
IN5170 Models of Concurrency

Lecture 3: Locks and Barriers

Einar Broch Johnsen, S. Lizeth Tapia Tarifa, Eduard Kamburjan, Juliane Päßler

September 4, 2023

University of Oslo



Repetition



Repetition

� First general mechanisms and issues related to parallel programs

� await language and a simple version of the producer/consumer example

� Simple concurrency in Java

Today

Today

� Entry and exit protocols to critical sections

� Protect reading and writing to shared variables

� Barriers

� Iterative algorithms:

Processes must synchronize between each iteration

� Coordination using flags

1



Repetition

� First general mechanisms and issues related to parallel programs

� await language and a simple version of the producer/consumer example

� Simple concurrency in Java

Today

Today

� Entry and exit protocols to critical sections

� Protect reading and writing to shared variables

� Barriers

� Iterative algorithms:

Processes must synchronize between each iteration

� Coordination using flags

1



Remember: Tightly coupled, synchronized Producer/Consumer

Await

i n t buf , p := 0 ; c := 0 ;

Await

process Producer {
i n t a [N ] ; . . .

whi le ( p < N){
<await ( p = c ) >;

bu f := a [ p ] ;

p := p+1;

}
}

Await

process Consumer {
i n t b [N ] ; . . .

whi le ( c < N) {
<await ( p>c ) >;

b [ c ] := buf ;

c := c +1;

}
}

� A strong invariant holds in all states in all executions of the program.

� Global invariant : c ≤ p ≤ c+1

� Local invariant (Producer) : 0 ≤ p ≤ N

2



Mutual Exclusion



Critical section

Critical Section

A critical section is part of the program that needs to be protected against interference by

other processes

� Fundamental concept for concurrency - many solutions with different properties

� Execution under mutual exclusion

� Related to “atomicity”

� Using locks and low-level operations with software or hardware support

How can we implement critical sections / conditional critical sections?

3



Critical section

Critical Section

A critical section is part of the program that needs to be protected against interference by

other processes

� Fundamental concept for concurrency - many solutions with different properties

� Execution under mutual exclusion

� Related to “atomicity”

� Using locks and low-level operations with software or hardware support

How can we implement critical sections / conditional critical sections?

3



Access to Critical Section (CS)

� Basic scenario: Several processes compete for access to a shared resource

� Usage of the resource needs to be protected in a critical section

� Only one process can have access at a time (i.e., mutual exclusion)

� Execution of bank transactions

� Access to a printer or other resources

� . . .

� How to we control the access of processes to the CS?

Await

If we can implement critical sections, then we can also implement await statements!

� Must have exclusive control over state to atomically evaluate guard

� Must be able to block other processes if guard holds

4



Access to Critical Section (CS)

� Basic scenario: Several processes compete for access to a shared resource

� Usage of the resource needs to be protected in a critical section

� Only one process can have access at a time (i.e., mutual exclusion)

� Execution of bank transactions

� Access to a printer or other resources

� . . .

� How to we control the access of processes to the CS?

Await

If we can implement critical sections, then we can also implement await statements!

� Must have exclusive control over state to atomically evaluate guard

� Must be able to block other processes if guard holds

4



General patterns for critical sections

� inside the CS we have operations on shared variables.

� Access to the CS must then be protected to prevent interference.

� Coarse-grained pattern for n uniform processes repeatably executing some critical section

Await

process p [ i =1 to n ] {
whi le ( t r u e ) {

CSentry # e n t r y p r o t o c o l to CS

CS

C S e x i t # e x i t p r o t o c o l from CS

non−CS

}
}

� Assumption: A process which enters the CS will eventually leave it.

⇒ Programming advice: be aware of exceptions inside CS!
5



Naive solution

Await

i n t i n = 1 # a l w a y s 1 or 2

Await

process p1 {
whi le ( t r u e ) {

whi le ( i n = 1 ) { s k i p } ;

CS

i n := 2 ;

}
}

Await

process p2 {
whi le ( t r u e ) {

whi le ( i n = 2 ) { s k i p } ;

CS

i n := 1 ;

}
}

� Entry protocol: Busy waiting

� Exit protocol: Atomic assignment

Discussion: what are the limitations of this solution?

