Semaphores

Einar Broch Johnsen, S. Lizeth Tapia Tarifa, Eduard Kamburjan, Juliane PaBler
September 11, 2023

University of Oslo

Last lecture: Locks and Barriers

e Complex techniques
e No clear separation between variables for synchronization and variables for computation

e Busy waiting

Last lecture: Locks and Barriers

e Complex techniques
e No clear separation between variables for synchronization and variables for computation

e Busy waiting

This lecture: Semaphores

e Synchronization tool

Used easily for mutual exclusion and condition synchronization
e A way to implement signaling and scheduling
e Implementable in many ways on hardware (CMPXCHG)

e Available in programming language libraries and OS

Outline

e Semaphores: Syntax and semantics

e Synchronization examples:

Mutual exclusion (critical sections)

Barriers (signaling events)

Producers and consumers (split binary semaphores)
Bounded buffer: resource counting

e Dining philosophers: mutual exclusion — deadlock
e Readers and writers:

e condition synchronization
e passing the baton

Semaphores

Origins of Term
e Introduced by Dijkstra in 1968

e Inspired by railroad traffic synchronization

e Railroad semaphore indicates whether the track
ahead is clear or occupied by another train

Origins of Term
e Introduced by Dijkstra in 1968

e Inspired by railroad traffic synchronization

e Railroad semaphore indicates whether the track

ahead is clear or occupied by another train
Clear Occupied

Origins of Term
e Introduced by Dijkstra in 1968

e Inspired by railroad traffic synchronization

e Railroad semaphore indicates whether the track
ahead is clear or occupied by another train

Clear Occupied

e Semaphores in concurrent programs: work similarly
e Used to implement

e mutex and
e condition synchronization

e Included in most standard libraries for concurrent programming

e Also system calls in, e.g., Linux kernel, Windows etc.

. J

Concept of a Semaphore

e Semaphore: special kind of shaemph program variable (with built-in sync. power)
e value of a semaphore: a non-negative integer

e can only be manipulated by two atomic operations:

Concept of a Semaphore

e Semaphore: special kind of shaemph program variable (with built-in sync. power)
e value of a semaphore: a non-negative integer

e can only be manipulated by two atomic operations:

The Semaphore Operations: P and V

e P: (Passeren) Wait for signal — want to pass
Wait until value is greater than zero, and decrease value by one

e V: (Vrijgeven) Signal an event — release

Increase the value by one

Concept of a Semaphore

e Semaphore: special kind of shaemph program variable (with built-in sync. power)
e value of a semaphore: a non-negative integer

e can only be manipulated by two atomic operations:

The Semaphore Operations: P and V

e P: (Passeren) Wait for signal — want to pass
Wait until value is greater than zero, and decrease value by one

e V: (Vrijgeven) Signal an event — release

Increase the value by one

e Today, libraries and sys-calls prefer other names: up/down, wait/signal, acquire/release
e Different flavors of semaphores: binary vs. counting
e Most common: mutex as a synonym for binary semaphores

Syntax and Semantics

Declaration

® sem s; default initial value is zero
e sems = 1;

e sem s[4] := ([4] 1);

Syntax and Semantics

Declaration

® sem s; default initial value is zero
e sems = 1;

e sem s[4] := ([4] 1);

Operations and Semantics

P-operation P(s) V-operation V(s)
(await (s > 0)s ;=5 — 1) (s:=s+1)

Processes waiting on a semaphore are woken up by the op. system.

Remarks on Semaphores

Important: No direct access to the value of a semaphore.

For example, a test like if (s = 1) then ... else is forbidden!

Remarks on Semaphores

Important: No direct access to the value of a semaphore.

For example, a test like if (s = 1) then ... else is forbidden!

Kinds of semaphores

General semaphore: Possible values: all non-negative integers

Binary semaphore: Possible values: 0 and 1

Remarks on Semaphores

Important: No direct access to the value of a semaphore.

For example, a test like if (s = 1) then ... else is forbidden!

Kinds of semaphores

General semaphore: Possible values: all non-negative integers

Binary semaphore: Possible values: 0 and 1

J

Fairness

e As for await-statements.

e In most languages: FIFO (“waiting queue”): processes delayed while executing
P-operations are awaken in the order they where delayed

Example: Mutual Exclusion (critical section)

