
Part 3: Type Systems and Concurrency

Einar Broch Johnsen, S. Lizeth Tapia Tarifa, Eduard Kamburjan, Juliane Päßler

November 4, 2023

University of Oslo

Reminder

Setting up a Type System

• A type syntax (T) and a subtyping relation (T <: T ′)

• A typing environment (Γ : Var 7→ T)

• A type judgment (Γ ⊢ s : T)

• A set of type rules and a notion of type soundness

• For concurrency: Some notion of splitting the environment and ordering actions

Agenda Today

• Final theoretical lecture on types

• Main ideas behind session types: expressive protocols on channels

• Uniqueness types: linearity for references

1

Comparison: Session Types (ST) and other Channel Types

Type System Form Split Order Guarantee Specification Expressiveness

Data Types chan int – – Data Safety Minimal No communication

patterns

Modes chan?! int Implicit

in rules

Implicit in rules

arbitrary often

– Minimal

Only interfaces

Distinguishes reader

from writer

Linear Types chan?1,!1 int Implicit

in rules

Implicit in rules

once

No DL

on single channels

Minimal

Only interfaces

Single-use channels,

distinguishes reader

from writer

Usage Types chan!.?.0+?.!.0 int Explicit

in spec.

Explicit in spec. – Considerate

No consistency checking

Simple protocols,

more than 2 partici-

pants

Binary ST chan !int.?string.0 Implicit

at declaration

Explicit in spec. No DL

on single channels

Medium effort

Consistency checked

Complex protocols

with branching be-

tween 2 participants

2

Comparison: Session Types (ST) and other Channel Types

Type System Form Split Order Guarantee Specification Expressiveness

Data Types chan int – – Data Safety Minimal No communication

patterns

Modes chan?! int Implicit

in rules

Implicit in rules

arbitrary often

– Minimal

Only interfaces

Distinguishes reader

from writer

Linear Types chan?1,!1 int Implicit

in rules

Implicit in rules

once

No DL

on single channels

Minimal

Only interfaces

Single-use channels,

distinguishes reader

from writer

Usage Types chan!.?.0+?.!.0 int Explicit

in spec.

Explicit in spec. – Considerate

No consistency checking

Simple protocols,

more than 2 partici-

pants

Binary ST chan !int.?string.0 Implicit

at declaration

Explicit in spec. No DL

on single channels

Medium effort

Consistency checked

Complex protocols

with branching be-

tween 2 participants

2

Comparison: Session Types (ST) and other Channel Types

Type System Form Split Order Guarantee Specification Expressiveness

Data Types chan int – – Data Safety Minimal No communication

patterns

Modes chan?! int Implicit

in rules

Implicit in rules

arbitrary often

– Minimal

Only interfaces

Distinguishes reader

from writer

Linear Types chan?1,!1 int Implicit

in rules

Implicit in rules

once

No DL

on single channels

Minimal

Only interfaces

Single-use channels,

distinguishes reader

from writer

Usage Types chan!.?.0+?.!.0 int Explicit

in spec.

Explicit in spec. – Considerate

No consistency checking

Simple protocols,

more than 2 partici-

pants

Binary ST chan !int.?string.0 Implicit

at declaration

Explicit in spec. No DL

on single channels

Medium effort

Consistency checked

Complex protocols

with branching be-

tween 2 participants

2

Comparison: Session Types (ST) and other Channel Types

Type System Form Split Order Guarantee Specification Expressiveness

Data Types chan int – – Data Safety Minimal No communication

patterns

Modes chan?! int Implicit

in rules

Implicit in rules

arbitrary often

– Minimal

Only interfaces

Distinguishes reader

from writer

Linear Types chan?1,!1 int Implicit

in rules

Implicit in rules

once

No DL

on single channels

Minimal

Only interfaces

Single-use channels,

distinguishes reader

from writer

Usage Types chan!.?.0+?.!.0 int Explicit

in spec.

Explicit in spec. – Considerate

No consistency checking

Simple protocols,

more than 2 partici-

pants

Binary ST chan !int.?string.0 Implicit

at declaration

Explicit in spec. No DL

on single channels

Medium effort

Consistency checked

Complex protocols

with branching be-

tween 2 participants

2

Comparison: Session Types (ST) and other Channel Types

Type System Form Split Order Guarantee Specification Expressiveness

Data Types chan int – – Data Safety Minimal No communication

patterns

Modes chan?! int Implicit

in rules

Implicit in rules

arbitrary often

– Minimal

Only interfaces

Distinguishes reader

from writer

Linear Types chan?1,!1 int Implicit

in rules

Implicit in rules

once

No DL

on single channels

Minimal

Only interfaces

Single-use channels,

distinguishes reader

from writer

Usage Types chan!.?.0+?.!.0 int Explicit

in spec.

