
Part 3: Type Systems and Concurrency

Einar Broch Johnsen, S. Lizeth Tapia Tarifa, Eduard Kamburjan, Juliane Päßler

October 30, 2023

University of Oslo

Reminder: Setting Up a Type System

• A type syntax (T)

• A subtyping relation (T <: T ′)

• A typing environment (Γ : Var→ T)

• A type judgment (Γ ⊢ s : T)

• A set of type rules and a notion of type soundness

Topic today: specifics of type systems for message-passing concurrency

1

Reminder: Data vs. behavioral type, syntax and subtyping

Data and Behavioral Types

• A data type is an abstraction over the contents of memory

• Can it be interpreted as a member of a set? E.g., integers

• Are certain operations defined on it? E.g., + or method lookup

• A behavioral type is an abstraction over allowed operations

Big aim:

• In channel types, the operations are channel operations

• Specify, document and ensure intended communication patterns

• In the very best case: also ensure deadlock freedom

2

Reminder: Environment and Judgment

Type Environment

A type environment Γ is a partial map from variables to types.

• Notation to access the type of a variable v in environment Γ: Γ(v)

• Example notation for an environment with two integer variables v, w: {v 7→ Int, w 7→ Int}
• Notation for updating the environment: Γ[x 7→ T]

• Notation if a variable has no assigned type: Γ(x) = ⊥

Type Judgment

To express that statement s is well-typed with type T in environment Γ.

Γ ⊢ e : T

3

Reminder: Type Soundness

Type soundness expresses that if the initial program is well-typed, then we do not get stuck,

i.e., if we terminate, then successfully.

• Three intermediate lemmas (error states are not well-types, subject reduction, progress)

• Note that we do not ensures termination

• Main thinking point for later: are deadlocked states successfully terminated?

Subject Reduction

If a well-typed expression can be execute, then the result is well-typed

∀s, s ′, Γ.
(
(Γ ⊢ s : Unit ∧ s ⇝ s ′)→ ∃Γ′. Γ′ ⊢ s ′ : Unit

)
Progress

If a statement is well-typed, but not successfully terminated (i.e., skip or return), then it can

make a step

∀s.
(
(Γ ⊢ s : Unit ∧ ¬term(s)→ ∃s ′. s ⇝ s ′

)
4

Reminder: Types for Channels

Typing Writing

Γ ⊢ e : chan T Γ ⊢ e′ : T′ T′ <: T
Γ ⊢ e <− e′ : Unit

• First premise types channel

• Second premise types sent value

• Third premise connects via subtyping

Typing Reading

Γ ⊢ e : chan T’ T’ <: T
Γ ⊢ <− e : T

5

Reminder: Input/Output Modes

• How to enforce that one thread reads and one writes?

• Idea: use modes to encode read or write capabilities

• Use subtyping and weakening to split and restrict capabilities

func main () {
chn := make(chan ! ? i n t) // ! ?

go r ead (chn) // ! ?

//weaken chn to chan ! i n t

chn <− v //<− chn would be i l l e g a l

}
func r ead (c chan? i n t) i n t { // f o r g e t s ! mode

re tu rn <−c // c <− 1 would be i l l e g a l

}

6

Reminder: Input/Output Modes

Weakening Rule

Allows to make a type less specific. This is not just using the T-sub rule – we modify the

stored type in the environment.

Γ, {x 7→ T ′′} ⊢ s : T T ′′ <: T ′
T-weak

Γ, {x 7→ T ′} ⊢ s : T

Other Rules: Read and Write with Modes

Γ ⊢ e : chan! T Γ ⊢ v : T′ T′ <: T
M-write

Γ ⊢ e <− v : Unit

Γ ⊢ e : chan?T
′ T’ <: T

M-read
Γ ⊢ <− e : T

Reminder: We use Go syntax, but all channel types from now on go beyond their type system

7

More Channel Types

• Formalizing splitting Γ and ensure correct number of uses → Substructural/Linear Types

• Formalizing order → Usage Types

• More expressive protocols and allows different types to be send → Session Types

Learning goals of this lecture:

• How are order and capabilities used to structure concurrency?

• How are order and capabilities described in type system?

• What parts of type systems must be modified?

Not in this lecture: Full formal treatment and most general cases.

• For this reason the language is a bit simplified.

