiler) or dynamically (by processor)
e Which reorderings are allowed exactly, is defined by the memory model

e Strong memory model = no reorderings are allowed

13

Reordering must take into account whether the operations are independent

e x :=1; r := x; cannot be reordered

x; x := 1; cannot be reordered

[]
R
]

14

Reordering must take into account whether the operations are independent

e x :=1; r := x; cannot be reordered

x; x := 1; cannot be reordered

[]
R
]

Read-read reordering can reorder reads

Write-read reordering can move a read before a write

Read-write reorderings can move a write before a read

Write-write reorderings change order of stores

Some architectures also reorder other atomic operations

14

Weak Memory

Weak Memory Models can lead to very unintuitive results in concurrent settings

15

Weak Memory

Weak Memory Models can lead to very unintuitive results in concurrent settings

int x,y; //default O

x :=1; //shared variable y :=1; //shared variable
rl :=y; //register r2 := x;
print ri; print r2;

What are possible outputs?

15

Weak Memory

Weak Memory Models can lead to very unintuitive results in concurrent settings

int x,y; //default O

x :=1; //shared variable y :=1; //shared variable
rl :=y; //register r2 := x;
print ri; print r2;

Is 0,0 possible?

15

Weak Memory

Weak Memory Models can lead to very unintuitive results in concurrent settings

int x,y; //default O

x :=1; //shared variable y :=1; //shared variable
rl :=y; //register r2 := x;
print ri; print r2;

e If the read of x in the second thread is reordered, then 0,0 is possible
e This output cannot be explained by reasoning about interleavings

e If the language does not require variables to be initialized, we get out-of-thin-air values.

Then, even 12,13 is a possible output.

15

Sequential Consistency

Most weak memory models guarantee sequential consistency: If there is no data race, then
the observable behavior of the program is as if under a strong memory model.

16

Sequential Consistency

Most weak memory models guarantee sequential consistency: If there is no data race, then
the observable behavior of the program is as if under a strong memory model.

e “No data race” may be a very strong restriction and lead to unnecessary synchronization
e The term observable behavior depends on the programming language

e We need more fine-grained control — volatile

16

Weak Memory

_ Java

public class C {
private volatile long | = 5;
long incRet() { return I++; } //called from two threads

All read and write accesses to 1 are atomic

All write accesses to 1 are immediately visible to all threads

In terms of memory model: no reads and writes to 1 are reordered before any write

In terms of memory: 1 is read and written from global memory, not thread caches

Does not introduce synchronization, but removes opportunities for optimization and makes
access more expensive

17

Weak Memory

Weak memory is a complex topic, mostly relevant to low level architectures and compilers

e Further operations: read-own-write-early, read-others-write-early
e leaks to programmer in concurrent settings
e Hard to debug, most languages have no clearly defined memory model

e Often hardware-dependent solutions

18

Weak Memory

Weak memory is a complex topic, mostly relevant to low level architectures and compilers

e Further operations: read-own-write-early, read-others-write-early
e leaks to programmer in concurrent settings
e Hard to debug, most languages have no clearly defined memory model

e Often hardware-dependent solutions
Rough guideline on when to use volatile

e If a field is not supposed to have data races, do not use volatile

e If a field will have data races, and you do not want to remove them, consider using volatile
to avoid unintuitive behavior

18

Further Concepts

Java’s Standard Lib

e Java's standard library offers further data structures for common patterns or to
encapsulate complex but efficient solutions

e Thread-safe collections are less efficient, but internally race-free versions of collections

e Atomic classes encapsulate data with efficient, atomic access

19

Standard Library

e Atomic classes are available for data and references
e Fixed operations that are atomic without synchronized blocks

e Are more efficient (less blocking), but less clear control flow

_Java

public class SynchronizedCounter {
private int ¢ = 0;
public synchronized void increment() {c++;}
public synchronized void decrement() {c——;}
public synchronized int value() {return c;}

20

Standard Library

e Atomic classes are available for data and references
e Fixed operations that are atomic without synchronized blocks

e Are more efficient (less blocking), but less clear control flow

_Java

public class SynchronizedCounter {
private Atomiclnteger ¢ = new Atomiclnteger(0);
public void increment() {c.incrementAndGet();}
public void decrement() {c.decrementAndGet();}
public int value() {return c.get();}

20

Standard Library

e Atomic classes are available for data and references
e Fixed operations that are atomic without synchronized blocks

e Are more efficient (less blocking), but less clear control flow

AtomicReference does not make the called methods of its content atomic.