Explicit in spec. – Considerate

No consistency checking

Simple protocols,

more than 2 partici-

pants

Binary ST chan !int.?string.0 Implicit

at declaration

Explicit in spec. No DL

on single channels

Medium effort

Consistency checked

Complex protocols

with branching be-

tween 2 participants

2

Binary Session Types

Requirements for Session Types

Session

A session is a sequence of related interactions between ≥ 2 parties over a certain time frame.

• Idea: a channel is only used for a single session

• A linear type describes a session with a single interaction

• A usage types describes a complex session and distributes interactions using +

Requirements for a Type System for Sessions

• Specify precisely possible orders of operations as protocols

• Clarify roles in sessions

• Must be able to handle branching in protocols

• Must be able to send different data types during protocol

3

Requirements for Session Types

Session

A session is a sequence of related interactions between ≥ 2 parties over a certain time frame.

• Idea: a channel is only used for a single session

• A linear type describes a session with a single interaction

• A usage types describes a complex session and distributes interactions using +

Requirements for a Type System for Sessions

• Specify precisely possible orders of operations as protocols

• Clarify roles in sessions

• Must be able to handle branching in protocols

• Must be able to send different data types during protocol

3

Two Views on Channels

1. A channel is a global store, where accesses are synchronizing

• Each variable points to this store

• The type of this variable defines a local view and access point on it

• v : chan?0,!1int → a global store of integers where I can read once using this access point

• Access points are variables

2. A channel is a global store with at least two access points, where accesses are

synchronizing

• Each variable points to an access point

• The type of this variable is the type of the access point

• v : chan?0,!1int → a global store of integers where I can read once using this access point

• Access points are values

4

Two Views on Channels

1. A channel is a global store, where accesses are synchronizing

• Each variable points to this store

• The type of this variable defines a local view and access point on it

• v : chan?0,!1int → a global store of integers where I can read once using this access point

• Access points are variables

2. A channel is a global store with at least two access points, where accesses are

synchronizing

• Each variable points to an access point

• The type of this variable is the type of the access point

• v : chan?0,!1int → a global store of integers where I can read once using this access point

• Access points are values

4

Two Views on Channels

Establishing a Session

Creating a channel results in two values, for two endpoint

(x, y) := make(chan T1, chan T2)

• The values of x, y have the “same” channel.

• While non-Go, this is the style of channel creation in, e.g., Rust.

5

Two Views on Channels

Establishing a Session

Creating a channel results in two values, for two endpoint

(x, y) := make(chan T1, chan T2)

• The values of x, y have the “same” channel.

• While non-Go, this is the style of channel creation in, e.g., Rust.

Binary Session Types

• Make sure types T1,T2 match using duality

• Channel is used for one session described by T1,T2 and completed on termination

5

Two Views on Channels

Establishing a Session

Creating a channel results in two values, for two endpoint

(x, y) := make(chan T1, chan T2)

• The values of x, y have the “same” channel.

• While non-Go, this is the style of channel creation in, e.g., Rust.

History

• Introduced by Kohei Honda in 1992 for binary synchronous sessions

• Extended to multi-party asynchronous setting in 2008

• Can ensure deadlock-freedom

• Various theoretical extensions, implemented for many languages as libraries

5

Binary Session Types

Type Syntax

• Data type of sent values is now part of protocol/session type

• Additional difference to usage types: no +

T ::= S Session Type

| chan T Channel Type

| D Data types

S ::= !T .S Send

| ?T .S Receive

| 0 Termination

... (next page)

Session to tend an integer and get some Boolean answer: chan !int.?bool.0

6

Binary Session Types

Choice in Session Types

Choice is not symmetrical in protocols

• One party decides on how to continue the session/protocol

• This choice must be communicated over the (session) channel

• Other party must follow this choice

Reminder: usage types had a symmetrical branching that fails to encode who chooses the

branch, e.g., !&?+!&?

• The branch is communicated using a special kind of values: labels

• Session types have two branching operators: internal choice and external choice

7

Binary Session Types

Type Syntax

S ::= ... (previous page)

| ⊕ {l1 : S1, . . . , ln : sn} Internal choice

| &{l1 : S1, . . . , ln : sn} External choice

(repetition ∗ can be added if needed)

• Intuition: The party using ⊕ decides on branch and send the label

• Intuition: The party using & receives the label and continues with the corresponding

branch

8

Binary Session Types

Internal Choice

Internal choice models that this endpoint makes the choice and communicates it by sending

the label.