• No arbitrary expressions, no nested channel types

• Clear split between statements and expressions

8

Linear Types

Linear Types

Linearity

The previous systems do not prevent the channels from being used too little or too often.

func main () {
chn := make(chan ! ? i n t)

go r ead (chn)

}

func r ead (c chan? i n t) i n t {
re tu rn <−c // l o c k s and wa i t s f o r e v e r

}

9

Linear Types

Linearity

The previous systems do not prevent the channels from being used too little or too often.

func main () {
chn := make(chan ! ? i n t)

go r ead (chn)

c <− 1

c <− 1 // l o c k s and wa i t s f o r e v e r

}

func r ead (c chan? i n t) i n t {
re tu rn <−c

}

9

Substructural Linear Types

Linearity

In types, logic and related fields, linearity refers to capabilities that are used exactly once.

• A linear channel can be used for exactly one send/receive operation

• A linear resource cannot be reused after being accessed, and must be accessed

• Simplifies reasoning about systems because one prohibits reuse in different context.

• In the following: no nested channel operations (<−<−c)

10

Linear Types

Type Syntax

Let T be a type, and n,m ∈ {0, 1}. chan?n,!m T is a channel type.

Multiplicity !0 denotes that the channel must not be written, !1 that it must be written exactly

once. Analogously for ?.

• c : chan?1,!1 T is linear

• c : chan?0,!0 T cannot be used anymore

• c : chan?1,!0 T can be read but not written anymore

• c : chan?0,!1 T can be written but not read anymore

• Subtyping possible, but not needed

• No weakening rule, syntax-driven subtyping

11

Linear Types

Example

The previous example can be reformulated using linear types, and to forbid multiple accesses.

func main () {
chn := make(chan<?1 ,!1> i n t)

go r ead (chn)

chn <− v //chan<?0 ,!1> i n t

}

func r ead (c chan<?1 ,!0> i n t) i n t {
re tu rn <−c

}

12

Splitting the Environment

chn := make(chan<?1 ,!1> i n t)

go r ead (chn)

• Here we must give the capability to read to the new thread

• We must also ensure that our thread does not use this capability anymore

chn <− v

. . .

re tu rn <−c

• Here we must ensure that no use is left over

• And catch corner cases like return <−c + <−c

13

Linear Types: Defining Splitting

Typing Environment

A typing environment Γ can be split into two environments Γ1 + Γ2 by

• Having all variables with non-channel types in both Γ1 and Γ2.

• For each x with channel type we have Γ(x) = Γ1(x) + Γ2(x), where

chan?n1,!m1 T + chan?n2,!m2 T = chan?n1+n2,!m1+m2 T

• chan?1,!1 T = chan?0,!1 T+ chan?1,!0 T

• chan?1,!1 T = chan?1,!1 T+ chan?0,!0 T

{n 7→ Int, c 7→ chan?0,!1 Int} =
{n 7→ Int, c 7→ chan?0,!0 Int}+ {n 7→ Int, c 7→ chan?0,!1 Int}

14

Linear Types: Defining Complete Use

Literals and Termination

• Γ is unrestricted if all contained channels have n = 0 and m = 0. We write un(Γ).

• All literals only type check in a unrestricted environment

• First, sub-system only for for expressions

un(Γ)
L-true

Γ ⊢ true : Bool

un(Γ)
L-int

Γ ⊢ n : Int

un(Γ) Γ(v) = T
L-var

Γ ⊢ v : T

un(Γ)

{c 7→ chan?0,!0} ⊢ 1 : Int

{c 7→ chan?1,!0} ⊢ 1 : Int

15

Linear Types: Defining Complete Use

Literals and Termination

• Γ is unrestricted if all contained channels have n = 0 and m = 0. We write un(Γ).

• All literals only type check in a unrestricted environment

• First, sub-system only for for expressions

un(Γ)
L-true

Γ ⊢ true : Bool

un(Γ)
L-int

Γ ⊢ n : Int

un(Γ) Γ(v) = T
L-var

Γ ⊢ v : T

un(Γ)

{c 7→ chan?0,!0} ⊢ 1 : Int
{c 7→ chan?1,!0} ⊢ 1 : Int

15

Linear Types for Expressions

Splitting in Arithmetic Expressions

We split the environment at every point we descend into subexpressions.

