
Part 3: Type Systems and Concurrency

Einar Broch Johnsen, S. Lizeth Tapia Tarifa, Eduard Kamburjan, Juliane Päßler
November 4, 2023

University of Oslo

Comparison: Session Types (ST) and other Channel Types

Type System Form Split Order Guarantee Specification Expressiveness
Data Types chan int – – Data Safety Minimal No communication

patterns
Modes chan?! int Implicit

in rules
Implicit in rules
arbitrary often

– Minimal
Only interfaces

Distinguishes reader
from writer

Linear Types chan?1,!1 int Implicit
in rules

Implicit in rules
once

No DL
on single channels

Minimal
Only interfaces

Single-use channels,
distinguishes reader
from writer

Usage Types chan!.?.0+?.!.0 int Explicit
in spec.

Explicit in spec. – Considerate
No consistency checking

Simple protocols,
more than 2 partici-
pants

Binary ST chan !int.?string.0 Implicit
at declaration

Explicit in spec. No DL
on single channels

Medium effort
Consistency checked

Complex protocols
with branching be-
tween 2 participants

Multi-Party ST chan p → q : int.0 Extra mecha-
nism

Explicit in spec. No DL
on single channels

Considerate
Consistency checked

Complex protocols
with branching be-
tween n participants

1

Uniqueness Types

Linear Types

So far, we have used linear types for channels, and limited the use of reading and writing.
Passing the channel around was no problem, but required to split the type environment.

• What about other kinds of usages?
• What about limiting the use of passing?

Uniqueness Types

A uniqueness type system ensures that every value (channel etc.) has at most one usable
reference pointing to it.

• Sometimes used interchangeably with linear types, when every use of a variable is
considered creating a new reference

2

Uniqueness Types

Every value is associated with a single variable

i : T = . . . ;
j : T = i ; // uses up i
k : T = i ; // e r r o r

Calls are considered creating a new, external reference

3

Uniqueness Types

Every value is associated with a single variable

i : T = . . . ;
j : T = i ; // uses up i
k : T = i ; // e r r o r

Calls are considered creating a new, external reference

func d r i v e (param T) = . . .
ca r := . . .
d r i v e (ca r) ; // pas s e s r e f e r e n c e out , use s up car
d r i v e (ca r) ; // e r r o r

3

Uniqueness Types

Every value is associated with a single variable

i : T = . . . ;
j : T = i ; // uses up i
k : T = i ; // e r r o r

Calls are considered creating a new, external reference

ca r := . . .
ca r = d r i v e (ca r) ; // pas s e s r e f e r e n c e out , use s up car

// ge t s new r e f e r e n c e !
d r i v e (ca r) ; // a l l owed

3

Background

How to use types and concurrency models in development?

External Tool Support
• Developers mixing libraries lose guarantees
• Studies in Scala show that developers very often mix libraries

[Why do scala developers mix the actor model with other concurrency models?, Tasharofi et al., 2013]

• Maintenance of libraries becomes a problem

Practical Types for Concurrent Systems
Rust and Go both focus on practical implementations of types and concurrency patterns

• Motivated by memory safety and concurrency: ownership, goroutine, channels
• Session types still external, but Rust library integrates with type system

4

Connecting Syntax and Semantics

There are several ideas to connect syntax and semantics for memory management.

• Linear types, RAII, RBMM, etc.
• All face similar issues

Aliasing

Aliasing occurs if multiple references to one value/object exist
• Makes reasoning about the program more difficult
• Especially in concurrency: is there another active reference?
• Separates (semantic) value from (syntactic) variable

Excursus for Object-Orientation: Ownership Types
• Each object has one owner to enforce hierarchy of accesses
• Basis for further analyses, have elegant formalization as type system
• Name Warning: Rust’s ownership system is not based on Ownership types.

5

Connecting Syntax and Semantics

Resource Allocation Is Initialization (RAII)

• Memory management for local (=stack) instances
• Memory used by class allocated by constructor and deallocated by destructor
• No explicit deallocation needed, destructor called upon leaving the stack scope

c l a s s C { //C++ example
i n t ∗ p ;
C() { p = new i n t [4] ; }
~C() { d e l e t e [] data ; }
. . . } ;

vo id f () {
C v () ;
v . f () ;

} //v goes out o f scope , ge t s d e a l l o c a t e d and c a l l s the d e s t r u c t o r
6

Connecting Syntax and Semantics

Region/Scope Based Memory Management (RBMM)

• RAII is mostly used to refer to OO, RBMM is more general
• Associate lexically-scoped part of the program with a region in the heap
• Region deallocated once scope exited
• Type checker ensures that no external pointers into region exist

Shared Themes
Linear types, uniqueness types, RBMM and alias analyses relate values, their lifetime at run-
time and the syntactic structure of the program.