⊕


l1 : S1
. . .

ln : Sn


• Send li and continue with Si

• All labels must be different

• Also called active choice or selection

9

Binary Session Types

External Choice

External choice models that this endpoint reacts to the choice after reading it.

&


l1 : S1
. . .

ln : Sn


• Receive li and continue with Si

• All labels must be different

• Also called passive choice

9

Example

Client

The client send the name of the product (as a string), receives its price (as an integer), and

either accepts the offer and sends its address (as a string), or rejects it.

!string.?int.⊕

{
accept : !string.0

reject : 0

}

Server

The server receives the name of the product (as a string), send its price (as an integer), and

either receives the address of the client (as a string) upon acceptance, or rejects terminates

the session upon rejection.

?string.!int.&

{
accept : ?string.0

reject : 0

}

10

Example

Client

The client send the name of the product (as a string), receives its price (as an integer), and

either accepts the offer and sends its address (as a string), or rejects it.

!string.?int.⊕

{
accept : !string.0

reject : 0

}

Server

The server receives the name of the product (as a string), send its price (as an integer), and

either receives the address of the client (as a string) upon acceptance, or rejects terminates

the session upon rejection.

?string.!int.&

{
accept : ?string.0

reject : 0

}

10

Example

func c l i e n t (){
(ch1 , ch2) :=

make(chan ! s t r i n g . ? i n t .+{ accep t : ! s t r i n g . 0 , r e j e c t : 0} ,
chan ? s t r i n g . ! i n t .&{ accep t : ? s t r i n g . 0 , r e j e c t : 0})

go s e r v e r (ch2)

ch <− ”Types and Programming Languages ”

p r i c e := <−ch

i f (p r i c e <= 10){
ch <− accep t

ch <− ” Prob l emve i en 1 , 0313 Oslo ”

} e l s e ch <− r e j e c t

}

11

Example

func s e r v e r (ch chan ? s t r i n g . ! i n t .&{ accep t : ? s t r i n g . 0 , r e j e c t : 0}){
produc t : s t r i n g = <−ch

ch <− productToPriceMap (p roduc t)

switch <−ch {
accep t −> sendToAddress(<−ch)

r e j e c t −> s k i p

}
}

• Endpoints must be used by different threads

• How to make sure we declare them in a matching way?

• How to allow subtyping?

12

Binary Session Types

Duality

• Ensures that both parties communicating over a channel have a symmetric or dual view.

• Given a binary session type, we can syntactically construct its dual.

• Alternatively: Given two binary session types, we chan check whether they are duals

0 = 0

!T .S =?T .S

?T .S =!T .S

&{l1 : S1, . . . , ln : Sn} = ⊕{l1 : S1, . . . , ln : Sn}
⊕{l1 : S1, . . . , ln : Sn} = &{l1 : S1, . . . , ln : Sn}

13

Binary Session Types

Example 1:

!string.!int.0 =

?string.!int.0 =

?string.?int.0 =

?string.?int.0

Example 2:

⊕


l1 :?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :!int.0

 =

&


l1 : ?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 : !int.0


=

&


l1 :!int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :?int.0

 =

&


l1 :!int.⊕

{
l4 :?int.0

l5 : 0

}
l2 : 0

l3 :?int.0



14

Binary Session Types

Example 1:

!string.!int.0 = ?string.!int.0 =

?string.?int.0 =

?string.?int.0

Example 2:

⊕


l1 :?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :!int.0

 =

&


l1 : ?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 : !int.0


=

&


l1 :!int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :?int.0

 =

&


l1 :!int.⊕

{
l4 :?int.0

l5 : 0

}
l2 : 0

l3 :?int.0



14

Binary Session Types

Example 1:

!string.!int.0 = ?string.!int.0 = ?string.?int.0 =

?string.?int.0

Example 2:

⊕


l1 :?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :!int.0

 =

&


l1 : ?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 : !int.0


=

&


l1 :!int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :?int.0

 =

&


l1 :!int.⊕

{
l4 :?int.0

l5 : 0

}
l2 : 0

l3 :?int.0



14

Binary Session Types

Example 1:

!string.!int.0 = ?string.!int.0 = ?string.?int.0 = ?string.?int.0

Example 2:

⊕


l1 :?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :!int.0

 =

&


l1 : ?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 : !int.0


=

&


l1 :!int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :?int.0

 =

&


l1 :!int.⊕

{
l4 :?int.0

l5 : 0

}
l2 : 0

l3 :?int.0



14

Binary Session Types

Example 1:

!string.!int.0 = ?string.!int.0 = ?string.?int.0 = ?string.?int.0

Example 2:

⊕


l1 :?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :!int.0

 =

&


l1 : ?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 : !int.0


=

&


l1 :!int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :?int.0

 =

&


l1 :!int.⊕

{
l4 :?int.0

l5 : 0

}
l2 : 0

l3 :?int.0



14

Binary Session Types

Example 1:

!string.!int.0 = ?string.!int.0 = ?string.?int.0 = ?string.?int.0

Example 2:

⊕


l1 :?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :!int.0

 = &


l1 : ?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 : !int.0


=

&


l1 :!int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :?int.0

 =

&


l1 :!int.⊕

{
l4 :?int.0

l5 : 0

}
l2 : 0

l3 :?int.0



14

Binary Session Types

Example 1:

!string.!int.0 = ?string.!int.0 = ?string.?int.0 = ?string.?int.0

Example 2:

⊕


l1 :?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :!int.0

 = &


l1 : ?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 : !int.0


=&


l1 :!int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :?int.0

 =

&


l1 :!int.⊕

{
l4 :?int.0

l5 : 0

}
l2 : 0

l3 :?int.0



14

Binary Session Types

Example 1:

!string.!int.0 = ?string.!int.0 = ?string.?int.0 = ?string.?int.0

Example 2:

⊕


l1 :?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :!int.0

 = &


l1 : ?int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 : !int.0


=&


l1 :!int.&

{
l4 :!int.0

l5 : 0

}
l2 : 0

l3 :?int.0

 = &


l1 :!int.⊕

{
l4 :?int.0

l5 : 0

}
l2 : 0

l3 :?int.0


14

Nested Sessions

Scenario

• Client does not know the address of the buyer, but gets a channel where it will be

communicated.

• Server does not read the address, but gets the channel and then reads the address from

it

!string.?int.⊕

{
accept : !(chan ?string.0).0

reject : 0

}

?string.!int.&

{
accept : ?(chan ?string.0).0

reject : 0

}

Duality is not propagated into parameters!

!T .S ̸= ?T .S

15

Nested Sessions: Server

func s e r v e r (ch

chan ? s t r i n g . ! i n t .&{ accep t : ?(chan ? s t r i n g . 0) . 0 , r e j e c t : 0}){
produc t : s t r i n g = <−ch

ch <− productToPriceMap (p roduc t)

switch <−ch {
accep t −> {

adCh := <−ch

sendToAddress(<−adCh)

}
r e j e c t −> s k i p

}
}

16

Nested Sessions: Client

func c l i e n t (adCh chan ? s t r i n g . 0){
(ch1 , ch2) :=

make(chan ! s t r i n g . ? i n t .+{ accep t : ! (chan ? s t r i n g . 0) . 0 , r e j e c t : 0} ,
chan ? s t r i n g . ! i n t .&{ accep t : ?(chan ? s t r i n g . 0) . 0 , r e j e c t : 0})

go s e r v e r (ch2)

ch <− ”Types and Programming Languages ”

p r i c e := <−ch

i f (p r i c e <= 10){
ch <− accep t

ch <− adCh

} e l s e ch <− r e j e c t

}

17

Nested Sessions: Another Client

Warning

• Session Types are not for security or privacy modeling

• Modeling a scenario as an abstract protocol only fixes the communication pattern

func c l i e n t (adCh chan ? s t r i n g . 0){
. . .

(myCh1 , myCh2) := make(chan ! s t r i n g . 0 , chan ? s t r i n g . 0)

<−adCh

. . .

i f (p r i c e <= 10){
ch <− accep t ; ch <− myCh2

myCh2 <− ” P i l e s t r e d e t 46 , 0167 Oslo ”

} e l s e ch <− r e j e c t

}

18

Binary Session Types

Establishing a Session with Duality - Type Checking Declaration

(x, y) := make(chan S1, chan S2)

Where S2 = S1.

• Well-formed example:

(x , y) = make(chan ! i n t . 0 , chan ? i n t . 0)

go func () { x <− 1 } ()
fmt . p r i n t l n (<−y) // p r i n t s ”1”

19

Binary Session Types

Establishing a Session with Duality - Type Checking Declaration

(x, y) := make(chan S1, chan S2)

Where S2 = S1.