Γ = Γ1 + Γ2 Γ1 ⊢ e1 : Int Γ2 ⊢ e2 : Int
L-add

Γ ⊢ e1 + e2 : Int
Γ ⊢ e : Int

L-minus
Γ ⊢ −e : Int

• Rules for Booleans are analogous

• Rule for reading requires that we are still allowed to read

Γ(v) = chan?1,!0 T un(Γ[v 7→ chan?0,!0 T])
L-read

Γ ⊢ ←v : T

16

Linear Types for Expressions

Type safe example

un({chan?0,!0 int}) {x 7→ chan?1,!0 int}(x) = chan?1,!0 int

{x 7→ chan?1,!0 int} ⊢ (<−x) : int

un({chan?0,!0 int})
{x 7→ chan?0,!0 int} ⊢ 1 : int

{x 7→ chan?1,!0 int} + {x 7→ chan?0,!0 int} ⊢ (<−x) + 1 : int

{x 7→ chan?1,!0 int} ⊢ (<−x) + 1 : int

No-use prohibited

un({chan?1,!0 int})
{x 7→ chan?1,!0 int} ⊢ 1 : int

un({chan?0,!0 int})
{x 7→ chan?0,!0 int} ⊢ 2 : int

{x 7→ chan?1,!0 int} + {x 7→ chan?0,!0 int} ⊢ 1 + 2 : int

{x 7→ chan?1,!0 int} ⊢ 1 + 2 : int

Double-use prohibited

un({chan?0,!0 int}) {x 7→ chan?1,!0 int}(x) = chan?1,!0 int

{x 7→ chan?1,!0 int} ⊢ (<−x) : int

un({chan?0,!0 int}) {x 7→ chan?0,!0 int}(x) = chan?1,!0 int

{x 7→ chan?0,!0 int} ⊢ (<−x) : int

{x 7→ chan?1,!0 int} + {x 7→ chan?0,!0 int} ⊢ (<−x) + (<−x) : int

{x 7→ chan?1,!0 int} ⊢ (<−x) + (<−x) : int

17

Linear Types for Statements

Termination

• All capabilities must be used up

• Ether before termination (skip) or by our last expression (return)

un(Γ)
L-skip

Γ ⊢ skip : Unit

Γ = Γ1 + Γ2 Γ1 ⊢ e : T un(Γ2)
L-return

Γ ⊢ return e : Unit

18

Linear Types for Statements

Termination

• All capabilities must be used up

• Ether before termination (skip) or by our last expression (return)

un(Γ)
L-skip

Γ ⊢ skip : Unit

Γ = Γ1 + Γ2 Γ1 ⊢ e : T un(Γ2)
L-return

Γ ⊢ return e : Unit

{c 7→ chan?1,!0Int} ⊢ 0 : Unit

{c 7→ chan?1,!0Int} ⊢ return 0 : Unit

18

Linear Types for Statements

Termination

• All capabilities must be used up

• Ether before termination (skip) or by our last expression (return)

un(Γ)
L-skip

Γ ⊢ skip : Unit

Γ = Γ1 + Γ2 Γ1 ⊢ e : T un(Γ2)
L-return

Γ ⊢ return e : Unit

Let Γ = {c 7→ chan?1,!0Int}, Γ0 = {c 7→ chan?0,!0Int}

un(Γ0) Γ(c) = chan?1,!0Int

Γ ⊢ c : chan?1,!0Int

Γ ⊢ <−c : Int un(Γ0) Γ = Γ + Γ0
Γ ⊢ return <−c : Unit

18

Linear Types for Statements

Termination

• All capabilities must be used up

• Ether before termination (skip) or by our last expression (return)

un(Γ)
L-skip

Γ ⊢ skip : Unit

Γ = Γ1 + Γ2 Γ1 ⊢ e : T un(Γ2)
L-return

Γ ⊢ return e : Unit

Let Γ = {c 7→ chan?0,!1Int}, Γ0 = {c 7→ chan?0,!0Int}

un(Γ0) Γ(c) = chan?1,!0Int

Γ ⊢ c : chan?1,!0Int

Γ ⊢ <−c : Int un(Γ0) Γ = Γ + Γ0
Γ ⊢ return <−c : Unit

18

Linear Types for Statements

Termination

• All capabilities must be used up

• Ether before termination (skip) or by our last expression (return)