Mutex implemented by a binary semaphore

_ Await
sem mutex = 1;

process CS[i =1 to n] {
while (true) {
P(mutex);
critical section
V(mutex);
noncritical section
}
}

e The semaphore is initially 1

e Always P before V — (used as) binary semaphore

. J

Example: Barrier Synchronization

Semaphores may be used for signaling events

_ Await
sem arrivel = 0, arrive2 = 0;

process Workerl {

V(arrivel); # reach barrier
P(arrive2); # wait for other

}

process Worker2 {

V(arrive2); # reach barrier
P(arrivel); # wait for other

Example: Barrier Synchronization

e Signalling semaphores: usually initialized to 0 and

e Signal with a V and then wait with a P

Example: Barrier Synchronization

e Signalling semaphores: usually initialized to 0 and

e Signal with a V and then wait with a P

Workerl

0 arrivel

0 arrive2

Worker2

Example: Barrier Synchronization

e Signalling semaphores: usually initialized to 0 and

e Signal with a V and then wait with a P

Workerl

1 arrive
o__Y 1

arrive2

Worker2

Example: Barrier Synchronization

e Signalling semaphores: usually initialized to 0 and

e Signal with a V and then wait with a P

Workerl

1 arrivel
S A

arrive2

Worker2

Example: Barrier Synchronization

e Signalling semaphores: usually initialized to 0 and

e Signal with a V and then wait with a P

Workerl

arrivel
arrive2

Worker2

Split Binary Semaphores

Split binary semaphore

A set of semaphores, whose sum < 1

Mutex by split binary semaphores

e Initialization: one of the semaphores =1, all others =0
e Discipline: all processes call P on a semaphore, before calling V on (another) semaphore

= Code between the P and the V

e All semaphores = 0
e Code executed in mutex

10

Example: Producer/Consumer with Split Binary Semaphores

Await
T buf; # one element buffer, some type T
sem empty = 1;
sem full := 0;
_ Await _ Await

process Producer {
while (true) {

P(empty);
buff := data;
V(full);

}
}

process Consumer {
while (true) {
P(full);
data_c := buff;
V(empty);
}
}

11

Example: Producer/Consumer with Split Binary Semaphores

Await
T buf; # one element buffer, some type T
sem empty = 1;
sem full := 0;
_ Await _ Await

process Producer {
while (true) {

P(empty);
buff := data;
V(full);

}
}

process Consumer {
while (true) {
P(full);
data_c :=
V(empty);

}

buff;

}

e empty and full are both binary semaphores, together they form a split binary semaphore.

e Solution works with several producers/consumers

11

Example: Producer/Consumer with Split Binary Semaphores

— Await —Await
process Producer { process Consumer {
while (true) { while (true) {
P(empty); P(full);
buff := data; data_c := buff;
V(full); V(empty);
} }
} }

12

Example: Producer/Consumer with Split Binary Semaphores

_ Await

process Producer {
while (true) {

_ Await

process Consumer {
while (true) {

P(empty); P(full);

buff := data; data_c := buff;

V(full); V(empty);

} }
} }
Consumerl Consumer2

0 full
1 empty

Producer1 Producer?2

12

Example: Producer/Consumer with Split Binary Semaphores

_ Await

process Producer {
while (true) {

_ Await

process Consumer {
while (true) {

P(empty); P(full);

buff := data; data_c := buff;

V(full); V(empty);

} }
} }
Consumerl Consumer2

0 full
0 A empty

Producer1 Producer?2

12

Example: Producer/Consumer with Split Binary Semaphores

_ Await

process Producer {
while (true) {

P(empty);
buff := data;
V(full);

}
}

_ Await

process Consumer {
while (true) {
P(full);
data_c := buff;
V(empty);
}
}

Consumerl

Consumer?2

A

full

empty

Producer1 Producer?2

12

Example: Producer/Consumer with Split Binary Semaphores

_ Await

process Producer {
while (true) {

_ Await

process Consumer {
while (true) {

P(empty); P(full);

buff := data; data_c := buff;

V(Full); V(empty);

} }
} }
Consumerl Consumer2

0 full
0 V empty

Producer1 Producer?2

12

Example: Producer/Consumer with Split Binary Semaphores

_ Await

process Producer {
while (true) {

_ Await

process Consumer {
while (true) {

P(empty); P(full);

buff := data; data_c := buff;

V(Full); V(empty);

} }
} }
Consumerl Consumer2

0 full
1 empty

Producer1 Producer?2

12

Producer/Consumer: Increasing Buffer Capacity

e Previously: tight coupling, the producer must wait for the consumer to empty the buffer
before it can produce a new entry.
e Easy generalization: buffer of size n.

e Loose coupling/asynchronous communication = “buffering”
e Ring-buffer, typically represented

e by an array
e + two integers rear and front.

e Semaphores to keep track of the number of free/used slots

[T TT] Data [[[]

front rear

13

Producer/Consumer: Increasing Buffer Capacity

e Previously: tight coupling, the producer must wait for the consumer to empty the buffer
before it can produce a new entry.
e Easy generalization: buffer of size n.

e Loose coupling/asynchronous communication = “buffering”
e Ring-buffer, typically represented

e by an array
e + two integers rear and front.

e Semaphores to keep track of the number of free/used slots = general semaphore

[T TT] Data [[[]

front rear

13

Producer/Consumer: Increased Buffer Capacity

Await
T buf[n] # array , elements of type T
int front := 0, rear := 0; # '‘pointers’’
sem empty = n; # number of empty slots
sem full := 0; # number of filled slots
_ Await — Await
process Producer { process Consumer {
while (true) { while (true) {
P(empty); P(full);
buff[rear] := data; result := buff[front];
rear := (rear + 1); front := (front + 1);
V(full); V(empty);
} }
} }