• Keep track of number of possible (types) references to reason about concurrent
operations

• Prevent general errors from faulty memory management

7

Ownership

Memory management in Rust

Rust combines many ideas to guarantee memory and thread-safety, as well as static memory
management without garbage collection
Ownership is how Rust manages memory

Ownership In Rust

• Each value (a String, Vec, etc.) is owned by a single variable, called owner
• There can only be one owner at a time.
• When the owner goes out of scope, the value will be dropped, i.e., memory will be

deallocated.

8

Ownership

• Reassignment of ownership (as in let b = a) is a move
• Affinity is considered with respect to moves
• Once ownership has been given away, a variable can no longer be used
• a is “used up” and therefore unusable
• Values with copy trait and literals are not moved, but copied

Rust

fn main () {
l e t a = vec! [1 , 2 , 3] ; // a ve c to r
l e t b = a ; // move : ‘ a ‘ can no l o n g e r be used
p r i n t l n ! (”{0}␣{1}” , a [0] , b [0]) ; // e r r o r : borrow of moved va lue : ’ a ’
}

9

Ownership

• Reassignment of ownership (as in let b = a) is a move
• Affinity is considered with respect to moves
• Once ownership has been given away, a variable can no longer be used
• a is “used up” and therefore unusable
• Values with copy trait and literals are not moved, but copied

Rust

fn main () {
l e t a = 1 :
l e t b = a ; // not a move : ‘ a ‘ i s c o p i e d !
p r i n t l n ! (”{0}␣{1}” , a , b) ; // works
}

9

Passing Ownership

Passing a value also passes ownership of the value
Rust

fn make_vec () −> Vec<i32> {
l e t mut vec = Vec : : new () ;
vec . push (1) ;
vec // t r a n s f e r ownership back to the c a l l e r
}

fn use_vec () {
l e t vec = make_vec () ; // take ownership of the vecto r
pr int_vec (vec) ; // pass ownership to pr int_vec

}
fn pr int_vec (vec : Vec<i32 >) { // vec i s owned by pr int_vec

f o r i i n vec . i t e r ()
p r i n t l n ! (”{}” , i)

} // now , vec i s dea l l o ca t ed

10

Passing Ownership

Rust

fn use_vec () {
l e t vec = make_vec () ; // take ownersh ip o f v e c t o r
pr in t_vec (vec) ; // pass ownersh ip to p r i n t_vec

f o r i i n vec . i t e r () // ERROR: cont inue us ing vec
p r i n t l n ! (”{}” , i ∗ 2)

}

• Ownership is not transferred again by print_vec, vec it destroyed here.
• Trying to use the vec again gives an error
• More than just “discipline”: the vector has already been deallocated at this point!

11

Mutability, Borrowing,
References

Mutability

Do we need the mut modifier?

• Rust distinguished between references for reading and writing (for non-literals)
• Just owning a value does not enable one to change it
• Capability of changing the state of a value is known as mutability
• Mutability constrains your ability to borrow references
• Variables own immutable values by default. We can override this behavior by preceding a

variable with the mut keyword.

12

Mutability

Do we need the mut modifier?
Rust

fn main () {
l e t numbers = vec! [1 , 2 , 3] ;
numbers . push (4) ; // ERROR: cannot borrow as mutable
p r i n t l n ! (. . .) ;

} ;

• Rust distinguished between references for reading and writing (for non-literals)
• Just owning a value does not enable one to change it
• Capability of changing the state of a value is known as mutability
• Mutability constrains your ability to borrow references
• Variables own immutable values by default. We can override this behavior by preceding a

variable with the mut keyword.

12

Mutability

Do we need the mut modifier?
Rust

fn main () {
l e t mut numbers = vec! [1 , 2 , 3] ;
numbers . push (4) ; // no e r r o r
p r i n t l n ! (. . .) ;

} ;

• Rust distinguished between references for reading and writing (for non-literals)
• Just owning a value does not enable one to change it
• Capability of changing the state of a value is known as mutability
• Mutability constrains your ability to borrow references
• Variables own immutable values by default. We can override this behavior by preceding a

variable with the mut keyword.

