Part 3: Type Systems and Concurrency

Einar Broch Johnsen, S. Lizeth Tapia Tarifa, Eduard Kamburjan, Juliane PaBler
October 30, 2023

University of Oslo

Reminder: Setting Up a Type System

A type syntax (T)

A subtyping relation (T <: T')
e A typing environment (I : Var — T)

A type judgment (TFs: T)

A set of type rules and a notion of type soundness

Topic today: specifics of type systems for message-passing concurrency

Data vs. behavioral type, syntax and subtyping

Data and Behavioral Types

e A data type is an abstraction over the contents of memory

e Can it be interpreted as a member of a set? E.g., integers
e Are certain operations defined on it? E.g., + or method lookup

e A behavioral type is an abstraction over allowed operations

Big aim:

e In channel types, the operations are channel operations
e Specify, document and ensure intended communication patterns

e In the very best case: also ensure deadlock freedom

Reminder: Environment and Judgment

Type Environment

A type environment [is a partial map from variables to types.

e Notation to access the type of a variable v in environment I': ['(v)
e Example notation for an environment with two integer variables v,w: {v — Int,w+— Int}
e Notation for updating the environment: I'[x — T]

e Notation if a variable has no assigned type: '(x) = L

Type Judgment

To express that statement s is well-typed with type T in environment I

lFe:T

Reminder: Type Soundness

Type soundness expresses that if the initial program is well-typed, then we do not get stuck,
i.e., if we terminate, then successfully.

e Three intermediate lemmas (error states are not well-types, subject reduction, progress)
e Note that we do not ensures termination
e Main thinking point for later: are deadlocked states successfully terminated?

Subject Reduction

If a well-typed expression can be execute, then the result is well-typed
Vs,s',T. (MTFs:Unit As~s') = 3. '+ s : Unit)

Progress

If a statement is well-typed, but not successfully terminated (i.e., skip or return), then it can
make a step

Vs. ((TF s :Unit A —term(s) — 3s’. s~ &)

Reminder: Types for Channels

Typing Writing

lNe:chan T Nr-e:1 T <: T
e <— € :Unit

e First premise types channel
e Second premise types sent value

e Third premise connects via subtyping

Typing Reading

Fe:chan T’ T <: T
lEF<—e:T

Reminder: Input/Output Modes

e How to enforce that one thread reads and one writes?
e |dea: use modes to encode read or write capabilities

e Use subtyping and weakening to split and restrict capabilities

func main() {
chn := make(chan!? int) //!7
go read(chn) //17?
//weaken chn to chan! int
chn <— v //<— chn would be illegal
}
func read(c chan? int) int { //forgets ! mode
return <—c //c <— 1 would be illegal

}

Reminder: Input/Qutput Modes

Weakening Rule

Allows to make a type less specific. This is not just using the T-sub rule — we modify the

stored type in the environment.

M{x—T"}kFs: T T < T
MN{x—T}kFs: T

Other Rules: Read and Write with Modes

Me:chan T Mr-v:T T <:T
e <— v:Unit

T-weak

J

M-write

I+ e: chan,T’ T <:T

MF<—e:T M-read

J

.

Reminder: We use Go syntax, but all channel types from now on go beyond their type system

More Channel Types

e Formalizing splitting ' and ensure correct number of uses — Substructural/Linear Types
e Formalizing order — Usage Types

e More expressive protocols and allows different types to be send — Session Types
Learning goals of this lecture:

e How are order and capabilities used to structure concurrency?
e How are order and capabilities described in type system?

e What parts of type systems must be modified?
Not in this lecture: Full formal treatment and most general cases.

e For this reason the language is a bit simplified.
e No arbitrary expressions, no nested channel types

e Clear split between statements and expressions

Linear Types

Linear Types

The previous systems do not prevent the channels from being used too little or too often.