14

Producer/Consumer: Increased Buffer Capacity

— Await — Await
process Producer { process Consumer {
while (true) { while (true) {
P(empty); P(full);
buff[rear] := data; result := buff[front];
rear := (rear + 1); front := (front + 1);
V(full); V(empty);
} }
} }
full 0
empty 3

15

Producer/Consumer: Increased Buffer Capacity

— Await — Await
process Producer { process Consumer {
while (true) { while (true) {
P(empty); P(full);
buff[rear] := data; result := buff[front];
rear := (rear + 1); front := (front + 1);
V(full); V(empty);
} }
} }
full 0 1
_Producer

empty 3 2

Producer/Consumer: Increased Buffer Capacity

— Await — Await
process Producer { process Consumer {
while (true) { while (true) {
P(empty); P(full);
buff[rear] := data; result := buff[front];
rear := (rear + 1); front := (front + 1);
V(full); V(empty);
} }
} }
full 0 1
Producer Consumer

empty 3 2

Producer/Consumer: Increased Buffer Capacity

_ Await

process Producer {
while (true) {

_ Await

process Consumer {
while (true) {

P(empty); P(full);
buff[rear] := data; result := buff[front];
rear := (rear + 1); front := (front + 1);
V(full); V(empty);
} }
} }
full 0 1 0 1
Producer Consumer Producer
2

empty 3 2 3

Producer/Consumer: Increased Buffer Capacity

— Await — Await
process Producer { process Consumer {
while (true) { while (true) {
P(empty); P(full);
buff[rear] := data; result := buff[front];
rear := (rear + 1); front := (front + 1);
V(full); V(empty);
} }
} }
full 0 1 0 1 2
Producer Consumer Producer Producer
empty 3 2 3 2 1

Producer/Consumer: Increased Buffer Capacity

— Await — Await
process Producer { process Consumer {
while (true) { while (true) {
P(empty); P(full);
buff[rear] := data; result := buff[front];
rear := (rear + 1); front := (front + 1);
V(full); V(empty);
} }
} }
full 0 1 0 1 2 3
Producer Consumer Producer Producer Producer
empty 3 2 3 2 1 0

Producer/Consumer: Increased Buffer Capacity

— Await — Await
process Producer { process Consumer {
while (true) { while (true) {
P(empty); P(full);
buff[rear] := data; result := buff[front];
rear := (rear + 1); front := (front + 1);
V(full); V(empty);
} }
} }
full 0 1 0 1 2 3
Producer Consumer Producer Producer Producer Consumer
3 2 3 2 1 0

empty

Producer/Consumer: Increased Buffer Capacity

_ Await

process Producer {
while (true) {

P(empty):
buff[rear] := data;
rear := (rear + 1);
V(full);

}
}

_ Await

process Consumer {
while (true) {

P(full);
result := buff[front];
front := (front + 1);
V(empty);

}

}

e Important: there are no critical sections!

15

Producer/Consumer: Increased Buffer Capacity

_ Await

process Producer {
while (true) {

P(empty):
buff[rear] := data;
rear := (rear + 1);
V(full);

}
}

_ Await

process Consumer {
while (true) {

P(full);
result := buff[front];
front := (front + 1);
V(empty);

}

}

e Important: there are no critical sections!

e How to enable several producers and consumers?

15

Increasing the Number of Processes

How to enable several producers and consumers?

New synchronization problems

e Avoid that two producers deposit to buf [rear] before rear is updated

e Avoid that two consumers fetch from buf [front] before front is updated.

16

Increasing the Number of Processes

How to enable several producers and consumers?

New synchronization problems

e Avoid that two producers deposit to buf [rear] before rear is updated

e Avoid that two consumers fetch from buf [front] before front is updated.

Add 2 extra binary semaphores for protection:

e mutexDeposit to deny two producers to deposit to the buffer at the same time.

e mutexFetch to deny two consumers to fetch from the buffer at the same time.

16

Example: Producer/Consumer with Several Processes

Await
T buf[n] # array, elem’'s-of-type-T
int-front-:=-0;-rear-:=-0;--------- #- ''pointers '’
sem-empty-:=-n;
sem- full--:=-0;
sem-mutexDeposit; -mutexFetch-:=-1;-#-protect-the-data-stuct.

