
ABS: Modeling and analysis
with resource-sensitive actors

Silvia Lizeth Tapia Tarifa

University of Oslo, Norway
sltarifa@ifi.uio.no

Oslo, 13 November 2023

http://www.sirius-labs.no

mailto:sltarifa@ifi.uio.no
http://www.sirius-labs.no
http://www.sirius-labs.no

Modeling and Analysis

Main idea:

• Describe a system using a language.
• Describe the properties or analysis of the system that one wants to do.
• Use a systematic method (with tool support) to check the properties or do some other kind of analysis

(e.g., correctness, reachability analysis, time-related analysis, resource analysis, what-if scenarios,
optimization, planning, etc.) .

Main topic of the day:

• Modeling with an actor-based language.
• Elasticity/scalability of the deployment of a system: performance vs. cost
• Resource-usage predictions using simulations.

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 2 / 43

http://www.envisage-project.eu

Modeling and Analysis

Main idea:

• Describe a system using a language.
• Describe the properties or analysis of the system that one wants to do.
• Use a systematic method (with tool support) to check the properties or do some other kind of analysis

(e.g., correctness, reachability analysis, time-related analysis, resource analysis, what-if scenarios,
optimization, planning, etc.) .

Main topic of the day:

• Modeling with an actor-based language.
• Elasticity/scalability of the deployment of a system: performance vs. cost
• Resource-usage predictions using simulations.

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 2 / 43

http://www.envisage-project.eu

Plan for Today

• Question: Can we use models to predict resource usage for applications running on the cloud?

• Starting point: actors — a computation model which decouples execution from synchronization
• ABS: modeling language which adds resource-sensitive behavior to actors
• We look at how to enrich this model to make simulation of models of cloud-deployed services
• ABS has been used to model Hadoop clusters, industrial cloud applications, Kubernetes clusters, …

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 3 / 43

http://www.envisage-project.eu

Plan for Today

• Question: Can we use models to predict resource usage for applications running on the cloud?

• Starting point: actors — a computation model which decouples execution from synchronization
• ABS: modeling language which adds resource-sensitive behavior to actors
• We look at how to enrich this model to make simulation of models of cloud-deployed services
• ABS has been used to model Hadoop clusters, industrial cloud applications, Kubernetes clusters, …

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 3 / 43

http://www.envisage-project.eu

We want to make effective use of cloud computing
to meet service requirements

Cloud API

Application
Service

• Virtualization makes elastic amounts of resources available to application-level services

• Metered resources: Resources on the Cloud are pay-on-demand

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 4 / 43

http://www.envisage-project.eu

We want to make effective use of cloud computing
to meet service requirements

Cloud API

Application
Service

• Virtualization makes elastic amounts of resources available to application-level services

• Metered resources: Resources on the Cloud are pay-on-demand

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 4 / 43

http://www.envisage-project.eu

We want to make effective use of cloud computing
to meet service requirements

Cloud API

Application
Service

• Virtualization makes elastic amounts of resources available to application-level services

• Metered resources: Resources on the Cloud are pay-on-demand

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 4 / 43

http://www.envisage-project.eu

Resource-aware design

ApplicationServer

DC4
DC3

CalcServerDC2

CalcServer

DC1

CalcServer

AppWorkflow

CloudProvider

Invoke task

of VM
Total Cost

Application Server
=

Application Workflow
+

Application Resource Management
(load balancing, scalability)

CalcServer
=

Independent tasks
(can be parallelized)

AppRM

• Goal: Build software that can dynamically
modify its own deployment to improve
performance and/or reduce cost

Discovering bad design after deployment on the Cloud
can be a very costly (wasting both time and money!)

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 5 / 43

http://www.envisage-project.eu

Resource-aware design

ApplicationServer

DC4
DC3

CalcServerDC2

CalcServer

DC1

CalcServer

AppWorkflow

CloudProvider

Invoke task

of VM
Total Cost

Application Server
=

Application Workflow
+

Application Resource Management
(load balancing, scalability)

CalcServer
=

Independent tasks
(can be parallelized)

AppRM

• Goal: Build software that can dynamically
modify its own deployment to improve
performance and/or reduce cost

Discovering bad design after deployment on the Cloud
can be a very costly (wasting both time and money!)

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 5 / 43

http://www.envisage-project.eu

What kind of questions can we answer using models?