• Ill-formed example

// o p e r a t o r s mismatch

(x , y) = make(chan ! i n t . 0 , chan ! i n t . 0)

// communicated t yp e s mismatch

(x , y) = make(chan ! i n t . 0 , chan ? s t r i n g . 0)

// l a b e l s mismatch

(x , y) =

make(chan &{ok : 0 ; no : 0} , chan +(ok : 0 ; l a b e l : 0))

20

Binary Session Types

• The type is already split into the types for the endpoints

• Environment is split between variables

Typing Environment

Each restricted variable is split into exactly one sub-environment.

Γ1(x) = Γ2(x) = (Γ1 + Γ2)(x) if un(Γ(x))

(Γ1 + Γ2)(x) = Γ1(x) if ¬un(Γ1(x)) and x ̸∈ dom Γ2

(Γ1 + Γ2)(x) = Γ2(x) if ¬un(Γ2(x)) and x ̸∈ dom Γ1

Where un(T) holds if T is a data type or 0.

{x 7→ 0, y 7→!int.0, z : int}
= {x 7→ 0, z : int}
+ {x 7→ 0, y 7→!int.0, z : int}

21

Binary Session Types

• Rules are slightly simplified to avoid technical but obvious details

• Using one endpoint requires that the other endpoint was passed to another thread (cf. last

lecture)

• No nested session types

22

Binary Session Types

• Rules are slightly simplified to avoid technical but obvious details

• Using one endpoint requires that the other endpoint was passed to another thread (cf. last

lecture)

• No nested session types

Read (Unrestricted Values)

• Uses up a ? read of the fitting data type T

• Usual subtyping for target variable with type T ′

Γ + {c : chan S} ⊢ s : Unit Γ ⊢ v : T ′ T <: T ′ un(T)

Γ + {c : chan ?T.S} ⊢ v =<−c; s : Unit

22

Binary Session Types

• Rules are slightly simplified to avoid technical but obvious details

• Using one endpoint requires that the other endpoint was passed to another thread (cf. last

lecture)

• No nested session types

Write (Unrestricted Values)

• Uses up a ! write of the fitting data type T

• Usual subtyping for sent expression with type T ′

Γ ⊢ e : T ′ Γ + {c : chan S} ⊢ s : Unit T ′ <: T un(T)

Γ + {c : chan !T.S} ⊢ c <−e; s : Unit

22

Binary Session Types

• The rules for parallel operations, termination, assignment/declaration are standard as for

the prior systems

Parallel

Starting a new thread splits the environment

Γ2 ⊢ s2 : Unit Γ1 ⊢ s1 : Unit

Γ1 + Γ2 ⊢ go{s1}; s2 : Unit

Termination

Termination requires that all sessions are either finished, or sent to another thread

un(Γ)

Γ ⊢ skip : Unit

23

Example

Γ = {c 7→ chan !int.0, d 7→ chan ?int.0, e 7→ int}
Γ1 = {d 7→ chan ?int.0, e 7→ int}
Γ2 = {c 7→ chan !int.0, e 7→ int}
Γ0 = {e 7→ int}

...

Γ2 ⊢ c < −e; skip : Unit

un(Γ0)

Γ0 ⊢ skip : Unit Γ0 ⊢ e : Int un(Int)

Γ0 + {d 7→ chan ?int.0} ⊢ e =< −d; skip : Unit

Γ1 ⊢ e =< −d; skip : Unit

Γ ⊢ go {c < −e; skip}; e =< −d; skip : Unit

24

Binary Session Types

• Labels are either enum/own data type/constants (shown here)

• ... or a special primitive (see paper)

Internal Choice

Γ + {c : chan Sj} ⊢ s : Unit

Γ + {c : chan ⊕ {l1 : S1, . . . , lj : Sj , . . . , ln : Sn}} ⊢ c <−lj; s : Unit

External Choice

External choice matches on two operations: reading the label, and picking a branch

Γ + {c : chan S1} ⊢ s1; s : Unit

...
Γ + {c : chan Sn} ⊢ sn; s : Unit

Γ + {c : chan &{l1 : S1, . . . , ln : Sn}} ⊢ switch <−c{l1 : s1; . . . ln : sn}; s : Unit

25

Example

Branching

• For branching, one can consider scoping and split along the .