— Await —Await
process Producer { process Consumer {
while (true) { while (true) {
P(empty); P(full);
P(mutexDeposit); P(mutexFetch);
buff[rear] := data; result := buff[front];
rear := (rear + 1); front := (front 4+ 1);
V(mutexDeposit); V(mutexFetch);
V(full); V(empty);
} }
} }

17

Problem: Dining Philosophers

source:wikipedia.org

18

Problem: Dining Philosophers

source:wikipedia.org

e Famous sync. problem (Dijkstra)

Five philosophers around a circular table.
One fork placed between each pair of philosophers

Each philosopher alternates between thinking and eating
A philosopher needs two forks to eat (and none for thinking)

18

Dining Philosophers: Sketch

_ Await
process Philosopher [i = 0 to 4] {

while true {
think
acquire forks;

eat

release forks;

Program the actions acquire forks and release forks

19

Dining philosophers: 1st attempt

e Forks as semaphores

e Philosophers: pick up left fork first

— Await
sem fork [5] := ([5] 1);
process Philosopher [i = 0 to 4] {
while true {

4 think
P(fork[i]);
P(fork [(i+1)%5]);
eat
V(fork[i]);
V(fork [(i+4+1)%5]);

20

Dining philosophers: 2nd attempt

Breaking the symmetry

To avoid deadlock, let 1 philosopher (say 4) grab the right fork first

_ Await

process Philosopher
while true {
think;
P(fork[i]);

eat;
V(fork[i]);

[i =0 to 3] {

P(fork [(i4+1)%5]);

V(fork [(i+1)%5]);

— Await
process Philosopherd {
while true {
think;
P(fork [0]); #!
P(fork[4]); #!
eat;
V(fork [4]);
V(fork [0]);

e Important illustration of problems with concurrency:

e Deadlocks,
e Other aspects: liveness, fairness, etc.

e Resource access

e Connection to mutex/critical sections

22

Invariants and Condition
Synchronization

Readers riters: Overview

e Classic synchronization problem
e Reader and writer processes, share access to a database/shared data structure

e Readers only read from the database
e Writers update (and read from) the database

23

Reader riters: Overview

Classic synchronization problem

Reader and writer processes, share access to a database/shared data structure

e Readers only read from the database
e Writers update (and read from) the database

e As soon as one writer is included, read and write accesses may cause interference

Readers and writers have asymmetric requirements:

e Every writer needs mutually exclusive access
e When no writers have access, many readers may access the database

23

e Dining philosophers: Pair of processes compete for access to “forks”

e Readers/writers: Different classes of processes compete for access to the database

e Readers compete with writers
o Writers compete both with readers and other writers

e General synchronization problem:

e Readers: must wait until no writers are active in DB
e Writers: must wait until no readers or writers are active in DB

e Here: two different approaches

1. Mutex: easy to implement, but “unfair’
2. Condition synchronization:
e Using a split binary semaphore
e Easy to adapt to different scheduling strategies

24

Readers/Writers with Mutex (1)

Await

’7 sem rw = 1;

_ Await

process Reader [i=1 to M] {
while (true) {
P(rw);
read
V(rw);
}

}

_ Await

process Writer [i=1 to N] {
while (true) {
P(rw);
write
V(rw);
}

}

25

Readers/Writers with Mutex (1)

Await
’7 sem rw = 1;
_ Await —Await
process Reader [i=1 to M] { process Writer [i=1 to N] {
while (true) { while (true) {
P(rw); P(rw);
read # write
V(rw); V(rw);
} }
} }

We want more than one reader simultaneously.

25

Readers/Writers with Mutex (2)

Await
int nr := 0; # number of active readers
sem rw = 1 # lock for reader/writer mutex
_ Await

while (true) {

process Reader [i=1 to M] {

< nr := nr + 1;

if (nr=1) P(rw) >;
read
< nr :(= nr — 1;

if (nr=0) V(rw) > ;

_ Await

process Writer

P(rw);
write
V(rw);
}
}

[i=1 to N]

while (true) {

{

26

Readers/Writers with Mutex (2)

Await
int nr := 0; # number of active readers
sem rw = 1 # lock for reader/writer mutex
_ Await ~ Await
process Reader [i=1 to M] { process Writer [i=1 to N] {
while (true) { while (true) {
< nr := nr + 1; P(rw);
if (nr=1) P(rw) >; # write
read V(rw);
< nr :(= nr — 1; }
if (nr=0) V(rw) > ; }
}
}

How do semaphore work inside await statements? -

sem

sem mutexR

nr =

0; # number of
1, # lock for
1; # mutex for

rw =

process Reader [i=1 to M] {

while (true) {

P(mutexR)

nr := nr + 1;

if (nr=1) P(rw);
V(mutexR)
read
P(mutexR)

nr := nr — 1;

if (nr=0) V(rw);
V(mutexR)

active readers
reader/writer exclusion
readers

27

riters with Condition Synchronization: Overview

Reader’s preference
e With a constant stream of readers, the writer will never run

e Even under strong fairness

e Previous mutex solution solved two separate synchronization problems

e rw : Readers and writers for access to the database
e mutexR: Reader vs. reader for access to the counter

e Now: a solution based on condition synchronization

28

Reasonable invariant for the critical sections

1. When a writer accesses the DB, no one else can

2. When no writers access the DB, one or more readers may get access

29

Invariant

Reasonable invariant for the critical sections

1. When a writer accesses the DB, no one else can

2. When no writers access the DB, one or more readers may get access

Introducing state for the invariant

Introduce two counters:

e nr: number of active readers

e nw: number of active writers

Invaria

Reasonable invariant for the critical sections

1. When a writer accesses the DB, no one else can

2. When no writers access the DB, one or more readers may get access

Introducing state for the invariant

Introduce two counters:

e nr: number of active readers

e nw: number of active writers

Invariant

RW: (nr=0o0rnw=20)and nw< 1
(same as:) RW”: nw=0 or (nw =1 and nr = 0)