Java

AtomicReference<C> cache = new AtomicReference<C>();
cache.get(); // atomic
cache.get().m(); // m is not atomic

20

Standard Library

21

e Thread-safe collections provide atomic methods to access lists etc.

Concurrent Collections

Provide concurrent implementations that enable concurrent access

e ConcurrentHashMap vs ConcurrentMap
e ConcurrentLinkedQueue and variants for lists without random access

e CopyOnWriteArrayList makes an arraylist concurrent by making a copy on every

write, is not efficient

21

Standard Library

Synchronized Collections

Normal implementations, but add synchronized at the right places

Java

<T> Collection<T> synchronizedCollection(Collection<T> c)

Usage:

Java

ArrayList<Object> a = new ArraylList <>();
Collection <Object> b = Collections.synchronizedCollection(a);
// access through a is still unsafe

21

Thread Management

e In bigger applications, you may need to manage sets of threads
e We consider three concepts

e Lifecycle of a thread object
e Interrupts
e Thread pools

22

Lifecycle

A created thread object is New
o After calling start the thread is either

e Running, i.e., executes right now
e Runnable, i.e., waits to be scheduled (yields gets you here)
e Waiting/Sleeping/Blocked, i.e., waits for time to pass or some notification or lock

Once the internal run method terminates, the object is Dead

Once a thread is dead it cannot be restarted

23

Interrupts

An interrupt is an indication to a thread that it should stop what it is doing and reconsider.

e Can be invoked using t.interrupt();

This sets the Thread.interrupted flag,
Some methods, like Thread.sleep() will throw a InterruptedException if active

The run method does not — programmer must take care of reacting to this flag

_ Java

() = A
//long computation 1
if (Thread.interrupted){ /* handler %/ }

//long computation 2

24

Thread Pools

e Creating and starting threads is costly

Dead threads cannot be reused

Solution: create a set of threads that do not terminate, but wait for new runnables to

execute

Automatic scaling

25

Thread Pools

An ExecutorService manages a set of threads, and accepts Runnable instance submissions

26

Thread Pools

An ExecutorService manages a set of threads, and accepts Runnable instance submissions

_ Java

//has exactly 2 threads

ExecutorService service = Executors.newFixedThreadPool (2);
service.submit(() — { /* do things %/ });
service.submit(() — { /* do things */ });
service.submit(() — { /* do things %/ });

//last runnable put in query, will be executed later

26

Thread Pools

An ExecutorService manages a set of threads, and accepts Runnable instance submissions

_ Java

ExecutorService service = Executors.newCachedThreadPool(0,3);
//starts with 0 threads

service.submit(() — { /* do things %/ });

service.submit(() — { /* do things */ });

service.submit(() — { /* do things %/ });

//up to 3 threads running

26

Thread Pools

e To join on such a task, we get a Future
e We will investigate futures in more detail in Part 2 of the course

_ Java

//has exactly 2 threads

ExecutorService service = Executors.newFixedThreadPool (2);

Future<Int> f = service.submit(() — { /* do */ return 1;});

Int = f.get(); //essentially a join

e Thread pools have further capabilities (shutdown)

e Details very java-specific, omitted here

27

e We use the material taught so far as the basis for obligs and exercises
e Next lectures connect concepts with corresponding Java concept

e Bigger projects use other concurrency libraries that build on java.util.concurrent,
e.g., Google Guava

28

	Threads Basics
	Atomic Blocks and synchronized
	Weak Memory and volatile
	Further Concepts