Berndnaut Smilde: Nimbus II, 2012

Model-based analysis of
performance vs. cost

1. How will response time and cost of running my system change if I double the number of servers?

2. Can I meet my performance requirements with my current deployment strategy? What about
fluctuations in client traffic?

3. Can I control the performance of my system better by using a custom resource manager?

Use the model to
predict behavior

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 6 / 43

http://www.envisage-project.eu

What kind of questions can we answer using models?

Berndnaut Smilde: Nimbus II, 2012

Model-based analysis of
performance vs. cost

1. How will response time and cost of running my system change if I double the number of servers?

2. Can I meet my performance requirements with my current deployment strategy? What about
fluctuations in client traffic?

3. Can I control the performance of my system better by using a custom resource manager?

Use the model to
predict behavior

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 6 / 43

http://www.envisage-project.eu

What kind of questions can we answer using models?

Berndnaut Smilde: Nimbus II, 2012

Model-based analysis of
performance vs. cost

1. How will response time and cost of running my system change if I double the number of servers?

2. Can I meet my performance requirements with my current deployment strategy? What about
fluctuations in client traffic?

3. Can I control the performance of my system better by using a custom resource manager?

Use the model to
predict behavior

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 6 / 43

http://www.envisage-project.eu

What kind of questions can we answer using models?

Berndnaut Smilde: Nimbus II, 2012

Model-based analysis of
performance vs. cost

1. How will response time and cost of running my system change if I double the number of servers?

2. Can I meet my performance requirements with my current deployment strategy? What about
fluctuations in client traffic?

3. Can I control the performance of my system better by using a custom resource manager?

Use the model to
predict behavior

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 6 / 43

http://www.envisage-project.eu

Conceptual Parts of a Deployed Cloud Service

SLA
Legal Contract

Service Contract

Client Layer

Provisioning Layer

Simulation
“early modeling”

Formal Methods
“early analysis”

Combine techniques based on abstract executable models

• Modeling using Abstract Behavioral Specifications (ABS)
• Formal methods: Performance Analysis, Cost Analysis

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 7 / 43

http://www.envisage-project.eu

Conceptual Parts of a Deployed Cloud Service

SLA
Legal Contract

Service Contract

Client Layer

Provisioning Layer

Executable Model of Client Layer

Simulation
“early modeling”

Formal Methods
“early analysis”

Combine techniques based on abstract executable models

• Modeling using Abstract Behavioral Specifications (ABS)
• Formal methods: Performance Analysis, Cost Analysis

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 7 / 43

http://www.envisage-project.eu

Conceptual Parts of a Deployed Cloud Service

SLA
Legal Contract

Service Contract

Provisioning Layer

Executable Model of Client Layer

Cloud API

Simulation
“early modeling”

Formal Methods
“early analysis”

Combine techniques based on abstract executable models

• Modeling using Abstract Behavioral Specifications (ABS)
• Formal methods: Performance Analysis, Cost Analysis

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 7 / 43

http://www.envisage-project.eu

Conceptual Parts of a Deployed Cloud Service

Provisioning Layer

Legal Contract Layer

Formal Service Contract

Executable Model of Client Layer

Cloud API

Simulation
“early modeling”

Formal Methods
“early analysis”

Combine techniques based on abstract executable models

• Modeling using Abstract Behavioral Specifications (ABS)
• Formal methods: Performance Analysis, Cost Analysis

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 7 / 43

http://www.envisage-project.eu

Conceptual Parts of a Deployed Cloud Service

Provisioning Layer

Legal Contract Layer

Formal Service Contract

Executable Model of Client Layer

Cloud API

Simulation
“early modeling”

Formal Methods
“early analysis”

Combine techniques based on abstract executable models

• Modeling using Abstract Behavioral Specifications (ABS)

• Formal methods: Performance Analysis, Cost Analysis

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 7 / 43

http://www.envisage-project.eu

Conceptual Parts of a Deployed Cloud Service

Provisioning Layer

Legal Contract Layer

Formal Service Contract

Executable Model of Client Layer

Cloud API

Simulation
“early modeling”

Formal Methods
“early analysis”

Combine techniques based on abstract executable models

• Modeling using Abstract Behavioral Specifications (ABS)
• Formal methods: Performance Analysis, Cost Analysis

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 7 / 43

http://www.envisage-project.eu

Actors and ABS

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 8 / 43

http://www.envisage-project.eu

Actors in Computer Science

• Actor model [Hewitt, Baker 77]: actors
are the universal primitive of concurrent
computation.