29

Await

< nr := nr + 1; >
read

< nr := nr — 1; >

Await

< nw :
write
< nw :

e Add synchronization code to maintain the invariant

e Decreasing counters is not dangerous

e Before increasing, we need to

e before increasing nr: nw =

e before increasing nw: nr =

check some conditions for synchronization

Condition Synchronization: Without Semapho

Await
int nr := 0; # nunber of active readers
int nw := 0; # number of active writers

Invariant RW: (nr = 0 or nw = 0) and nw <=1

_ Await

process Reader [i=1 to M]{
while (true) {
< await (nw=0)

nr := nr+1>;
read
< nr := nr — 1>

_ Await

process Writer [i=1 to NJ{
while (true) {

< await (nr = 0 and nw
nw = nw+1>;

write

< nw = nw — 1>

Condition Synchronization: Converting to Split Binary Semaphores

Convert awaits with different guards By, B,... to Split Binary Semaphores

e Entry to 1, manages entry to administrative CS'’s
e For each guard B;:

1. associate one delay-counter and
2. one semaphore

Both initialized to 0
e Semaphore delays the processes waiting for B;

e Counters counts the number of processes waiting for B;

32

Condition Synchronization: Converting to Split Binary Semaphores

Convert awaits with different guards By, B,... to Split Binary Semaphores

e Entry to 1, manages entry to administrative CS'’s

e For each guard B;:
1. associate one delay-counter and
2. one semaphore

Both initialized to 0
e Semaphore delays the processes waiting for B;

e Counters counts the number of processes waiting for B;

For readers/writers problem we need 3 semaphores and 2 counters:

Await
sem e = 1;
sem r = 0; int dr = 0; # condition reader: nw — 0\\
sem w = 0; int dw = 0; # condition writer: nr = 0 and nw = 0

32

Condition Synchronization: Converting to Split Binary Semaphores (2)

e e, r and w form a split binary semaphore.

e All execution paths start with a P-operation and end with a V-operation — Mutex

33

Condition Synchronization: Converting to Split Binary Semaphores (2)

e e, r and w form a split binary semaphore.

All execution paths start with a P-operation and end with a V-operation — Mutex

Signaling

We need a signal mechanism SIGNAL to pick which semaphore to signal.

e SIGNAL: make sure the invariant holds

B; holds when a process enters CR because either:

e the process checks itself,

33

Condition Synchronization: Converting to Split Binary Semaphores (2)

e e, r and w form a split binary semaphore.

All execution paths start with a P-operation and end with a V-operation — Mutex

Signaling

We need a signal mechanism SIGNAL to pick which semaphore to signal.

e SIGNAL: make sure the invariant holds

B; holds when a process enters CR because either:

e the process checks itself,
e or the process is only signaled if B; holds

33

Condition Synchronization: Converting to Split Binary Semaphores (2)

e, r and w form a split binary semaphore.

All execution paths start with a P-operation and end with a V-operation — Mutex

Signaling

We need a signal mechanism SIGNAL to pick which semaphore to signal.

SIGNAL: make sure the invariant holds
B; holds when a process enters CR because either:
e the process checks itself,
e or the process is only signaled if B; holds
Another pitfall:
Avoid deadlock by checking the counters before the delay semaphores are signaled.

e ris not signalled (V(r)) unless there is a delayed reader
e w is not signalled (V(w)) unless there is a delayed writer

33

Condition Synchronization: Reader

_ Await
int nr ;= 0, nw = 0; # counter variables (as before)
sem e = 1; # entry semaphore
int dr := 0; sem r := 0; # delay counter + sem for reader
int dw := 0; sem w := 0; # delay counter + sem for writer
invariant RW: (nr =0 || nw=0) & nw <=1
process Reader [i=1 to M]{ # entry condition: nw = 0

while (true) {

P(e);

if (nw> 0) { dr := dr 4+ 1; # < await (nw=0)
V(e); # nr:=nr+l1 >
P(r)};

nr:=nr-+1; SIGNAL;

read

P(e); nr:=nr—1; SIGNAL; # < nr:=nr—1 >

34

With Condition Synchronization: Writer

_ Await

process Writer [i=1 to N]{ # entry condition: nw = 0 and nr = 0
while (true) {

P(e): # < await (nr=0 && nw=0)
if (nr >0 or nw> 0) { # nw:=nw+1 >
dw = dw + 1;
V(e);
P(w) };
nw:=nw+1; SIGNAL;
write

P(e); nw:=nw—1; SIGNAL # < nw:=nw—1>

35

With Condition Synchronization: Signalling

— Await
if (nw= 0 and dr > 0) {
dr := dr —1; V(r); # awake reader
}
elseif (nr =0 and nw = 0 and dw > 0) {
dw = dw —1; V(w); # awake writer
}
else V(e); # release entry lock

e This passes the control (the “baton”) to an appropriate next process

e SIGNAL has no P operation, each path has exactly one V opereration.