func main() {
chn := make(chan!? int)
go read(chn)

func read(c chan? int) int {
return <—c //locks and waits forever

}

Linear Types

The previous systems do not prevent the channels from being used too little or too often.

func main() {
chn := make(chan!? int)
go read(chn)
c<—1
c <— 1 //locks and waits forever

}

func read(c chan? int) int {
return <—c

Substructural Linear Types

In types, logic and related fields, linearity refers to capabilities that are used exactly once.

e A linear channel can be used for exactly one send/receive operation

e A linear resource cannot be reused after being accessed, and must be accessed

e Simplifies reasoning about systems because one prohibits reuse in different context.

e In the following: no nested channel operations (<— <—c)

10

Linear Types

Let T be a type, and n,m € {0,1}. chany, 1y T is a channel type.

Multiplicity !0 denotes that the channel must not be written, !1 that it must be written exactly
once. Analogously for ?.

e c:chanyy)y T is linear
e c:chanyio T cannot be used anymore
e c:chanyy 1o T can be read but not written anymore

e c:chanyy iy T can be written but not read anymore

e Subtyping possible, but not needed

e No weakening rule, syntax-driven subtyping

11

Linear Types

The previous example can be reformulated using linear types, and to forbid multiple accesses.

func main() {
chn := make(chan<?1,!1> int)
go read(chn)
chn <— v //chan<?0,!1> int

}

func read(c chan<?1,!10> int) int {
return <—c

12

Splitting the Environment

chn := make(chan<?1,I1> int)
go read(chn)

e Here we must give the capability to read to the new thread
e We must also ensure that our thread does not use this capability anymore

chn <— v

return <—c

e Here we must ensure that no use is left over
e And catch corner cases like return <—c + <—c

13

Linear Types: Defining Splitting

Typing Environment

A typing environment I can be split into two environments '' + I by

e Having all variables with non-channel types in both ' and 2.

e For each x with channel type we have I'(x) = '(x) + (x), where

chanyyt iyt T 4 changpe e T = chanoptp2 imiqme T

e chanyy 13 T = chanyo iy T+ chanyy o T

e chanyy 13 T = chanyy iy T+ chanyg o T

{n+ Int,c+> chany; Int} =

{n+ Int,c +> chanyy o Int} + {n+> Int,c > chanyy; Int}

14

Linear Types: Defining Complete Use

Literals and Termination

e [is unrestricted if all contained channels have n = 0 and m = 0. We write un(T).

e All literals only type check in a unrestricted environment
e First, sub-system only for for expressions
un(l) un(l)

I+ true : Bool L-true - n:Int L-int

un(T) rv)=T
lEv: T

L-var

un(l)
{C — Chan’_;(),!()} F1:1Int

Linear Types: Defining Complete Use

Literals and Termination

e [is unrestricted if all contained channels have n = 0 and m = 0. We write un(T).

e All literals only type check in a unrestricted environment
e First, sub-system only for for expressions
un(l) un(l)

I+ true : Bool L-true - n:Int L-int

un(T) rv)=T
lEv: T

L-var

un(l)
{C — Chan’_;(),!()} F1:1Int

{C — Chal’l’_;l,!()} F1:Int

Linear Types for Expressions

Splitting in Arithmetic Expressions

We split the environment at every point we descend into subexpressions.

r:F1+r2 rll—el:lnt r2|_e2:Int w .
e + e :Int L-add T —e: Int L-minus

e Rules for Booleans are analogous

e Rule for reading requires that we are still allowed to read

F(v) =chansy o T un(F[v — chanyg o T])
MN=<«v: T

L-read

16

Linear Types for Expressions

Type safe example

un({chanz 1o int}) {x + chany; 1o int}(x) = chans 1o int un({chany 1o int})

{x > chanyy 1o int} - (<—x) : int {x +> chanyg 1o int} F 1: int

{x > chany; 1o int} + {x > chany 1o int} - (<—x) +1: int

{x > chany; jo int} - (<—x) + 1: int
No-use prohibited

un({chanz; 1o int}) un({chanzo 1o int})