un(Γ)
L-skip

Γ ⊢ skip : Unit

Γ = Γ1 + Γ2 Γ1 ⊢ e : T un(Γ2)
L-return

Γ ⊢ return e : Unit

Let Γ = {c 7→ chan?1,!0Int, d 7→ chan?1,!0Int}, Γ0 = {c 7→ chan?0,!0Int, d 7→ chan?0,!0Int}

un({c 7→ chan?0,!0Int, d 7→ chan?1,!0Int}) Γ(c) = chan?1,!0Int

Γ ⊢ c : chan?1,!0Int

Γ ⊢ <−c : Int un(Γ0) Γ = Γ + Γ0
Γ ⊢ return <−c : Unit

18

Linear Types for Statements

Writing (unsound, attempt 1)

• Check that we can write now

• Remove write capability and split the environment into two parts

• One (Γ1) records the write capability and the capabilities afterwards

• One (Γ2) record the capabilities of the evaluated expression

Γ[c 7→ chan?n,!0 T] = Γ1 + Γ2 Γ(c) = chan?n,!1 T Γ1 ⊢ s : Unit Γ2 ⊢ e : T
L-write

Γ ⊢ c <− e; s : Unit

19

Linear Types for Statements

• Remaining rules all have the same structure:

• Split environment for each subexpression/substatement

• Propagate split environment into each subexpression/substatement

Γ = Γ1 + Γ2 Γ1 ⊢ e : T Γ(v) = T Γ2 ⊢ s : Unit
L-assign

Γ ⊢ v := e; s : Unit

Γ = Γ1 + Γ2 + Γ3 Γ1 ⊢ e : Bool Γ2 ⊢ s1 : Unit Γ2 ⊢ s2 : Unit Γ3 ⊢ s3 : Unit
L-branch

Γ ⊢ if(e){s1} else{s2} s3 : Unit

Γ = Γ1 + Γ2 Γ1 ⊢ s1 : Unit Γ2 ⊢ s2 : Unit L-parallel
Γ ⊢ go s1; s2 : Unit

20

Example: Linear Types and Sequential Branching

Example

Consider the following environments

Γ = {chn 7→ chan?1,!1 Int}
Γ? = {chn 7→ chan?1,!0 Int}
Γ! = {chn 7→ chan?0,!1 Int}
Γ0 = {chn 7→ chan?0,!0 Int}

Type-safe:

...

Γ? ⊢ (<−chn) ≥ 0 : Bool

...

Γ! ⊢ chn <−0 : Unit

...

Γ! ⊢ chn <−1 : Unit

...

Γ0 ⊢ skip : Unit Γ = Γ? + Γ! + Γ0

Γ ⊢ if((<−chn) ≥ 0){chn <−0}else{chn <−1} skip : Unit

Missed use in branch is detected:

...

Γ? ⊢ (<−chn) ≥ 0 : Bool

...

Γ! ⊢ chn <−0 : Unit

...

Γ! ⊢ skip : Unit

...

Γ0 ⊢ skip : Unit Γ = Γ? + Γ! + Γ0

Γ ⊢ if((<−chn) ≥ 0){chn <−0}else{skip} skip : Unit
21

Example: Linear Types and Parallelism

We can now, assuming a simple rule for function calls, prove the read example.

chn := make(chan<?1 ,!1> i n t)

go { re tu rn <−chn}
chn <− v

s k i p

...
{chn 7→ chan?0,!1 int} ⊢ chn <−v : Unit

...
{chn 7→ chan?1,!0 int} ⊢ go read(chn) : Unit

{chn 7→ chan?0,!1 int}+ {chn 7→ chan?1,!0 int} ⊢ go read(chn); chn <−v : Unit

{chn 7→ chan?1,!1 int} ⊢ go read(chn); chn <−v : Unit

⊢ chn := make(chan <?1, !1 > int); go read(chn); chn <−v : Unit 22

Type Soundness

Is this enough?

To check that a channel is used exactly once, it is not enough to check that the multiplicity

is 0 at the end – additionally one must ensure deadlock-freedom!

23

Type Soundness

Is this enough?