• When receiving a message, an actor can
react by making local decisions, creating
actors, sending messages, and deciding
how to respond to the next message.

• Actors may modify their own private state, but can only affect each other indirectly
through messaging.

• Messages need not arrive in the order in which they are sent to the actor.

Actors: Software for a concurrent world

Actors: Software for a concurrent world
Models of

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 9 / 43

http://www.envisage-project.eu

Actors in Computer Science

• Actor model [Hewitt, Baker 77]: actors
are the universal primitive of concurrent
computation.

• When receiving a message, an actor can
react by making local decisions, creating
actors, sending messages, and deciding
how to respond to the next message.

• Actors may modify their own private state, but can only affect each other indirectly
through messaging.

• Messages need not arrive in the order in which they are sent to the actor.

Actors: Software for a concurrent world

Actors: Software for a concurrent world
Models of

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 9 / 43

http://www.envisage-project.eu

Actors in Computer Science

• Actor model [Hewitt, Baker 77]: actors
are the universal primitive of concurrent
computation.

• When receiving a message, an actor can
react by making local decisions, creating
actors, sending messages, and deciding
how to respond to the next message.

• Actors may modify their own private state, but can only affect each other indirectly
through messaging.

• Messages need not arrive in the order in which they are sent to the actor.

Actors: Software for a concurrent world

Actors: Software for a concurrent world
Models of

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 9 / 43

http://www.envisage-project.eu

Actors in Computer Science

• Actor model [Hewitt, Baker 77]: actors
are the universal primitive of concurrent
computation.

• When receiving a message, an actor can
react by making local decisions, creating
actors, sending messages, and deciding
how to respond to the next message.

• Actors may modify their own private state, but can only affect each other indirectly
through messaging.

• Messages need not arrive in the order in which they are sent to the actor.

Actors: Software for a concurrent world

Actors: Software for a concurrent world
Models of

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 9 / 43

http://www.envisage-project.eu

Actors in Computer Science

• Actor model [Hewitt, Baker 77]: actors
are the universal primitive of concurrent
computation.

• When receiving a message, an actor can
react by making local decisions, creating
actors, sending messages, and deciding
how to respond to the next message.

• Actors may modify their own private state, but can only affect each other indirectly
through messaging.

• Messages need not arrive in the order in which they are sent to the actor.

Actors: Software for a concurrent world

Actors: Software for a concurrent world
Models of

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 9 / 43

http://www.envisage-project.eu

ABS: Abstract Behavioral Specifications

ABS explores the asynchronous features of loosely
coupled actors in the setting of formal models

• State-of-art programming language concepts
• ADTs + functions + objects + interfaces
• Formal semantics, type-safety, data race-freeness by design

• Layered concurrency model
Upper tier: asynchronous, no shared state, actor-based
Lower tier: shared state, cooperative scheduling

• Modeling of variability/resources with first-class language support
• Variability: feature models, delta-oriented programming
• Deployment: abstract resources and cost annotations

ABS is designed with analysis/code generation tools in mind

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 10 / 43

http://www.envisage-project.eu

ABS: Abstract Behavioral Specifications

ABS explores the asynchronous features of loosely
coupled actors in the setting of formal models

• State-of-art programming language concepts
• ADTs + functions + objects + interfaces
• Formal semantics, type-safety, data race-freeness by design

• Layered concurrency model
Upper tier: asynchronous, no shared state, actor-based
Lower tier: shared state, cooperative scheduling

• Modeling of variability/resources with first-class language support
• Variability: feature models, delta-oriented programming
• Deployment: abstract resources and cost annotations

ABS is designed with analysis/code generation tools in mind

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 10 / 43

http://www.envisage-project.eu

ABS: Abstract Behavioral Specifications

ABS explores the asynchronous features of loosely
coupled actors in the setting of formal models

• State-of-art programming language concepts
• ADTs + functions + objects + interfaces
• Formal semantics, type-safety, data race-freeness by design

• Layered concurrency model
Upper tier: asynchronous, no shared state, actor-based
Lower tier: shared state, cooperative scheduling

• Modeling of variability/resources with first-class language support
• Variability: feature models, delta-oriented programming
• Deployment: abstract resources and cost annotations

ABS is designed with analysis/code generation tools in mind

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 10 / 43

http://www.envisage-project.eu

ABS: Abstract Behavioral Specifications

ABS explores the asynchronous features of loosely
coupled actors in the setting of formal models