• Alternatively, no split and no scoping

• For a change, here we show the second way:

Γ ⊢ e : bool Γ ⊢ s1; s3 : Unit Γ ⊢ s2; s3 : Unit

Γ ⊢ if(e){s1; skip}else{s2; skip} s3 : Unit

• Note that we do not match on internal choice

• Instead, the internal choice rules picks the branch once the label is sent

• In several branches of the if, the same branch of the protocol may be chosen

26

Example

Γ = {ch 7→ ⊕{accept : S1, reject : S2}}
Γ1 = {ch 7→ S1}
Γ2 = {ch 7→ S2}

...

...

Γ1 ⊢ s1; s3 : Unit

Γ ⊢ ch < −accept; s1; s3 : Unit

...

Γ2 ⊢ s2; s3 : Unit

Γ ⊢ ch < −reject; s2; s3 : Unit
Γ ⊢ if(price <= 10){ch < −accept; s1}else{ch < −reject; s2} s3 : Unit

27

Subtyping and Type Soundness

Subtyping

Subtyping has same idea of duality as the type.

• Internal choice can have more branches

Intuition: active choice to never take these branches.

• External choice can have less branches

Intuition: these branches are never chosen anyway.

⊕{li : Si}i∈I <: ⊕{li : S ′
i }i∈I ′ iff I ⊇ I ′ ∧ ∀i ∈ I . Si <: S ′

i

&{li : Si}i∈I <: &{li : S ′
i }i∈I ′ iff I ⊆ I ′ ∧ ∀i ∈ I ′. Si <: S ′

i

28

Subtyping and Type Soundness

• This subtyping allows one to specify interface with the actually implemented behavior and

declare channels with the possible behavior.

• Reminder: all external choices must be implemented to be type-safe, but not all internal

choices must be!

29

Subtyping and Type Soundness

• This subtyping allows one to specify interface with the actually implemented behavior and

declare channels with the possible behavior.

• Reminder: all external choices must be implemented to be type-safe, but not all internal

choices must be!

Example 1

Here, the channel can handle more choices, but one choice (ask) is never made,

func de c i d e (ch chan +{accep t : ? s t r i n g . 0 , r e j e c t : 0}) { . . . }

(ch l ,) := make(chan +{accep t : ? s t r i n g . 0 ,

r e j e c t : 0 ,

ask : ! i n t . ? s t r i n g . 0} , . . .)

d e c i d e (c h l) // d e c l a r e d type i s subtype o f r e q u i r e type

29

Subtyping and Type Soundness

• This subtyping allows one to specify interface with the actually implemented behavior and

declare channels with the possible behavior.

• Reminder: all external choices must be implemented to be type-safe, but not all internal

choices must be!

Example 2

Here, the channel can handle less choices, but one choice (reject) is never made, so decided

can implement a branch for it (which is never taken)

func dec i d ed (ch chan &{accep t : ? s t r i n g . 0 , r e j e c t : 0}) { . . . }

(ch l ,) := make(chan &{accep t : ? s t r i n g . 0} , . . .)

d e c i d e (c h l) // d e c l a r e d type i s subtype o f r e q u i r e type

29

Subtyping and Type Soundness

Type Soundness

Binary session types ensure that the session is lock free: a single session never blocks.

• Session delegation

• Global deadlock freedom require additional analysis

30

Comparison: Session Types (ST) and other Channel Types

Type System Form Split Order Guarantee Specification Expressiveness

Data Types chan int – – Data Safety Minimal No communication

patterns

Modes chan?! int Implicit

in rules

Implicit in rules

arbitrary often

– Minimal

Only interfaces

Distinguishes reader

from writer

Linear Types chan?1,!1 int Implicit

in rules

Implicit in rules

once

No DL

on single channels

Minimal

Only interfaces

Single-use channels,

distinguishes reader

from writer

Usage Types chan!.?.0+?.!.0 int Explicit

in spec.

Explicit in spec. – Considerate

No consistency checking

Simple protocols,

more than 2 partici-

pants

Binary ST chan !int.?string.0 Implicit

at declaration

Explicit in spec. No DL

on single channels

Medium effort

Consistency checked

Complex protocols

with branching be-

tween 2 participants

Multi-Party ST chan p → q : int.0 Extra mecha-

nism

Explicit in spec. No DL

on single channels

Considerate

Consistency checked

Complex protocols

with branching be-

tween n participants

31

Comparison: Session Types (ST) and other Channel Types

Type System Form Split Order Guarantee Specification Expressiveness

Data Types chan int – – Data Safety Minimal No communication

patterns

Modes chan?! int Implicit

in rules

Implicit in rules

arbitrary often

– Minimal

Only interfaces

Distinguishes reader

from writer

Linear Types chan?1,!1 int Implicit

in rules

Implicit in rules

once

No DL

on single channels

Minimal

Only interfaces

Single-use channels,

distinguishes reader

from writer

Usage Types chan!.?.0+?.!.0 int Explicit

in spec.