{x + chany o int} - 1: int {x + chany o int} - 2 : int

{x > chany; 1o int} + {x > chanyo 1o int} - 1+ 2: int

{x + chany; o int} - 1+ 2: int

Double-use prohibited

un({chans, 1o int}) {x + chany; 1o int}(x) = chanyy o int un({chany 1o int}) {x + chanyg 1o int}(x) = chany; o int

{x + chany jo int} F (<—x) : int {x > chany 1o int} F (<—x) : int

{x > chany; 1o int} + {x > chany 1o int} F (<—x) + (<—x) : int

{x + chany; jo int} F (<—x) + (<—x) : int

17

Linear Types for Statements

Termination

e All capabilities must be used up

e Ether before termination (skip) or by our last expression (return)

un(l") L_ski Fr=ry+n, MhEe:T un(ly)]
I+ skip : Unit P I - return e : Unit -return

18

Linear Types for Statements

Termination

e All capabilities must be used up

e Ether before termination (skip) or by our last expression (return)

un(l") L_ski Fr=ry+n, MhEe:T un(ly)]
I+ skip : Unit P I - return e : Unit -return

{c > chans; ;pInt} - 0 : Unit
{c +> chans; jpInt} I return 0 : Unit

18

Linear Types for Statements

Termination

e All capabilities must be used up

e Ether before termination (skip) or by our last expression (return)

un(l") L_ski Fr=ry+n, MhEe:T un(ly)]
I+ skip : Unit P I - return e : Unit -return

Let I = {C — Chan?17goIn‘t}, e = {C — Chan?oygoInt}

un(rO) r(C) =S chan?l,gOInt
I c: chany jpInt
[F<—c:Int un(lo) Fr=r+"0,
I+ return < —c : Unit

18

Linear Types for Statements

Termination

e All capabilities must be used up

e Ether before termination (skip) or by our last expression (return)

un(l") L_ski Fr=ry+n, MhEe:T un(ly)]
I+ skip : Unit P I - return e : Unit -return

Let I = {C — Chan?07[11nt}, e = {C — Chan?oygoInt}

un(rO) r(C) =S chan?l,gOInt
I c: chany jpInt
[F<—c:Int un(lo) Fr=r+"0,
I+ return < —c : Unit

18

Linear Types for Statements

Termination

e All capabilities must be used up

e Ether before termination (skip) or by our last expression (return)

un(l") L_ski Fr=ry+n, MhEe:T un(ly)]
I+ skip : Unit P I - return e : Unit -return

Let I = {C — chan?LgoInt, d— chan?l,goInt}, o= {C — chan?o,;oInt, d— chan?o,!oInt}

un({c — Chan'_;o?goIn‘t, d— chan71$!0Int}) I'(c) = chan_vl’!OInt
I c: chanyy 1oInt
N-<—c:Int un(Tp) Fr=r+Tg
[+ return < —c : Unit

18

Linear Types for Statements

Writing (unsound, attempt 1)

e Check that we can write now
e Remove write capability and split the environment into two parts
e One (I'1) records the write capability and the capabilities afterwards

e One (I'y) record the capabilities of the evaluated expression

Mc— chany,io T]=T1 412 M(c) =chanq, 1 T 1 Fs:Unit MhFe: T

Fc <—e; s:Unit Leilie

19

Linear Types for Statements

e Remaining rules all have the same structure:
e Split environment for each subexpression/substatement

e Propagate split environment into each subexpression/substatement

Fr=ri+0, MMEe: T frv)=T [+ s:Unit
[Fv := e; s:Unit

L-assign

F=ri{+M+TI3 [1Fe:Bool [Fsq:Unit 5 F sy :Unit I3 F s3:Unit
I if(e){s1} else{sy} s3:Unit