12

Mutability

Do we need the mut modifier?
Rust

fn main () {
l e t mut numbers = vec! [1 , 2 , 3] ;
numbers . push (4) ; // no e r r o r
p r i n t l n ! (. . .) ;

} ;

• Rust distinguished between references for reading and writing (for non-literals)
• Just owning a value does not enable one to change it
• Capability of changing the state of a value is known as mutability
• Mutability constrains your ability to borrow references
• Variables own immutable values by default. We can override this behavior by preceding a

variable with the mut keyword.
12

Borrowing Vs Ownership : same example cont’d

Rust

fn use_vec () {
l e t vec = make_vec () ; // take ownership of vecto r
pr int_vec (vec) ; // pass ownership to pr int_vec

// vecto r dest royed there
f o r i i n vec . i t e r () // ERROR: cont inue us ing vec

p r i n t l n ! (”{}” , i ∗ 2)
}

You can borrow the access to functions you call

• Grant print_vec temporary access to the vector, and then continue using the vector
afterwards

• To borrow a value, you make a reference to it

13

Borrowing Vs Ownership : same example cont’d

Rust

fn use_vec () {
l e t vec = make_vec () ; // take ownership of vecto r
pr int_vec(&vec) ; // borrow access to pr int_vec
f o r i i n vec . i t e r () { // cont inue us ing vec

p r i n t l n ! (”{}” , i ∗ 2)}
// vecto r i s dest royed here

}

You can borrow the access to functions you call

• Grant print_vec temporary access to the vector, and then continue using the vector
afterwards

• To borrow a value, you make a reference to it

13

Referencing in Rust

References come in two flavors:

• Immutable references &T, which allow sharing but not mutation. There can be multiple
&T references to the same value simultaneously, but the value cannot be mutated while
those references are active.

• Mutable references &mut T, which allow mutation but not sharing. If there is an &mut T
reference to a value, there can be no other active references at that time, but the value
can be mutated.

Rust checks these rules at compile time; borrowing has no runtime overhead.

14

Lifetime

• Deallocation is handled by lifetimes
• Value, references and variables all have lifetimes
• A reference/variable has a lifetime from until it goes out-of-scope.
• A value has a lifetime until its owener goes out-of-scope
• References are not owners: Reference must have shorter lifetimes than their value

15

Lifetime

• Deallocation is handled by lifetimes
• Value, references and variables all have lifetimes
• A reference/variable has a lifetime from until it goes out-of-scope.
• A value has a lifetime until its owener goes out-of-scope
• References are not owners: Reference must have shorter lifetimes than their value
Rust

fn main () {
l e t r f ; //−−−+ Li f e t ime of r e f
{ // |

l e t vec = vec! [1 , 2 , 3] ; //−+ | L i f e t ime of vec and va lue
r f = &vec ; // | | r e f borrows read access

} //−+ | vec goes out−of−scope , va lue dea l l o ca t ed
p r i n t l n ! (”{}” , (∗ r f) [0]) ; // | access i n v a l i d !

} //−−−+

15

Lifetime

• Deallocation is handled by lifetimes
• Value, references and variables all have lifetimes
• A reference/variable has a lifetime from until it goes out-of-scope.
• A value has a lifetime until its owener goes out-of-scope
• References are not owners: Reference must have shorter lifetimes than their value

Rust

fn main () {
l e t vec = vec! [1 , 2 , 3] ; //−−−+
l e t r f = &vec ; //−+ |
p r i n t l n ! (”{}” , (∗ r f) [0]) ; // | |

} //−+−+

15

Referencing in Rust

A reference to a value cannot outlive the owner

Rust

l e t v = vec! [1 , 2] ;
l e t x=&v [0] ;
l e t v2=v ; // Owner changes from v to v2!
l e t y = ∗x + 1 // ERROR − x r e f e r s to v , but v i s not an owner!

A value can have one mutable reference or many immutable references

Rust

l e t mut v = vec! [1 , 2] ;
l e t x=&v [0] ; // immutable borrow here
Vec : : push (&mut v , 3) ; // ERROR: mutable borrow here
l e t y = ∗x +1; // removing t h i s l i n e f i x e s the example!

16

Data Races and Race Conditions in Rust

Data Race
A data race occurs on a value in memory if

• two or more threads are concurrency accessing memory,
• one or more of them is a write, and
• one or more of them is unsynchronised.