Explicit in spec. – Considerate

No consistency checking

Simple protocols,

more than 2 partici-

pants

Binary ST chan !int.?string.0 Implicit

at declaration

Explicit in spec. No DL

on single channels

Medium effort

Consistency checked

Complex protocols

with branching be-

tween 2 participants

Multi-Party ST chan p → q : int.0 Extra mecha-

nism

Explicit in spec. No DL

on single channels

Considerate

Consistency checked

Complex protocols

with branching be-

tween n participants

31

Multi-Party Session Types

Multi-Party Session Types

Motivation

Multi-Party Session Types (MPST) generalize to situation with more than two parties.

• How can more than 2 parties communicate on a channel?

• How can we specify such protocols?

• How can we generalize duality?

• We require an operation to wait on a label, so 2 parties can synchronize while the others

wait

c <- l,e //write label l and value e

l,e <- c //read value e, once l is send

• Task: Specify, implement and check scenario with three participants (Alice, Bob, Carol),

which pass an integer token in a ring.

32

Multi-Party Session Types

Motivation

Multi-Party Session Types (MPST) generalize to situation with more than two parties.

• How can more than 2 parties communicate on a channel?

• How can we specify such protocols?

• How can we generalize duality?

• We require an operation to wait on a label, so 2 parties can synchronize while the others

wait

c <- l,e //write label l and value e

l,e <- c //read value e, once l is send

• Task: Specify, implement and check scenario with three participants (Alice, Bob, Carol),

which pass an integer token in a ring.

32

Multi-Party Session Types

Motivation

Multi-Party Session Types (MPST) generalize to situation with more than two parties.

• How can more than 2 parties communicate on a channel?

• How can we specify such protocols?

• How can we generalize duality?

• We require an operation to wait on a label, so 2 parties can synchronize while the others

wait

c <- l,e //write label l and value e

l,e <- c //read value e, once l is send

• Task: Specify, implement and check scenario with three participants (Alice, Bob, Carol),

which pass an integer token in a ring.

32

Multi-Party Session Types

Roles

A role is a point of view on the session and corresponds to one endpoint of the channel.

Consequently, a channel can now have n endpoints, not just two.

Global and Local Types

MPST uses two kinds of specifications/types

• Global types give an overview on the whole session from a global view

• Global types describe at what point communication takes place between at least 2

parties

• Local types describe the session from the view of a single role

• Local types do not contain communication not visible to the considered role

33

Multi-Party Session Types

Type Syntax

Unify all constructs into one type expressing that p sends a label li together with a data value

of type Ti to q, and the communication continues as Si .

S ::= 0 | p → q : {l1(T1) : S1, . . . , ln(Tn) : Sn}

We omit the outermost parentheses if n = 1.

Alice → Bob :

{
l1(int) : Bob → Carol :

{
l2(int) : Carol → Alice : l4(int).0

l3(int) : Carol → Alice : l4(int).0

}}

34

Multi-Party Session Types

Type Syntax

Unify all constructs into one type expressing that p sends a label li together with a data value

of type Ti to q, and the communication continues as Si .

S ::= 0 | p → q : {l1(T1) : S1, . . . , ln(Tn) : Sn}

We omit the outermost parentheses if n = 1.

Alice → Bob :

{
l1(int) : Bob → Carol :

{
l2(int) : Carol → Alice : l4(int).0

l3(int) : Carol → Alice : l4(int).0

}}

34

Multi-Party Session Types

Local Types

Two actions, which are the unification of internal choice and sending, and the unification of

external choice and receiving.

L ::=0

| &{p1?l1(T1).L1, . . . , pn?ln(Tn).Ln}
| ⊕ {q1!l1(T1).L1, . . . , qn!ln(Tn).Ln}

LAlice = Bob!l1(int).Carol?l4(int).0

LBob = Alice?l1(int).⊕

{
Carol!l2(int).0

Carol!l3(int).0

}

LCarol = &

{
Bob?l2(int).Alice!l4(int).0

Bob?l3(int).Alice!l4(int).0

}

35

Multi-Party Session Types

Local Types

Two actions, which are the unification of internal choice and sending, and the unification of

external choice and receiving.