• State-of-art programming language concepts
• ADTs + functions + objects + interfaces
• Formal semantics, type-safety, data race-freeness by design

• Layered concurrency model
Upper tier: asynchronous, no shared state, actor-based
Lower tier: shared state, cooperative scheduling

• Modeling of variability/resources with first-class language support
• Variability: feature models, delta-oriented programming
• Deployment: abstract resources and cost annotations

ABS is designed with analysis/code generation tools in mind

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 10 / 43

http://www.envisage-project.eu

ABS: Abstract Behavioral Specification

ABS is a language for executable designs

• Models follow the execution flow of OO programs,
but abstract from implementation details using ADTs

• Imperative layer: concurrent objects communicating by asynchronous method calls
• Functional layer: user-defined (parametric) types and functions, pattern matching
• Java-like syntax: intuitive to the programmer

ABS is a formal, tool-supported modeling language

• Formal language: operational semantics, type system
• Backends: compiles into Java COGs, Erlang Actors
• Maude interpreter formalizes semantics as a rewrite system

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 11 / 43

http://www.envisage-project.eu

ABS: Abstract Behavioral Specification

ABS is a language for executable designs

• Models follow the execution flow of OO programs,
but abstract from implementation details using ADTs

• Imperative layer: concurrent objects communicating by asynchronous method calls
• Functional layer: user-defined (parametric) types and functions, pattern matching

• Java-like syntax: intuitive to the programmer

ABS is a formal, tool-supported modeling language

• Formal language: operational semantics, type system
• Backends: compiles into Java COGs, Erlang Actors
• Maude interpreter formalizes semantics as a rewrite system

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 11 / 43

http://www.envisage-project.eu

ABS: Abstract Behavioral Specification

ABS is a language for executable designs

• Models follow the execution flow of OO programs,
but abstract from implementation details using ADTs

• Imperative layer: concurrent objects communicating by asynchronous method calls
• Functional layer: user-defined (parametric) types and functions, pattern matching
• Java-like syntax: intuitive to the programmer

ABS is a formal, tool-supported modeling language

• Formal language: operational semantics, type system
• Backends: compiles into Java COGs, Erlang Actors
• Maude interpreter formalizes semantics as a rewrite system

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 11 / 43

http://www.envisage-project.eu

ABS: Abstract Behavioral Specification

ABS is a language for executable designs

• Models follow the execution flow of OO programs,
but abstract from implementation details using ADTs

• Imperative layer: concurrent objects communicating by asynchronous method calls
• Functional layer: user-defined (parametric) types and functions, pattern matching
• Java-like syntax: intuitive to the programmer

ABS is a formal, tool-supported modeling language

• Formal language: operational semantics, type system
• Backends: compiles into Java COGs, Erlang Actors
• Maude interpreter formalizes semantics as a rewrite system

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 11 / 43

http://www.envisage-project.eu

Asynchronous Method Calls

ABS decouples communication and synchronization

• ABS supports asynchronous method calls, using futures.

Futures are first-class values

f1=x!m(); f2=y!p(f1);

Flexible synchronization: blocking or suspending activities

• Blocking the object: get-operation on a future: v=f1.get;

• Suspending the process: polling a future: await f1?

• Polling as part of a (per object) guarded command: await b & f1? & f2?

Cooperative scheduling of method activations

• Easy to combine active and reactive behavior

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 12 / 43

http://www.envisage-project.eu

Asynchronous Method Calls

ABS decouples communication and synchronization

• ABS supports asynchronous method calls, using futures.

Futures are first-class values

f1=x!m(); f2=y!p(f1);

Flexible synchronization: blocking or suspending activities

• Blocking the object: get-operation on a future: v=f1.get;

• Suspending the process: polling a future: await f1?

• Polling as part of a (per object) guarded command: await b & f1? & f2?

Cooperative scheduling of method activations

• Easy to combine active and reactive behavior

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 12 / 43

http://www.envisage-project.eu

Asynchronous Method Calls

ABS decouples communication and synchronization

• ABS supports asynchronous method calls, using futures.

Futures are first-class values

f1=x!m(); f2=y!p(f1);

Flexible synchronization: blocking or suspending activities

• Blocking the object: get-operation on a future: v=f1.get;

• Suspending the process: polling a future: await f1?

• Polling as part of a (per object) guarded command: await b & f1? & f2?