Using the conditions to see who goes next.

Called “passing the baton” technique (as in relay competition).

Conditions for awakening must be disjoint

36

Example: 1 Reader, 1 Writer, Reader starts

0
0
1
0
0

nr

nw
e

dw

w

_ Await

process Reader [i=1 to M|{ # entry condition: nw = 0
while (true) {

P(e);

if (nw> 0) { dr := dr + 1; # < await (nw=0)
V(e); # nri=nr+l >
P(r)};

nr:=nr+1; SIGNAL;

read

P(e); nri=nr—1; SIGNAL; #< nri=nr—1>

}
}

37

Example: 1 Reader, 1 Writer, Reader starts

nr |0 O
nw |0 O
e |1 O
dw | 0 O
w [0 O

_ Await

process Reader [i=1 to M|{ # entry condition: nw = 0
while (true) {

P(e);

if (nw> 0) { dr := dr + 1; # < await (nw=0)
V(e); # nri=nr+l >
P(r)};

nr:=nr+1; SIGNAL;

read

P(e); nri=nr—1; SIGNAL; #< nri=nr—1>

}
}

37

Example: 1 Reader, 1 Writer, Reader starts

nr |0 0 1
nw |0 0 O
e |1 0 O
dw |0 0 O
w |0 0 O
— Await
if (nw =0 and dr > 0) {
dr := dr —1; V(r); # awake reader
}
elseif (nr =0 and nw = 0 and dw > 0) {
dw = dw —1; V(w); # awake writer
}
else V(e); # release entry lock

37

Example: 1 Reader, 1 Writer, Reader starts

nr {0 0 1 1
nw| 0 0 0 O
e |1 0 0 1
dw [0 0 0 O
w |0 0 0 O
— Await
process Writer [i=1 to N]{ # entry condition: nw = 0 and nr = 0
while (true) {
P(e): # < await (nr=0 && nw=0)
if (nr >0 or nw> 0) { # nw:=nw+1 >
dw = dw + 1;
V(e);
P(w) };
nw:=nw+1; SIGNAL;
write
P(e); nw:=nw—1; SIGNAL # < nwi=nw—I>
}
}

37

Example: 1 Reader, 1 Writer, Reader starts

nr |10 0 1 1 1
nw| 0 0 O 0 O
e |1 0 0 1 O
dw |0 0 O O O
w |0 0 0 0 O
_ Await
process Writer [i=1 to N]{ # entry condition: nw = 0 and nr = 0
while (true) {
P(e); # < await (nr=0 && nw=0)
if (nr >0 or nw> 0) { # nwi=nw+1 >
dw = dw + 1;
V(e);
P(w) };
nwi=nw+1; SIGNAL;
write
P(e); nw:=nw—1; SIGNAL # < nwi=nw—I1>
}
}

37

Example: 1 Reader, 1 Writer, Reader starts

nr |1O 0 1 1 1 1
nw 0 0 0 0 0 O
e |1 0 0 1 0 O
dw [0 0 0 O 0 1
w |0 0 0 0 0 O
— Await
process Writer [i=1 to N]{ # entry condition: nw = 0 and nr = 0
while (true) {
P(e): # < await (nr=0 && nw=0)
if (nr >0 or nw> 0) { # nwi=nw+1 >
dw = dw + 1;
V(e);
P(w) };
nw:=nw+1; SIGNAL;
write
P(e); nw:=nw—1; SIGNAL # < nwi=nw—I>
}
}

37

Example: 1 Reader, 1 Writer, Reader starts

nr |1O 0O 1 1 1 1 1
nw|{0 O 0 O O O O
e |1 0 0 1 0 0 1
dw [0 0O 0 O 0 1 1
w |0 0O 0 0 0 0 O
_ Await
process Reader [i=1 to M|{ # entry condition: nw = 0
while (true) {
P(e);
if (nw> 0) { dr := dr + 1; # < await (nw=0)
V(e); # nri=nr+l >
P(r)}:
nr:=nr+1; SIGNAL;
read
P(e); nr:=nr—1; SIGNAL; #< nri=nr—1>
}
}

37

Example: 1 Reader, 1 Writer, Reader starts

nr f|1O 0O 1 1 1 1 1 1
nw| 0 0 0 0 0 0 0 O
e |1 0 0 1 0 0 1 O
dw |0 O O O O 1 1 1
w| 0O 0O 0 0 0 0 0 O
— Await
process Reader [i=1 to M[{ # entry condition: nw = 0
while (true) {
P(e);
if (nw> 0) { dr := dr + 1; # < await (nw=0)
V(e); # nri=nr+l >
P(r)}:
nr:=nr+1; SIGNAL;
read
P(e); nri=nr—1; SIGNAL; #< nri=nr—1 >
}
}