L-branch

Mr=r;+1r, M s;:Unit [, F sp:Unit
[+ go s1; sy :Unit

L-parallel

20

Example: Linear Types and Sequential Branching

M= {chn — chan717!1 Int}
Consider the following environments I? = {chn > chansy o Int}
r= {chn — chaan!l Int}

re—= {chn — chanyg 1o Int}

Type-safe:

I F (<—chn) > 0 : Bool Ik chn <-0: Unit Mk chn <-1:Unit MOk skip : Unit Fr=r’+r+ro
I+ if((<—chn) > 0){chn <—0O}else{chn <—1} skip : Unit

Missed use in branch is detected:

I F (<—chn) >0 : Bool Ik chn <-0: Unit I |- skip : Unit MOk skip : Unit Fr=r’+r'+ro
I+ if((<—chn) > 0){chn <—0O}else{skip} skip : Unit

21

Example: Linear Types and Parallelism

We can now, assuming a simple rule for function calls, prove the read example.
chn := make(chan<?1,11> int)
go { return <—chn}
chn <— v
skip
{chn — chanyg; int} - chn <—v: Unit {chn > chany o int} F go read(chn) : Unit

{chn > chanyo 1y int} + {chn — chans o int} F go read(chn); chn <—v : Unit

{chn — chany; ;; int} - go read(chn); chn <—v :Unit
F chn := make(chan <71,!1 > int); go read(chn); chn <—v : Unit 22

Type Soundness

Is this enough?

To check that a channel is used exactly once, it is not enough to check that the multiplicity
is 0 at the end — additionally one must ensure deadlock-freedom!

23

Type Soundness

Is this enough?

To check that a channel is used exactly once, it is not enough to check that the multiplicity
is 0 at the end — additionally one must ensure deadlock-freedom!

cl := make(chan<!1,71> int)
cl <— (<—cl)

cl := make(chan<!1,71> bool)
if(<—cl){ cl <— true}

Type Soundness

Is this enough?

To check that a channel is used exactly once, it is not enough to check that the multiplicity
is 0 at the end — additionally one must ensure deadlock-freedom!

cl := make(chan<!1,71> int)
c2 := make(chan<!1,71> int)
go func {v := <—cl; c2 <— 1}
w = <—c2; cl <—1

Type Soundness — Enforce Parallelism

e Check that we can write but now read c now

e Remove write capability and split the environment into two parts

One (I'1) records the write capability and the capabilities afterwards

One (I'3) record the capabilities of the evaluated expression

The first must allow one write

e The second must allow no read — otherwise one can type ¢ <— ¢

Also prohibits sequential self-locks ¢ <—1; <— ¢

Mc—chany o T)=T1+T> M(c) =chany . T 1 Fs:Unit Mhhe: T

Nc¢c <—e; s:Unit L-write-Dl

Type Soundness — Enforce Parallelism

MMtEe: T
Fr=ri+n, Mk s:Unit rv)=T
[Fv = e; s:Unit

L-assign-DL

e Where I} sets all read x in e to chany g T and is > otherwise.
Vx. I'l(x) = Chal‘l?L!o T — I"z(x) = Chan?oygo

e Enforces that when one reads or writes from a channel, the other capability has been
passed to a different thread

25

Type Soundness

e One can apply the modification of L-assign-DL to all rules

e Guarantee: if systems deadlocks, more then one channel must be involved.

e Formalized: a state is successfully terminated if (1) all threads are terminated or (2) all
threads are stuck or terminated and there are at least 2 stuck threads that waiting on 2
different channels.

e Deadlock analysis can be reduced to relations between channels.

cl := make(chan<!1,71> int)
c2 := make(chan<!1,71> int)
go func {v := <—cl; c2 <— 1}
w = <—c2; cl <— 1

e What else are linear type systems good for?

e Instead of delving into deadlock checkers: can we specify order more elegantly?
26

Dropping Unrestricted Environments

e What happens if we drop un(I') everywhere?