To check that a channel is used exactly once, it is not enough to check that the multiplicity

is 0 at the end – additionally one must ensure deadlock-freedom!

c1 := make(chan<!1 ,?1> i n t)

c1 <− (<−c1)

c1 := make(chan<!1 ,?1> bool)

i f (<−c1){ c1 <− t rue }

23

Type Soundness

Is this enough?

To check that a channel is used exactly once, it is not enough to check that the multiplicity

is 0 at the end – additionally one must ensure deadlock-freedom!

c1 := make(chan<!1 ,?1> i n t)

c2 := make(chan<!1 ,?1> i n t)

go func {v := <−c1 ; c2 <− 1}
w := <−c2 ; c1 <− 1

23

Type Soundness – Enforce Parallelism

Writing

• Check that we can write but now read c now

• Remove write capability and split the environment into two parts

• One (Γ1) records the write capability and the capabilities afterwards

• One (Γ2) record the capabilities of the evaluated expression

• The first must allow one write

• The second must allow no read – otherwise one can type c <− c

• Also prohibits sequential self-locks c <− 1; <− c

Γ[c 7→ chan?0,!0 T] = Γ1 + Γ2 Γ(c) = chan?0,!1 T Γ1 ⊢ s : Unit Γ2 ⊢ e : T
L-write-DL

Γ ⊢ c <− e; s : Unit

24

Type Soundness – Enforce Parallelism

Γ = Γ1 + Γ2

Γ1 ⊢ e : T

Γ′2 ⊢ s : Unit Γ(v) = T
L-assign-DL

Γ ⊢ v = e; s : Unit

• Where Γ′2 sets all read x in e to chan?0,!0 T and is Γ2 otherwise.

∀x . Γ1(x) = chan?1,!0 T → Γ′2(x) = chan?0,!0

• Enforces that when one reads or writes from a channel, the other capability has been

passed to a different thread

25

Type Soundness

• One can apply the modification of L-assign-DL to all rules

• Guarantee: if systems deadlocks, more then one channel must be involved.

• Formalized: a state is successfully terminated if (1) all threads are terminated or (2) all

threads are stuck or terminated and there are at least 2 stuck threads that waiting on 2

different channels.

• Deadlock analysis can be reduced to relations between channels.

c1 := make(chan<!1 ,?1> i n t)

c2 := make(chan<!1 ,?1> i n t)

go func {v := <−c1 ; c2 <− 1}
w := <−c2 ; c1 <− 1

• What else are linear type systems good for?

• Instead of delving into deadlock checkers: can we specify order more elegantly?
26

Dropping Unrestricted Environments

• What happens if we drop un(Γ) everywhere?

c := make(chan<!1 ,?1> i n t)

c <− 1 ;

• We still have the restriction that we cannot use more then once

Affine Types

A variable or channel is affine if it is used at most once. A variable or channel is relevant if it

is used at least once.

• Not very useful for channels

• Useful for other types, e.g., to express that a declared variable may not be used, but if

used then only once (for optimizations) or at least once (i.e., no dead declaration)

27

Other Uses for Linear Types

• Linearity must not be restricted to channel types

• Can be used to detect unused variables (with relevant types)

• Can be modified to be used for resource management

• In particular: every allocation (=declaration) must be paired with a deallocation (=use)

28

Normal Types and Linear Types in One Language

• How to use linear and normal types for channels in one language?

• Idea: Use a special symbol to distinguish arbitrary use

• Extend type syntax, environment split and notion of unrestricted environment

Type Syntax

Let T be a type, and n,m ∈ {0, 1, ω}. chan?n,!m T is a type.

Multiplicity !ω denotes that the channel can be written arbitrarily often. Analogously for ?.

29

Normal Types and Linear Types in One Language

Typing Environment

A typing environment Γ can be split into two environments Γ1 + Γ2 by

• Having all variables with non-channel types in both Γ1 and Γ2.

• For each x with channel type we have Γ(x) = Γ1(x) + Γ2(x), where

chan?n1,!m1 T + chan?n2,!m2 T = chan?n1+n2,!m1+m2 T

n +m = n if m = 0

n +m = m if n = 0

n +m = ω otherwise

• chan?ω,!ω = chan?1,!1 + chan?ω,!ω

• chan?ω,!ω = chan?0,!0 + chan?ω,!ω

• chan?ω,!ω = chan?1,!1 + chan?1,!1

30

Normal Types and Linear Types in One Language

• Γ is unrestricted if all contained channels have n = 0 or n = ω, and m = 0 or m = ω.