6



Naive solution

Await

i n t i n = 1 # a l w a y s 1 or 2

Await

process p1 {
whi le ( t r u e ) {

whi le ( i n = 1 ) { s k i p } ;

CS

i n := 2 ;

}
}

Await

process p2 {
whi le ( t r u e ) {

whi le ( i n = 2 ) { s k i p } ;

CS

i n := 1 ;

}
}

� Entry protocol: Busy waiting

� Exit protocol: Atomic assignment

Discussion: what are the limitations of this solution?

6



Naive solution

Await

i n t i n = 1 # a l w a y s 1 or 2

Await

process p1 {
whi le ( t r u e ) {

whi le ( i n = 1 ) { s k i p } ;

CS

i n := 2 ;

}
}

Await

process p2 {
whi le ( t r u e ) {

whi le ( i n = 2 ) { s k i p } ;

CS

i n := 1 ;

}
}

� Entry protocol: Busy waiting

� Exit protocol: Atomic assignment

Discussion: what are the limitations of this solution?

6



Desired properties

1. Mutual exclusion: At any time, at most one process is inside CS.

2. Absence of deadlock: If all processes are trying to enter CS, at least one will succeed.

3. Absence of unnecessary delay: If some processes are trying to enter CS, while the other

processes are in their non-critical sections, at least one will succeed.

4. Eventual entry: A process attempting to enter CS will eventually succeed.

Liveness and Safety in Critical Sections

The first three are safety properties. The last is a liveness property.

7



Desired properties

1. Mutual exclusion: At any time, at most one process is inside CS.

2. Absence of deadlock: If all processes are trying to enter CS, at least one will succeed.

3. Absence of unnecessary delay: If some processes are trying to enter CS, while the other

processes are in their non-critical sections, at least one will succeed.

4. Eventual entry: A process attempting to enter CS will eventually succeed.

Liveness and Safety in Critical Sections

The first three are safety properties. The last is a liveness property.

7



Reminder: Invariants and Atomic Sections

Global Invariants

A global invariant is a property over the shared variables that holds at every point during

program execution (strong) or at every point outside an atomic section (weak)

� Safety property (something bad does not happen)

� Proof by induction: Holds initially and is preserved by every step

Atomic Sections

Statements grouped into a section that is always executed atomically.

� Conditional: <await(B) S>

� await(B) is known as condition synchronization, where B is evaluated atomically

� The whole block is executed atomically when B is true

� Unconditional: we write just < S >

8



Critical sections using “locks”

Await

bool l o c k := f a l s e ;

process [ i =1 to n ] {
whi le ( t r u e ) {
< await ( ! l o c k ) l o c k := t r u e >;

CS ;

l o c k := f a l s e ;

non−CS

}
}

Safety Properties

� Mutex

� Absence of deadlock and absence of unnecessary waiting

Can we remove the angle brackets < ... >?

9



Critical sections using “locks”

Await

bool l o c k := f a l s e ;

process [ i =1 to n ] {
whi le ( t r u e ) {
< await ( ! l o c k ) l o c k := t r u e >;

CS ;

l o c k := f a l s e ;

non−CS

}
}

Safety Properties

� Mutex

� Absence of deadlock and absence of unnecessary waiting

Can we remove the angle brackets < ... >? 9



CS with AS: Test & Set (TAS)

Test & Set is a pattern for implementing a conditional atomic action:

Await

TS( l o c k ) {
< bool i n i t i a l := l o c k ;

l o c k := t r u e >;

r e t u r n i n i t i a l

}

Effects of TS(lock)

� Side effect: The variable lock will always have value true after TS(lock),

� Returned value: true or false , depending on the original state of lock

� Exists as an atomic HW instruction on many machines.

10



CS with AS: Test & Set (TAS)

Test & Set is a pattern for implementing a conditional atomic action:

Await

TS( l o c k ) {
< bool i n i t i a l := l o c k ;

l o c k := t r u e >;

r e t u r n i n i t i a l

}

Effects of TS(lock)

� Side effect: The variable lock will always have value true after TS(lock),

� Returned value: true or false , depending on the original state of lock

� Exists as an atomic HW instruction on many machines.