c := make(chan<!1,71> int)
c <— 1;

e We still have the restriction that we cannot use more then once

Affine Types

A variable or channel is affine if it is used at most once. A variable or channel is relevant if it
is used at least once.

e Not very useful for channels

e Useful for other types, e.g., to express that a declared variable may not be used, but if
used then only once (for optimizations) or at least once (i.e., no dead declaration)

27

Other Uses for Linear Types

Linearity must not be restricted to channel types

Can be used to detect unused variables (with relevant types)

Can be modified to be used for resource management

In particular: every allocation (=declaration) must be paired with a deallocation (=use)

28

Normal Types and Linear Types in One Language

e How to use linear and normal types for channels in one language?
e Idea: Use a special symbol to distinguish arbitrary use

e Extend type syntax, environment split and notion of unrestricted environment

Let T be a type, and n,m € {0,1,w}. chany, i, T is a type.

Multiplicity !w denotes that the channel can be written arbitrarily often. Analogously for 7.

29

Normal Types and Linear Types in One La

Typing Environment

A typing environment I can be split into two environments ! + 2 by

e Having all variables with non-channel types in both ' and 2.

e For each x with channel type we have '(x) = '*(x) + *(x), where

chanypi iyt T + chanype e T = chanopip2 iyiqme T
n+m=nifm=20
n+m=mifn=0

n -+ m = w otherwise

e chany, 1, = chanyy 1y + changy, 1,
e chany, 1, = chanyg 1o + chany, 1,

e chany, 1, = chanyy iy + changy 1y

30

Normal Types and Linear Types in One Language

e [is unrestricted if all contained channels have n=00or n=w, and m=0or m = w.

e A channel is affine if we drop the restriction constraint, but it has been declared with
n=m=1

e All rules stay the same except we must exchange every n =1 for n > 0 (and same for m)

[=e:chany, 0 T n>0
MlN=<«e: T

L-read

31

Usage Types

Usage Types

e Linear types are not enough to describe protocols
e Consider a channel that is used as a lock

e Channel is created, token is put it

e Reading from channel is acquiring token

e Writing to channel is releasing

—Go —Go

func main(){ func dual(i int, lock chan int,
global =0 finish chan int) {
lock := make(chan int) <—lock
finish := make(chan int) //critical here
go dual (1, lock, finish) lock <— 0
go dual(2, lock, finish) //non—critical
lock <— 0 <—lock
<—finish; <—finish //critical here
<—lock finish <— 0 lock <— 0

} }

32

Usage Types
|What is the type of lock? We need something that can express more than linear types! I

_Go

func dual(i int,

lock chan<?omega,!omega> int,
finish chan<?0,!1> int) {

<—lock
//critical here
lock <~ 0

//non—critical
lock <— 0 //bug!
<—lock
//critical here
finish <— 0

lock <— 0

33

Usage Types

Type Sy

A usage describes the structure of all allowed actions on a channel.
T:=|chanyT
U:=0 no usage
| ?.U read
| LU write
| U+ U parallel usage
| U&U alternative

e Inverted view on program: describes behavior from view of a single channel
e Only describes communication over channel, not communication where channel is passed
e Can be extended with repetition (U*)

34

Usage Types: Examples

7.1.0

35

Usage Types: Examples

7.1.0

First read, then write, then no usage

7.0&!1.0

35

Usage Types: Examples

?.1.0
First read, then write, then no usage
7.0&!.0
Read or write, no other usage
7.0+1.0

35

Usage Types: Examples

?.1.0
First read, then write, then no usage
7.0&!.0
Read or write, no other usage
7.0+1.0
Use for synchronization once
7.1.0+1.72.0

35

Usage Types: Examples

?.1.0
First read, then write, then no usage
7.0&!.0
Read or write, no other usage
7.0+1.0
Use for synchronization once
7.1.0+1.72.0

Synchronize twice.