37

Example: 1 Reader, 1 Writer, Reader starts

nr /O 0 1 1 1 1 1 1 O
nw| 0 0 0O 0 0 O O O O
e |1 0 0 1 0 0 1 0 O
dw |0 0 0 0 O 1 1 1 1
w |0 O 0 0O 0 0 0 0 O
— Await
if (nw =0 and dr > 0) {
dr := dr —1; V(r); # awake reader
}
elseif (nr =0 and nw = 0 and dw > 0) {
dw = dw —1; V(w); # awake writer
}
else V(e); # release entry lock

37

Example: 1 Reader, 1 Writer, Reader starts

nr /O 0 1 1 1 1 1 1 0 O
nw| 0 0 0 0 O 0 O O 0 O
e|1 0 0 1 0 0 1 0 0 O
dw ([0 0O 0 0 O 1 1 1 1 O
w| 0O 0O 0 O O0 O0 0 0 0 1
— Await
if (nw =0 and dr > 0) {
dr := dr —1; V(r); # awake reader
}
elseif (nr =0 and nw = 0 and dw > 0) {
dw = dw —1; V(w); # awake writer
}
else V(e); # release entry lock

37

Example: 1 Reader, 1 Writer, Reader starts

nr f{1O 0O 1 1 1 1 1 1 0 0 O
nw| 0 0 0 O O O O O O O O
e|1 0 0 1 0 0 1 0 0 0 O
dw| 0O 0 0O O 0O 1 1 1 1 0 O
w| 0O 0O O0OOOO O OO0 1 1
— Await
process Writer [i=1 to N]{ # entry condition: nw = 0 and nr = 0
while (true) {
P(e); # < await (nr=0 && nw=0)
if (nr >0 or nw> 0) { # nwi=nw+1 >
dw = dw + 1;
V(e);
P(w) };
nw:=nw+1; SIGNAL;
write
P(e); nw:=nw—1; SIGNAL # < nwi=nw—I1>
}
}

37

Example: 1 Reader, 1 Writer, Reader starts

nr f{1O 0 1 1 1 1 1 1 0 0 0 O
nw| 0 0O 0 O O O O O O O 0 1
e|1 0 0 1 0 0 1 0 0 0 0 O
dw| 0O 0 O O O 1 1 1 1 0 0 O
w|0O O0OO0OOOOOOOT1TT1TO0
— Await
process Writer [i=1 to N]{ # entry condition: nw = 0 and nr = 0
while (true) {
P(e); # < await (nr=0 && nw=0)
if (nr>0 or nw> 0) { # nwi=nw+1 >
dw = dw + 1;
V(e);
P(w) };
nw:=nw+1; SIGNAL;
write
P(e); nw:=nw—1; SIGNAL # < nwi=nw—I1>
}
}

37

Example: 1 Reader, 1 Writer, Reader starts

nr f1O 0 1 1 1 1 1 1 0 0 0 0 O
nw 0 0 0 O O O O O O O 0 1 1
e|1 0 01 001 0 0 0 O0O0 1
dw| O 0 0 0O 0O 1 1 1 1 0 O O O
w|lf0O O0OOOOOOOO0OT1TT1TO0O0
— Await
process Writer [i=1 to N]{ # entry condition: nw = 0 and nr = 0
while (true) {
P(e); # < await (nr=0 && nw=0)
if (nr>0 or nw> 0) { # nwi=nw+1 >
dw = dw + 1;
V(e);
P(w) };
nw:=nw+1; SIGNAL;
write
P(e); nw:=nw—1; SIGNAL # < nwi=nw—I1>
}
}

37

Example: 1 Reader, 1 Writer, Reader starts

nr /1O 0 1 1 1 1 1 1 0 0 0 0 0 O
nw| 0O 0 0O 0 O O O O O O0O O0 1 1 1
e|1 0 01 0 01 0 O0O0OO0O0OCT1TO0
dw| 0O 0 O O O 1 1 1 1 0 O O 0 O
w|l|0O O0OOOOUOUOOOT1TT1TO0 00
— Await
process Writer [i=1 to N]{ # entry condition: nw = 0 and nr = 0
while (true) {
P(e); # < await (nr=0 && nw=0)
if (nr>0 or nw> 0) { # nwi=nw+1 >
dw = dw + 1;
V(e);
P(w) };
nw:=nw+1; SIGNAL;
write
P(e); nw:=nw—1; SIGNAL # < nwi=nw—I1>
}
}

37

Example: 1 Reader, 1 Writer, Reader starts

nr f1O 0O 1 1 1 1 1 1 0 0 0 0 0 0 O
nw| 0O 0 0O 0O O O O OO O0O O T1T 1 1 O
e|1 0 01 001 00 0O O0OO0OT1TO0TO
dw|0O 0 O O 0O 1 1 1 1 0 0O O O 0 O
w|f0O O0OOOOOOOO0OT1TT1TO0 0 00
— Await
process Writer [i=1 to N]{ # entry condition: nw = 0 and nr = 0
while (true) {
P(e); # < await (nr=0 && nw=0)
if (nr>0 or nw> 0) { # nwi=nw+1 >
dw = dw + 1;
V(e);
P(w) };
nw:=nw+1; SIGNAL;
write
P(e); nw:=nw—1; SIGNAL # < nwi=nw—I1>
}
}