10



Critical section with TS and spin-lock

Await

bool l o c k := f a l s e ;

process p [ i =1 to n ] {
whi le ( t r u e ) {

whi le (TS( l o c k ) ) { s k i p } ; # e n t r y p r o t o c o l

CS

l o c k := f a l s e ; # e x i t p r o t o c o l

}
}

� Safety: Mutex, absence of deadlock and of unnecessary delay.

� Strong fairness is needed to guarantee eventual entry for a process

� Problematic memory access pattern: lock as a hotspot

11



Critical section with TS and spin-lock

Await

bool l o c k := f a l s e ;

process p [ i =1 to n ] {
whi le ( t r u e ) {

whi le (TS( l o c k ) ) { s k i p } ; # e n t r y p r o t o c o l

CS

l o c k := f a l s e ; # e x i t p r o t o c o l

}
}

� Safety: Mutex, absence of deadlock and of unnecessary delay.

� Strong fairness is needed to guarantee eventual entry for a process

� Problematic memory access pattern: lock as a hotspot

11



Reducing Writes

Test, Test and Set

Test, Test and Set (TTAS) reduces the number of writes by introducing more reads in the

entry protocol.

Await

bool l o c k = f a l s e ;

process p [ i = 1 to n ] {
whi le ( t r u e ) {

whi le ( l o c k ) { s k i p } ; # two a d d i t i o n a l s p i n l o c k c h e c k s

whi le (TS( l o c k ) ) { whi le ( l o c k ) { s k i p } } ;

CS ;

l o c k := f a l s e ;

}
}

12



Reducing Writes

Test, Test and Set

Test, Test and Set (TTAS) reduces the number of writes by introducing more reads in the

entry protocol.

Await

bool l o c k = f a l s e ;

process p [ i = 1 to n ] {
whi le ( t r u e ) {

whi le ( l o c k ) { s k i p } ; # two a d d i t i o n a l s p i n l o c k c h e c k s

whi le (TS( l o c k ) ) { whi le ( l o c k ) { s k i p } } ;

CS ;

l o c k := f a l s e ;

}
}

12



A glance at HW for shared memory

shared memory

L2

L1

CPU0

L2

L1

CPU1

L2

L1

CPU2

L2

L1

CPU3

shared memory

L2

L1

CPU0

L1

CPU1

L2

L1

CPU2

L1

CPU3

Contention

� TAS accesses main memory and synchronizes the caches through writing

� Reading can just access cache

13



Multiprocessor performance under load (contention)

time

number of threads

TTASLock

TASLock

ideal lock

14



Scheduling and Atomic Sections



Implementing await-statements

Let CSentry and CSexit implement entry- and exit-protocols to the critical section.

Unconditional Atomic Sections

The statement <S> can be implemented by

CSentry; S; CSexit;

Conditional Atomic Sections

Implementation of < await (B) S;> :

Await

CSentry ;

whi le ( ! B) {C S e x i t ; CSentry } ;

S ;

C S e x i t ;

Implementation can be optimized with some delay between the exit and entry in the while body.
15



Scheduling and fairness - when processes shared a processor

� We want liveness properties as well, in particular eventual entry

� Eventual entry relies on scheduling and fairness

Enabledness

A statement is enabled in a state if the statement can in principle be executed next.

Await

bool x := t r u e ;

co whi le ( x ){ s k i p } ; | | x := f a l s e co

Scheduling

a strategy that for all points in an execution decides which enabled statement to execute.

Fairness (informally)

Enabled statements should not “systematically be neglected” by the scheduling strategy
16



Fairness notions

Possible status changes

� Disabled → enabled

� Enabled → disabled

In our language, only conditional atomic segments can have status changes

Different forms of fairness for different forms of statements

1. For statements that are always enabled

2. For those that once they become enable, they stay enabled

3. For those whose enabledness shows “on-off” behavior

17



Unconditional fairness

Definition (Unconditional fairness)

A scheduling strategy is unconditionally fair if each enabled unconditional atomic action, will

eventually be chosen.