L ::=0

| &{p1?l1(T1).L1, . . . , pn?ln(Tn).Ln}
| ⊕ {q1!l1(T1).L1, . . . , qn!ln(Tn).Ln}

LAlice = Bob!l1(int).Carol?l4(int).0

LBob = Alice?l1(int).⊕

{
Carol!l2(int).0

Carol!l3(int).0

}

LCarol = &

{
Bob?l2(int).Alice!l4(int).0

Bob?l3(int).Alice!l4(int).0

}
35

Multi-Party Session Types

• Duality is generalized to projection: generate a local type for each role from a global type

• When projecting on receiver q, turn p → q into a ?

• When projecting on sender p, turn p → q into a !

• When projecting on any one else, each branch must be the same – this party is not

communicated which branch is taken

Projection

Generate local type Lp = G ↾ p from global type G and role p

0 ↾ p = 0

p → q : {l1(T1) : S1, . . . , ln(Tn) : Sn}↾p = ⊕{q!l1(T1).(S1 ↾ p), . . . , q!l1(T1).(S1 ↾ p)}
p → q : {l1(T1) : S1, . . . , ln(Tn) : Sn} ↾ q = &{p?l1(T1).(S1 ↾ q), . . . , p?ln(Tn).(Sn ↾ q)}
p → q : {l1(T1) : S1, . . . , ln(Tn) : Sn} ↾ r = L where ∀i . L = Si ↾ r

36

Multi-Party Session Types

• Not all labels must be different

• Same guarantees as binary types, and Session Fidelity:

A session indeed follows the communication by the global type.

• Type systems assigns role upon a new parallel process.

• Vast number of extensions, variants, alternative designs, implementations, systems for

different concurrency models (including actors), synchronous and asynchronous

communication

• Tightly connected to choreographic programming: given a protocol, generate a program

that implements it

37

Uniqueness Types

Uniqueness Types

Linear Types

So far, we have used linear types for channels, and limited the use of reading and writing.

Passing the channel around was no problem, but required to split the type environment.

• What about other kinds of usages?

• What about limiting the use of passing?

Uniqueness Types

A uniqueness type system ensures that every value (channel etc.) has at most one usable

reference pointing to it.

• Sometimes used interchangeably with linear types, when every use of a variable is

considered creating a new reference

38

Uniqueness Types

Every value is associated with a single variable

i : T = . . . ;

j : T = i ; // u s e s up i

k : T = i ; // e r r o r

Calls are considered creating a new, external reference

39

Uniqueness Types

Every value is associated with a single variable

i : T = . . . ;

j : T = i ; // u s e s up i

k : T = i ; // e r r o r

Calls are considered creating a new, external reference

func d r i v e (param T) = . . .

c a r := . . .

d r i v e (ca r) ; // pa s s e s r e f e r e n c e out , u s e s up ca r

d r i v e (ca r) ; // e r r o r

39

Uniqueness Types

Every value is associated with a single variable

i : T = . . . ;

j : T = i ; // u s e s up i

k : T = i ; // e r r o r

Calls are considered creating a new, external reference

ca r := . . .

c a r = d r i v e (ca r) ; // pa s s e s r e f e r e n c e out , u s e s up ca r

// g e t s new r e f e r e n c e !

d r i v e (ca r) ; // a l l owed

39

Uniqueness Types

Uniqueness and Threads

In a concurrent setting, uniqueness types are used to ensure that only one thread has access

to a shared resource.

Trivially removes data races, as only one thread can modify an any time – all other references

are considered used up.

ca r := . . .

go { ca r . whee l s = 5 } // pa s s e s r e f e r e n c e out

// a l s o u s e s up ca r !

ca r . whee l s = 6 ; // e r r o r

40

Uniqueness Types

• Type system is a variant of affine/linear types

• Each type T has now the form T1 or T0

• Split again operates on the parameter: Tm+n = Tn + Tm

• Every use (read, write) requires T1

• Split on parallel operator

41

Wrap-Up

• How to set up a type system

• How types mirror reasoning about concurrent systems

• Communication patterns expressed by the different type systems

Next Lecture: Rust

• Linear and uniqueness: Rust and concurrency in Rust

• Session types in practice with a rust library

No exercise session this week, next exercise will be uploaded end of the week

42

Wrap-Up

• How to set up a type system

• How types mirror reasoning about concurrent systems

• Communication patterns expressed by the different type systems

Next Lecture: Rust

• Linear and uniqueness: Rust and concurrency in Rust

• Session types in practice with a rust library

No exercise session this week, next exercise will be uploaded end of the week

42

	Binary Session Types
	Multi-Party Session Types
	Uniqueness Types