37

Example: 1 Reader, 1 Writer, Reader starts

nr f1O 0 1 1 1 1 1 1 0 0 0 0 0 0 0 O
nw| 0O 0 0 O O O O O O O0O O0O 1 1 1 0 O
e|1 001 001 O0OO0OO0OO0OO0OT1TO0OTO0OT1
dw |0 0 0 0 0 1 1 1 1 0 O O O O O O
w|O OOOUOUOOOOT1TT1TO0 0 0 00
— Await
if (nw =0 and dr > 0) {
dr := dr —1; V(r); # awake reader
}
elseif (nr =0 and nw = 0 and dw > 0) {
dw = dw —1; V(w); # awake writer
}
else V(e); # release entry lock

37

Semaphores in Java

Basic Methods of Semaphores in Java

e Semaphore(int n)

e constructor for semaphores

e initializes semaphore value with integer n set of permits
e acquire()

e corresponds to the P operation

e tries to decrease the number of permits by 1
e blocks, if that is not possible and waits, until semaphore gives permit

o release()

e corresponds to the V operation
e increases the number of permits by 1

38

Dining Philosophers: Naive Solution in Java (1)

Philosophers in Java

e Philosopher has references to two binary Semaphores (leftFork and rightFork),

e and the functions eat(), sleep() and run()

_ Java

Semaphore[] forks = new Semaphore[numberOfPhilosophers];
for (int i=0; i <forks.length; i++)
forks[i] = new Semaphore(1);

philosophers = new Philosopher[numberOfPhilosophers];
for (int i=0; i < philosophers.length; i++)
philosophers[i] =
new Philosopher(i,forks[i], forks[(i+1) % forks.length]);

39

Dining Philosophers: Naive Solution in Java (1)

_ Java

while (true) {
think ();
if(i = 0) {

leftFork.acquire ();

} else {
leftFork.acquire ();

}

eat ();
leftFork .release ();
rightFork .release ();

rightFork .acquire ();

rightFork .acquire ();

// think
//

//

//
// release

acquire forks

acquire forks

eat
forks

40

The Condition Interface

e A condition allows to transfer the ownership of the lock without lock/unlock

e Each condition is, thus, bound to a lock

41

The Condition Interface

e A condition allows to transfer the ownership of the lock without lock/unlock

e Each condition is, thus, bound to a lock
The Condition interface includes the following methods:

e cond.await()

e The lock associated with the Condition is atomically released (unlock) and the thread
becomes disabled
e After cond is signalled, the thread continues with its instructions.

e cond.signal()

e \Wakes up one thread that is waiting on this Condition

41

The Condition Interface

e A condition allows to transfer the ownership of the lock without lock/unlock

e Each condition is, thus, bound to a lock
The Condition interface includes the following methods:

e cond.await()

e The lock associated with the Condition is atomically released (unlock) and the thread
becomes disabled
e After cond is signalled, the thread continues with its instructions.

e cond.signal()
e \Wakes up one thread that is waiting on this Condition

e Note: threads interacting with cond still need to acquire and release its lock!

41

_ Java

Lock mutex = new ReentrantLock ();
Condition ¢l = mutex.newCondition ();
Condition c¢2 = mutex.newCondition ();

public void waitingThread() throws InterruptedException {

mutex. lock (); // thread acquires the lock
try {
while (/xnot finished*/) {
condition .await (); // wait for signal

/* thread does something (1) x*/
}
} finally {
mutex.unlock (); // thread releases the lock
}
}

42

_ Java

Lock mutex = new ReentrantLock ();

Condition condition = mutex.newCondition ();

public void signallingThread () throws InterruptedException {
mutex. lock ();

// thread acquires the lock ;
try {

/* thread does something (2) x/

condition.signal (); // wake up waiting thread
} finally {

mutex. unlock (); // thread releases the lock
}

43

The Condition Interface (con

Lock /
Waiting Condition Signalling

l«———mutex.lock()

condition.wait()——|
mutex.lock()———»

sleeping

l«——condition.signall()

l«——mutex.unlock()
[€= ===~ transfer Lock- - - - - 4

mutex.unlock()——]

44

Producer Consumer with Locks and Conditions

Demo based on website

45

https://www.uio.no/studier/emner/matnat/ifi/IN5170/h23/material/pclocks.java

Conclusion

Condition synchronization

e One semaphore to protect shared variables (the counters)

e For each condition: a semaphore + a “delay” counter
e On entry: increase delay counter if your condition is not true
e Wait on your condition semaphore

e Decide who is next (SIGNAL) using

e the conditions, and
e the delay counters to see who is waiting to enter

e SIGNAL whenever someone should get a chance to enter.

46

	Semaphores
	Producer/consumer
	Dining philosophers

	Invariants and Condition Synchronization
	Semaphores in Java
	Java class: Semaphore