Await

bool x := t r u e ;

co whi le ( x ){ s k i p } ; | | x := f a l s e co

� x := false is unconditional

⇒ The action will eventually be chosen

� Guarantees termination (in this example)

� A round robin scheduling strategy execution is unconditionally fair

� Note: loops and branchings are not conditional atomic statements

18



Weak fairness

Definition (Weak fairness)

A scheduling strategy is weakly fair if

� unconditionally fair

� every conditional atomic action will eventually be chosen, assuming that the condition

becomes true and remains true until the action is executed.

Await

bool x = t r u e , i n t y = 0 ;

co whi le ( x ) y := y + 1 ; | | < await y ≥ 1 0 ; > x := f a l s e ; oc

� When y ≥ 10 becomes true, this condition remains true

� This ensures termination of the program

� Here: again round robin scheduling

19



Strong fairness

Definition (Strongly fair scheduling strategy)

� unconditionally fair and

� each conditional atomic action will eventually be chosen, if the condition is true

infinitely often.

Await

bool x := t r u e ; y := f a l s e ;

co

whi le ( x ) {y := t r u e ; y := f a l s e }
| |

< await ( y ) x := f a l s e >

oc

� under strong fairness: y true ∞-often ⇒ termination

� under weak fairness: non-termination possible
20



Fairness for critical sections using locks

The CS solutions shown need strong fairness to guarantee liveness, i.e., access for a given

process (i ):

� Steady inflow of processes which want the lock

� value of lock alternates

(infinitely often) between true and false

Challenges

� How to design a scheduling strategy that is both practical and strongly fair?

� Next part: How to design critical sections where eventual access is guaranteed for

weakly fair strategies?

Weakly fair solutions for critical sections

� Tie-Breaker Algorithm

� Ticket Algorithm

� Others described in the literature

21



Fairness for critical sections using locks

The CS solutions shown need strong fairness to guarantee liveness, i.e., access for a given

process (i ):

� Steady inflow of processes which want the lock

� value of lock alternates

(infinitely often) between true and false

Challenges

� How to design a scheduling strategy that is both practical and strongly fair?

� Next part: How to design critical sections where eventual access is guaranteed for

weakly fair strategies?

Weakly fair solutions for critical sections

� Tie-Breaker Algorithm

� Ticket Algorithm

� Others described in the literature 21



Tie-Breaker algorithm

Idea

� Requires no special machine instruction (like TS)

� We will look at the solution for two processes

� Each process has a private lock

� Each process sets its lock in the entry protocol

� The private lock is read, but is not changed by the other process

22



Naive solution

Await

i n t i n = 1 # a l w a y s 1 or 2

Await

process p1 {
whi le ( t r u e ) {

whi le ( i n = 1 ) { s k i p } ;

CS

i n := 2 ;

}
}

Await

process p2 {
whi le ( t r u e ) {

whi le ( i n = 2 ) { s k i p } ;

CS

i n := 1 ;

}
}

� Entry protocol: Busy waiting

� Exit protocol: Atomic assignment

Discussion: what are the limitations of this solution?

23



Naive Solutions: Problems

� Strict alternation

� No eventual entry for a single process

� Entry protocol: busy waiting

� Exit protocol: atomic assignment

� What about more than two processes?

� What about different execution times?

24



Tie-Breaker algorithm: Attempt 1

Await

Boolean i n 1 = f a l s e , i n 2 = f a l s e ;

Await

process p1 {
whi le ( t r u e ){

whi le ( i n 2 ) { s k i p } ;

i n 1 := t r u e ;

CS

i n 1 := f a l s e ;

}
}

Await

process p2 {
whi le ( t r u e ){

whi le ( i n 1 ) { s k i p } ;

i n 2 := t r u e ;

CS

i n 2 := f a l s e ;

}
}

Mutex not established, because both processes may be able to pass the entry protocol

What do we want as a global invariant?