Data races are prevented by the ownership system/borrow checker, since we are unable to alias
a mutable reference.
However Rust does not prevent general race conditions

• Since, our hardware, OS and other programs might be Racy
• Still, a race condition cannot violate memory safety in a Rust program on its own
• Only in conjunction with some other unsafe code can a race condition actually violate

memory safety
17

Excursus: Race condition in Rust

Rust

use std : : thread ;
use std : : sync : : atomic : : { AtomicUsize , Ordering } ;
use std : : sync : : Arc ;

l e t data = vec! [1 , 2 , 3 , 4] ;
l e t i dx = Arc : : new(AtomicUsize : : new (0)) ; //ARC manages shared ownership
l e t other = idx . c lone () ; // shared ownership btw . idx and other

thread : : spawn(move | | {
other . fetch_add (10 , Ordering : : SeqCst) ;

}) ; // we can mutate idx s i n c e i t s atomic i t cannot cause a Data Race .

i f i dx . load (Ordering : : SeqCst) < data . l en () {
unsafe{ p r i n t l n ! (”{}” , data . get_unchecked (idx . load (Ordering : : SeqCst))) ; }

}

18

Channels

Rust and Channels

• Rust uses transmitter(tx) and reciever(rx) for channel communication
• Channels created with mpsc::channel (MPSC = multiple producer, single consumer)
• Channel can have multiple sending endpoint, but only one receiving endpoint
Rust

fn main () {
l e t (tx , rx) = mpsc : : channel () ; // two channel endpoints
thread : : spawn(move | | { // | | c r ea t e s c l o s u r e

l e t va l = Str ing : : from (”Sending␣data”) ;
tx . send (va l) . unwrap () ;

}) ;}

• Using move moves ownership of tx to new thread
• Thread must own transmitter to send messages on channel
• send method returns a Result<T, E> type and unwrap to panic in case of an error (send

has nowhere to send). 19

Message passing to transfer data between Threads

Rust

fn main () {
l e t (tx , r x) = mpsc : : channe l () ;
th read : : spawn (move | | {

l e t v a l = Str ing : : from (” Sending ␣ data ”) ;
tx . send (v a l) . unwrap () ; }) ;

l e t r e c e i v e d = rx . recv () . unwrap () ;
p r i n t l n ! (”Got : ␣{}” , r e c e i v e d) ;

}

• recv will block the main threads execution and wait until a value is sent down the channel
• Once a value is sent, recv will return it in a Result<T, E>.

20

Message passing : Ownership Transfer

Rust

fn main () {
l e t (tx , r x) = mpsc : : channe l () ;
th read : : spawn (move | | {

l e t v a l = Str ing : : from (” Sending ␣ data ”) ;
tx . send (v a l) . unwrap () ;
p r i n t l n ! (” v a l ␣ i s ␣{}” , v a l) ; }) ; //ERROR

l e t r e c e i v e d = rx . recv () . unwrap () ;
p r i n t l n ! (”Got : ␣{}” , r e c e i v e d) ;

}

• We try to print val after we sent it down the channel via tx.send
• Results in error, since once the value has been sent to another thread, that thread(

i.e.,function recv) takes the ownership
• Same mechanism as with function valls 21

Creating Multiple Producers by Cloning

Rust

l e t tx1 = tx . c lone () ;
thread : : spawn(move | | {

l e t v a l s = vec! [. . .] ;
f o r va l i n v a l s {

tx1 . send (va l) . unwrap () ;
thread : : s l e e p (Duration : : from_secs (1)) ; } }) ;

thread : : spawn(move | | {
l e t v a l s = vec! [. . .] ;
f o r va l i n v a l s {

tx . send (va l) . unwrap () ;
thread : : s l e e p (Duration : : from_secs (1)) ; } }) ;

f o r r e c e i v ed i n rx {
p r i n t l n ! (”Got : ␣{}” , r e c e i v ed) ; }

22

Creating Multiple Producers by Cloning

• Before creating the first spawned thread, we call clone on the transmitter
• Gives us a new transmitter we can pass to the first spawned thread.
• We pass the original transmitter to a second spawned thread which gives us two threads,

each sending different messages to the one receiver.

23

Rust and Session Types

We have seen safety for shared memory so far.

session_types

A rust crate (=package/library) for binary session types.
Equipped with numerous macros.

(see auxiliary material session0.rs and session1.rs)

24

	Ownership
	Mutability, Borrowing, References
	Channels