• A channel is affine if we drop the restriction constraint, but it has been declared with

n = m = 1

• All rules stay the same except we must exchange every n = 1 for n > 0 (and same for m)

Γ ⊢ e : chan?n,!0 T n > 0
L-read

Γ ⊢ ←e : T

31

Usage Types

Usage Types

• Linear types are not enough to describe protocols

• Consider a channel that is used as a lock

• Channel is created, token is put it

• Reading from channel is acquiring token

• Writing to channel is releasing

Go

func main (){
g l o b a l = 0

l o c k := make (chan i n t)

f i n i s h := make (chan i n t)

go dua l (1 , l ock , f i n i s h)

go dua l (2 , l ock , f i n i s h)

l o c k <− 0

<− f i n i s h ; <− f i n i s h

<− l o c k

}

Go

func dua l (i i n t , l o c k chan in t ,

f i n i s h chan i n t) {
<− l o c k

// c r i t i c a l h e r e

l o c k <− 0

//non− c r i t i c a l

<− l o c k

// c r i t i c a l h e r e

f i n i s h <− 0 l o c k <− 0

}
32

Usage Types

What is the type of lock? We need something that can express more than linear types!

Go

func dua l (i i n t ,

l o c k chan<?omega , ! omega> i n t ,

f i n i s h chan<?0 ,!1> i n t) {
<− l o c k

// c r i t i c a l h e r e

l o c k <− 0

//non− c r i t i c a l

l o c k <− 0 //bug !

<− l o c k

// c r i t i c a l h e r e

f i n i s h <− 0

l o c k <− 0

}

33

Usage Types

Type Syntax

A usage describes the structure of all allowed actions on a channel.

T ::= | chanUT
U ::= 0 no usage

| ?.U read

| !.U write

| U + U parallel usage

| U&U alternative

• Inverted view on program: describes behavior from view of a single channel

• Only describes communication over channel, not communication where channel is passed

• Can be extended with repetition (U∗)

34

Usage Types: Examples

?.!.0

First read, then write, then no usage

?.0&!.0

Read or write, no other usage

?.0+!.0

Use for synchronization once

?.!.0+!.?.0

Synchronize twice.

35

Usage Types: Examples

?.!.0

First read, then write, then no usage

?.0&!.0

Read or write, no other usage

?.0+!.0

Use for synchronization once

?.!.0+!.?.0

Synchronize twice.

35

Usage Types: Examples

?.!.0

First read, then write, then no usage

?.0&!.0

Read or write, no other usage

?.0+!.0

Use for synchronization once

?.!.0+!.?.0

Synchronize twice.

35

Usage Types: Examples

?.!.0

First read, then write, then no usage

?.0&!.0

Read or write, no other usage

?.0+!.0

Use for synchronization once

?.!.0+!.?.0

Synchronize twice.

35

Usage Types: Examples

?.!.0

First read, then write, then no usage

?.0&!.0

Read or write, no other usage

?.0+!.0

Use for synchronization once

?.!.0+!.?.0

Synchronize twice.

35

Usage Types

Splitting Environment

Split is explicit.

chanU1+U2T = chanU1T+ chanU2T

• Also, 0 + 0 = 0

• The operator + is commutative, so

U1 + U2 = U2 + U1

• An environment is unrestricted if all its channels are assigned 0

Γ = Γ1 + Γ2 Γ1 ⊢ s1 : Unit Γ2 ⊢ s2 : Unit U-parallel
Γ ⊢ go s1; s2 : Unit

36

Splitting Γ: Split only at start of new thread!

Unsound: Split at expressions

Γ = Γ1 + Γ2 Γ1 ⊢ e1 : Int Γ2 ⊢ e2 : Int
U-add-1

Γ ⊢ e1 + e2 : Int

37

Splitting Γ: Split only at start of new thread!

Unsound: Propagate

Γ ⊢ e1 : Int Γ ⊢ e2 : Int
U-add-2

Γ ⊢ e1 + e2 : Int

37

Splitting Γ: Split only at start of new thread!