25



Tie-Breaker algorithm: Attempt 2 (reordering)

Await

Boolean i n 1 = f a l s e , i n 2 = f a l s e ;

Await

process p1 {
whi le ( t r u e ){

i n 1 := t r u e ;

whi le ( i n 2 ) { s k i p } ;

CS

i n 1 := f a l s e ;

}
}

Await

process p2 {
whi le ( t r u e ){

i n 2 := t r u e ;

whi le ( i n 1 ) { s k i p } ;

CS

i n 2 := f a l s e ;

}
}

Problem

Can deadlock if both variables are written before read.

26



Tie-Breaker algorithm: Attempt 3 (with await)

� Avoid deadlock through tie-break and decide for one process

� For fairness: do not always give priority to same specific process

� Add new variable: last to know which process last started the entry protocol

Await

Boolean i n 1 = f a l s e , i n 2 = f a l s e ; I n t l a s t = 1 ;

Await

process p1 {
whi le ( t r u e ){

i n 1 := t r u e ; l a s t := 1 ;

< await ( ! i n 2 | | l a s t = 2) >

CS

i n 1 := f a l s e ;

}}

Await

process p2 {
whi le ( t r u e ){

i n 2 := t r u e ; l a s t := 2 ;

< await ( ! i n 1 | | l a s t = 1) >

CS

i n 2 := f a l s e ;

}}

27



Tie-Breaker algorithm

Even if the variables in1, in2 and last can change the value

while a wait-condition evaluates to true, the wait condition will remain true.

p1 sees that the wait-condition is true:

� in2 = false

� in2 can eventually become true,

but then p2 must also set last to 2

� Then the wait-condition to p1 still holds

� last = 2

� Then last = 2 will hold until p1 has executed

Thus we can replace the await-statement with a while-loop.

28



Tie-Breaker algorithm

Even if the variables in1, in2 and last can change the value

while a wait-condition evaluates to true, the wait condition will remain true.

p1 sees that the wait-condition is true:

� in2 = false

� in2 can eventually become true,

but then p2 must also set last to 2

� Then the wait-condition to p1 still holds

� last = 2

� Then last = 2 will hold until p1 has executed

Thus we can replace the await-statement with a while-loop.

28



Tie-Breaker algorithm

Even if the variables in1, in2 and last can change the value

while a wait-condition evaluates to true, the wait condition will remain true.

p1 sees that the wait-condition is true:

� in2 = false

� in2 can eventually become true,

but then p2 must also set last to 2

� Then the wait-condition to p1 still holds

� last = 2

� Then last = 2 will hold until p1 has executed

Thus we can replace the await-statement with a while-loop.

28



Tie-Breaker algorithm

Even if the variables in1, in2 and last can change the value

while a wait-condition evaluates to true, the wait condition will remain true.

p1 sees that the wait-condition is true:

� in2 = false

� in2 can eventually become true,

but then p2 must also set last to 2

� Then the wait-condition to p1 still holds

� last = 2

� Then last = 2 will hold until p1 has executed

Thus we can replace the await-statement with a while-loop.

28



Tie-Breaker algorithm (4)

Await

Boolean i n 1 = f a l s e , i n 2 = f a l s e ; I n t l a s t = 1 ;

Await

process p1 {
whi le ( t r u e ){

i n 1 := t r u e ;

l a s t := 1 ;

whi le ( i n 2 && l a s t != 2)

s k i p ;

CS

i n 1 := f a l s e ;

}}

Await

process p2 {
whi le ( t r u e ){

i n 2 := t r u e ;

l a s t := 2 ;

whi le ( i n 1 && l a s t != 1)

s k i p ;

CS

i n 2 := f a l s e ;

}}

29



Ticket algorithm

Multi-Tie-Breaker

� Generalizable to many processes (see book)

� But does not scale: If the Tie-Breaker algorithm is scaled up to n processes, we get a

loop with n − 1 2-process Tie-Breaker algorithms.

The ticket algorithm provides a simpler solution for critical sections for n processes.

� Intuition: ticket queue at old-fashioned government agencies

� A customer/process which comes in takes a number which is higher than the number of

all others who are waiting

� The customer is served when a ticket window is available and the customer has the lowest

ticket number.