35

Usage Types

Splitting Environment

Split is explicit.

chany, 1y, T = chany, T + chany,T

e Also, 0+0=0

e The operator + is commutative, so

U]_ +U2:UQ+U1

e An environment is unrestricted if all its channels are assigned 0

F=ri+r0, I Fs;:Unit Mok sy : Unit
[+ g0 s4; sy :Unit

U-parallel

Splitting : Split only at start of new thread!

Unsound: Split at expressions

F=r{+r 1 F e :Int [F e :Int
e +e:Int

U-add-1

37

Splitting : Split only at start of new thread!

Unsound: Propagate

F e :Int ke :Int
e +e:Int

U-add-2

37

Splitting : Split only at start of new thread!

Sound: Match evaluation order on sequence

Fr=rq..r, M1 Fe :Int [oF e :Int
e+ e :Int

U-add-3

e Here .15 is the split along . for all channels used in e; and e;

{c+ chanyp} - (<—¢): Int {c+ chang} I 1: Int
{c+ chanyg} F (<— ¢): Int {c+>chanyg} F (<= c+1): Int
{c—chan o} F(<—¢)+(<—c+1):Int

37

Usage Types

I+ {c:chany T} F s:Unit lke: T’ T < T

M+{c:chaniy T}Fc <-e; s:Unit U-Write

The rule for writing matches on two operators

e Writing (<—) is matched on !

e Sequence (;) is matched on .

This is the rule for reading from a non-composed expression into a location, which can apply

the same matching as for writing.

I+ {c:chany T} F s:Unit Mev: T T< T
I+ {c:chan;y T} Fv=<-c; s:Unit

U-Read

func main(){

global =0

lock := make(chan<!.?7.0 + ?.1.2.1.0 + ?.1.7.1.0 >

finish := make(chan<?7.7.0 + !.0 + 1.0>

go dual (1,
go dual(2,
lock <= 0
<—finish
<—finish

o Let I = {lock ~— chani7.047.1.2..042.1.2.0.0 Int, finish —
chan? 7.0+1.041.0 Int, global — Int

e Let I'; = {lock — chanj 70471710 Int, finish — chan; 70410 Int, global — Int

e Let [, = {lock > chan;, 7.1 Int, finish > chany Int, global — Int

I Fs:Unit o F dual(l, lock, finish): Unit
I = go dual(l, lock, finish); s:Unit

40

Example

o After another split at the two go's

{lock + chang int,finish — chang int} b skip : Unit

{lock — chan; o int, finish > chang int} F <—lock: Unit

{1ock +— chan; o int, finish — chan; g int} b <—finish; <-—lock:Unit

{lock > chan; int,finish > chan; 7 int} b <—finish; <—finish; <-lock:Unit

{lock > chan, 7 int,finish + chan; 7 int} b lock <—0; <—finish; <—finish; <—lock:Unit

41

_Go

func dual(i int,
lock chan<?7.1.7.1.0> int,
finish chan<!.0> int) {

<—lock
//critical here
lock <— 0

//non—critical
lock <— 0 //bug!
<—lock
//critical here
finish <— 0
lock <— 0

}

e Found during typing: read expected, but write found
{lock — chany o int,finish — chan|, int} F lock <—0;... : Unit

42

Limitations of Usages

Data Types

Cannot express to first send one data type and then another one. E.g., first send a string and

then an integer.

Split must be done manually, programmer must ensure that both part match.

1.2.0+1.7.0 X

In particular with alternative.

(1.0&2.0) + (1.0&2.0)

43

Wrap-Up

e Linear Types
e Restrict and control how often operations are performed on value
e Extension to detect
e General idea, used beyond channels
e Usage Types
e Explicitly specify order
e Explicitly specify splits

Binary and Multi-Party Session types

Reading: Type Systems for Concurrent Programs by Naoki Kobayashi

44

	Linear Types
	Usage Types