Sound: Match evaluation order on sequence

Γ = Γ1.Γ2 Γ1 ⊢ e1 : Int Γ2 ⊢ e2 : Int
U-add-3

Γ ⊢ e1 + e2 : Int

• Here Γ1.Γ2 is the split along . for all channels used in e1 and e2

{c 7→ chan?.0} ⊢ (<− c) : Int

{c 7→ chan?.0} ⊢ (<− c) : Int {c 7→ chan0} ⊢ 1 : Int

{c 7→ chan?.0} ⊢ (<− c + 1) : Int

{c 7→ chan?.?.0} ⊢ (<− c) + (<− c + 1) : Int

37

Usage Types

Write

Γ + {c : chanU T} ⊢ s : Unit Γ ⊢ e : T ′ T ′ <: T
U-Write

Γ + {c : chan!.U T} ⊢ c <−e; s : Unit

The rule for writing matches on two operators

• Writing (<−) is matched on !

• Sequence (;) is matched on .

Read

This is the rule for reading from a non-composed expression into a location, which can apply

the same matching as for writing.

Γ + {c : chanU T} ⊢ s : Unit Γ ⊢ v : T ′ T <: T ′
U-Read

Γ + {c : chan?.U T} ⊢ v =<−c; s : Unit

38

Example

Go

func main (){
g l o b a l = 0

l o c k := make (chan < ! . ? . 0 + ? . ! . ? . ! . 0 + ? . ! . ? . ! . 0 > i n t)

f i n i s h := make (chan <?.? .0 + ! . 0 + !.0> i n t)

go dua l (1 , l ock , f i n i s h)

go dua l (2 , l ock , f i n i s h)

l o c k <− 0

<− f i n i s h

<− f i n i s h

}

39

Example

• Let Γ = {lock 7→ chan!.?.0+?.!.?.!.0+?.!.?.!.0 Int, finish 7→
chan?.?.0+!.0+!.0 Int, global 7→ Int

• Let Γ1 = {lock 7→ chan!.?.0+?.!.?.!.0 Int, finish 7→ chan?.?.0+!.0 Int, global 7→ Int

• Let Γ2 = {lock 7→ chan?.!.?.!.0 Int, finish 7→ chan!.0 Int, global 7→ Int

...
Γ1 ⊢ s : Unit

...
Γ2 ⊢ dual(1, lock, finish) : Unit

Γ = go dual(1, lock, finish); s : Unit

40

Example

• After another split at the two go’s

...

{lock 7→ chan0 int, finish 7→ chan0 int} ⊢ skip : Unit

{lock 7→ chan?.0 int, finish 7→ chan0 int} ⊢ <−lock : Unit

{lock 7→ chan?.0 int, finish 7→ chan?.0 int} ⊢ <−finish; <−lock : Unit

{lock 7→ chan?.0 int, finish 7→ chan?.?.0 int} ⊢ <−finish; <−finish; <−lock : Unit

{lock 7→ chan!.?.0 int, finish 7→ chan?.?.0 int} ⊢ lock <−0; <−finish; <−finish; <−lock : Unit

41

Example

Go

func dua l (i i n t ,

l o c k chan <? . ! . ? . ! . 0 > i n t ,

f i n i s h chan<!.0> i n t) {
<−l o c k

// c r i t i c a l h e r e

l o c k <− 0

//non−c r i t i c a l

l o c k <− 0 //bug !

<−l o c k

// c r i t i c a l h e r e

f i n i s h <− 0

l o c k <− 0

}

• Found during typing: read expected, but write found

{lock 7→ chan?.!.0 int, finish 7→ chan!.0 int} ⊢ lock <−0; ... : Unit

42

Limitations of Usages

Data Types

Cannot express to first send one data type and then another one. E.g., first send a string and

then an integer.

Split

Split must be done manually, programmer must ensure that both part match.

!.?.0+!.?.0 ✗

In particular with alternative.

(!.0&?.0) + (!.0&?.0)

43

Wrap-Up

This Lecture

• Linear Types

• Restrict and control how often operations are performed on value

• Extension to detect

• General idea, used beyond channels

• Usage Types

• Explicitly specify order

• Explicitly specify splits

Next Lecture

Binary and Multi-Party Session types

Reading: Type Systems for Concurrent Programs by Naoki Kobayashi

44

	Linear Types
	Usage Types