30



Ticket algorithm: Sketch (n processes)

Await

i n t number := 1 ; n e x t := 1 ; t u r n [ 1 : n ] := ( [ n ] 0 ) ;

process [ i = 1 to n ] {
whi le ( t r u e ) {
< t u r n [ i ] := number ; number := number +1 >;

< await ( t u r n [ i ] = n e x t )>;

CS

<n e x t := n e x t + 1>;

}
}

� await-statement: can be implemented as while-loop

� turn[i] can be a local variable of process[i]

� Some machines have an instruction fetch-and-add (FA):

FA(var, incr )= < int tmp := var; var := var + incr ; return tmp;>

31



Ticket algorithm: Implementation

Await

i n t number := 1 ; n e x t := 1 ; t u r n [ 1 : n ] := ( [ n ] 0 ) ;

process [ i = 1 to n ] {
whi le ( t r u e ) {

t u r n [ i ] := FA( number , 1 ) ;

whi le ( t u r n [ i ] != n e x t ) { s k i p } ;

CS

n e x t := n e x t + 1 ;

}
}

� Without FA, we use an extra CS:

CSentry; turn [ i ]:=number; number:= number + 1; CSexit;

� What is a global invariant for the ticket algorithm?

0 < next ≤ number

32



Ticket algorithm: Implementation

Await

i n t number := 1 ; n e x t := 1 ; t u r n [ 1 : n ] := ( [ n ] 0 ) ;

process [ i = 1 to n ] {
whi le ( t r u e ) {

t u r n [ i ] := FA( number , 1 ) ;

whi le ( t u r n [ i ] != n e x t ) { s k i p } ;

CS

n e x t := n e x t + 1 ;

}
}

� Without FA, we use an extra CS:

CSentry; turn [ i ]:=number; number:= number + 1; CSexit;

� What is a global invariant for the ticket algorithm?

0 < next ≤ number
32



Locks and Barriers



Barrier synchronization

� Computation of disjoint parts in parallel (e.g. array elements).

� Processes go into a loop where each iteration is dependent on the results of the previous.

Await

process Worker [ i =1 to n ] {
whi le ( t r u e ) {

# pe r f o rm t a s k i ;

# b a r r i e r :

}
}

All processes must reach the barrier before any can continue.

33



Barrier synchronization

� Computation of disjoint parts in parallel (e.g. array elements).

� Processes go into a loop where each iteration is dependent on the results of the previous.

Await

process Worker [ i =1 to n ] {
whi le ( t r u e ) {

# pe r f o rm t a s k i ;

# b a r r i e r :

}
}

All processes must reach the barrier before any can continue.

33



Shared counter

A number of processes can synchronize the end of their tasks using a shared counter :

Await

i n t count := 0 ;

process Worker [ i =1 to n ] {
whi le ( t r u e ) {
# pe r f o rm t a s k i

< count := count +1>; < await ( count = n)>;

}
}

� Can be implemented using the FA instruction.

Disadvantages

� count must be reset between each iteration and is updated using atomic operations.

� Inefficient: Many processes read and write count concurrently.
34



Coordination using flags

� Goal: Avoid contention, i.e., too many read- and write-operations on one variable!

� Divides shared counter into several variables, with one global coordinator process

Await

Worker [ i ] :

# t a s k i ;

a r r i v e [ i ] := 1 ;

< await ( c o n t i n u e [ i ] = 1);>

C o o r d i n a t o r :

f o r [ i =1 to n ] < await ( a r r i v e [ i ]=1);>

f o r [ i =1 to n ] c o n t i n u e [ i ] := 1 ;

Flag synchronization principles:

1. The process waiting for a flag is the one to reset that flag

2. A flag will not be set before it is reset

35



Coordination using flags

� Goal: Avoid contention, i.e., too many read- and write-operations on one variable!

� Divides shared counter into several variables, with one global coordinator process

Await

Worker [ i ] :

# t a s k i ;

a r r i v e [ i ] := 1 ;

< await ( c o n t i n u e [ i ] = 1);>

C o o r d i n a t o r :

f o r [ i =1 to n ] < await ( a r r i v e [ i ]=1);>

f o r [ i =1 to n ] c o n t i n u e [ i ] := 1 ;

Flag synchronization principles:

1. The process waiting for a flag is the one to reset that flag

2. A flag will not be set before it is reset
35



Coordination using flags

� Goal: Avoid contention, i.e., too many read- and write-operations on one variable!

� Divides shared counter into several variables, with one global coordinator process

Await

Worker [ i ] :

# t a s k i ;

a r r i v e [ i ] := 1 ;

< await ( c o n t i n u e [ i ] = 1);>

C o o r d i n a t o r :

f o r [ i =1 to n ] < await ( a r r i v e [ i ]=1);>

f o r [ i =1 to n ] c o n t i n u e [ i ] := 1 ;

Flag synchronization principles:

1. The process waiting for a flag is the one to reset that flag

2. A flag will not be set before it is reset
35



Synchronization using flags

Both arrays continue and arrived are initialized to 0.

Await

process Worker [ i = 1 to n ] {
whi le ( t r u e ) {
# code to implement t a s k i

a r r i v e [ i ] := 1 ;

< await ( c o n t i n u e [ i ] := 1>;

c o n t i n u e [ i ] := 0 ;

}
}

Await

process C o o r d i n a t o r {
whi le ( t r u e ) {

f o r [ i = 1 to n ] {
<await ( a r r i v e d [ i ] = 1)>;

a r r i v e d [ i ] := 0 ;

} ;

f o r [ i = 1 to n ] {
c o n t i n u e [ i ] := 1 ;

}
}
}

36



Synchronization using flags

Both arrays continue and arrived are initialized to 0.

Await

process Worker [ i = 1 to n ] {
whi le ( t r u e ) {
# code to implement t a s k i

a r r i v e [ i ] := 1 ;

< await ( c o n t i n u e [ i ] := 1>;

c o n t i n u e [ i ] := 0 ;

}
}

Await

process C o o r d i n a t o r {
whi le ( t r u e ) {

f o r [ i = 1 to n ] {
<await ( a r r i v e d [ i ] = 1)>;

a r r i v e d [ i ] := 0 ;

} ;

f o r [ i = 1 to n ] {
c o n t i n u e [ i ] := 1 ;

}
}
}

36



Synchronization using flags

Both arrays continue and arrived are initialized to 0.

Await

process Worker [ i = 1 to n ] {
whi le ( t r u e ) {
# code to implement t a s k i

a r r i v e [ i ] := 1 ;

< await ( c o n t i n u e [ i ] := 1>;

c o n t i n u e [ i ] := 0 ;

}
}

Await

process C o o r d i n a t o r {
whi le ( t r u e ) {

f o r [ i = 1 to n ] {
<await ( a r r i v e d [ i ] = 1)>;

a r r i v e d [ i ] := 0 ;

} ;

f o r [ i = 1 to n ] {
c o n t i n u e [ i ] := 1 ;

}
}
}

36



Summary: Implementation of Critical Sections

Await

bool l o c k = f a l s e ;

<await ( ! l o c k ) l o c k := t r u e >; # e n t r y p r o t o c o l

# CS

< l o c k := f a l s e > # e x i t p r o t o c o l

� Spin lock implementation of entry: while (TS(lock)) skip

� Exit without critical region.

Drawbacks:

� Busy waiting protocols are often complicated

� Inefficient if there are fewer processors than processes:

wastes time executing an empty loop

� No clear distinction between variables used for synchronization and computation

Desirable to have special tools for synchronization protocols: semaphores

37



Summary: Implementation of Critical Sections

Await

bool l o c k = f a l s e ;

<await ( ! l o c k ) l o c k := t r u e >; # e n t r y p r o t o c o l

# CS

< l o c k := f a l s e > # e x i t p r o t o c o l

� Spin lock implementation of entry: while (TS(lock)) skip

� Exit without critical region.

Drawbacks:

� Busy waiting protocols are often complicated

� Inefficient if there are fewer processors than processes:

wastes time executing an empty loop

� No clear distinction between variables used for synchronization and computation

Desirable to have special tools for synchronization protocols: semaphores

37



Summary: Implementation of Critical Sections

Await

bool l o c k = f a l s e ;

<await ( ! l o c k ) l o c k := t r u e >; # e n t r y p r o t o c o l

# CS

< l o c k := f a l s e > # e x i t p r o t o c o l

� Spin lock implementation of entry: while (TS(lock)) skip

� Exit without critical region.

Drawbacks:

� Busy waiting protocols are often complicated

� Inefficient if there are fewer processors than processes:

wastes time executing an empty loop

� No clear distinction between variables used for synchronization and computation

Desirable to have special tools for synchronization protocols: semaphores
37



Locks in Java: Introduction

� How to ensure mutual exclusion in Java?

� The java.util.concurrent.locks package contains interfaces and classes for locking

and waiting for conditions (distinct from built-in synchronisation/monitors)

� Manual lock management: flexible, but must be used cautiously

Lock interface

� Supports different semantics of locking

� Main implementation: ReentrantLock

ReadWriteLock Interface

� Locks that may be shared among readers but are exclusive to writers

� Only implementation: ReentrantReadWriteLock

Condition Interface

Condition (variables) associated with locks
38



Locks in Java: The Lock Interface (I)

Flexibility of locks =⇒ responsibility to use locks correctly

� Ensure that the lock is acquired before executing the code in the critical section

� Ensure that the lock is released in the end, even if something went wrong

Generic pattern for a method using a lock

Java

Lock mutex = new Lock ( ) ; // s h a r e d between p r o c e s s e s

. . .

mutex . l o c k ( ) ;

t r y {
. . . // c r i t i c a l s e c t i o n

} f i n a l l y { mutex . u n l o c k ( ) ; }

39



Locks in Java: The Lock Interface (II)

Includes methods:

� lock(): For acquiring the lock

� unlock(): For releasing the lock

� newCondition(): Returns a new Condition instance that it bound to this Lock instance

40



Example: A Counter

� Task: Add numbers from 0 to x using several threads

� Idea: Have a shared variable value that the threads increase

Java

p u b l i c c l a s s Counter {
p r i v a t e i n t v a l u e ;

p u b l i c Counter ( i n t c ) { v a l u e = c ; }
p u b l i c i n t getAndIncrement ( ) {

i n t temp = v a l u e ;

v a l u e = temp + 1 ;

return temp ;

}
}

41



Example: A Counter (cont.)

Which values can value take if two threads call getAndIncrement three times in total?

42



Example: A Counter (cont.)

Which values can value take if two threads call getAndIncrement three times in total?

43



Java

p u b l i c c l a s s CounterLock {
p r i v a t e i n t v a l u e ;

p r i v a t e Lock mutex = new R e e n t r a n t L o c k ( ) ;

p u b l i c Counter ( i n t c ) { v a l u e = c ; }
p u b l i c i n t getAndIncrement ( ) {

mutex . l o c k ( ) ; // e n t r y

i n t temp = 0 ;

t r y {
temp = v a l u e ; // c r i t i c a l s e c t i o n

v a l u e = temp + 1 ; // c r i t i c a l s e c t i o n

} f i n a l l y { mutex . u n l o c k ( ) ; } // e x i t

return temp ;

}
}

44



Repetition: Barrier Synchronization

Await

process Worker [ i =1 to n ] {
whi le ( t r u e ) {

t a s k i ;

w a i t u n t i l a l l n t a s k s a r e done # b a r r i e r

}
}

Barrier Synchronization

45



Barrier Synchronization in Java: The CyclicBarrier Class

� Waits for n arrivals before it unblocks

� After all threads have reached the barrier point, a Runnable command can be executed

(BEFORE the threads are released)

� Called cyclic because it can be re-used after threads have been released

46



Barrier Synchronization in Java: The CyclicBarrier Class

Demo based on website

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

47


	Repetition
	Mutual Exclusion
	Scheduling and Atomic Sections
	Locks and Barriers