Cooperative scheduling of method activations

• Easy to combine active and reactive behavior

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 12 / 43

http://www.envisage-project.eu

Asynchronous Method Calls

ABS decouples communication and synchronization

• ABS supports asynchronous method calls, using futures.

Futures are first-class values

f1=x!m(); f2=y!p(f1);

Flexible synchronization: blocking or suspending activities

• Blocking the object: get-operation on a future: v=f1.get;

• Suspending the process: polling a future: await f1?

• Polling as part of a (per object) guarded command: await b & f1? & f2?

Cooperative scheduling of method activations

• Easy to combine active and reactive behavior

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 12 / 43

http://www.envisage-project.eu

Cooperative Scheduling in ABS

Important Consequences

• Task suspension is a syntactically explicit decision of the modeller
• No preemptive scheduling ⇒ no data races

• Scheduling cannot arbitrarily interfere with the computation
• Non-deterministic scheduling otherwise

• User-defined specification of schedulers via annotations
• Analysis results for ABS programs are valid for any scheduler

Reading Futures

• f.get — blocks execution until result is available, then reads future f
• Deadlocks possible (use static analyzer for detection)
• Programming idiom: use await f? to prevent blocking (safe access)

Fut<T> f = o!m(e);...; await f?; ...; r = f.get;

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 13 / 43

http://www.envisage-project.eu

Cooperative Scheduling in ABS

Important Consequences

• Task suspension is a syntactically explicit decision of the modeller
• No preemptive scheduling ⇒ no data races

• Scheduling cannot arbitrarily interfere with the computation
• Non-deterministic scheduling otherwise

• User-defined specification of schedulers via annotations
• Analysis results for ABS programs are valid for any scheduler

Reading Futures

• f.get — blocks execution until result is available, then reads future f
• Deadlocks possible (use static analyzer for detection)
• Programming idiom: use await f? to prevent blocking (safe access)

Fut<T> f = o!m(e);...; await f?; ...; r = f.get;

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 13 / 43

http://www.envisage-project.eu

Modeling and Analysis of Deployment on the Cloud
Using Real Time ABS

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 14 / 43

http://www.envisage-project.eu

Services deployed on the cloud: Predicting behavior from models

• Resource-aware design: Build software
that can dynamically modify
its own deployment to
improve performance
and/or reduce cost

• Model-based deployment decisions at design time using service models
• Formal semantics: Architects and developers can simulate and analyze

at design time how an application runs on the cloud

ApplicationServer

DC4
DC3

CalcServerDC2

CalcServer

DC1

CalcServer

AppWorkflow

CloudProvider

Invoke task

of VM
Total Cost

Application Server
=

Application Workflow
+

Application Resource Management
(load balancing, scalability)

CalcServer
=

Independent tasks
(can be parallelized)

AppRM

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 15 / 43

http://www.envisage-project.eu

Services deployed on the cloud: Predicting behavior from models

• Resource-aware design: Build software
that can dynamically modify
its own deployment to
improve performance
and/or reduce cost

• Model-based deployment decisions at design time using service models
• Formal semantics: Architects and developers can simulate and analyze

at design time how an application runs on the cloud

ApplicationServer

DC4
DC3

CalcServerDC2

CalcServer

DC1

CalcServer

AppWorkflow

CloudProvider

Invoke task

of VM
Total Cost

Application Server
=

Application Workflow
+

Application Resource Management
(load balancing, scalability)

CalcServer
=

Independent tasks
(can be parallelized)

AppRM

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 15 / 43

http://www.envisage-project.eu

Modelling with Time

To express and compare resource usage, we need a notion of time in our models!

Timed semantics
• Let us assume that ABS programs execute under a maximal
progress timed semantics

• Our model has a global clock
• Assumption: Execution is “infinitely fast” unless we say otherwise
• We have explicit programming support to express that execution

takes time

Time x = now(); duration(x,y); await duration(x,y);

while (timeValue(now()) − x < 60) { skip } ; duration(60,60); await duration(60,70);

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 16 / 43

http://www.envisage-project.eu

Modelling with Time

To express and compare resource usage, we need a notion of time in our models!

Timed semantics
• Let us assume that ABS programs execute under a maximal
progress timed semantics

• Our model has a global clock
• Assumption: Execution is “infinitely fast” unless we say otherwise

• We have explicit programming support to express that execution
takes time

Time x = now(); duration(x,y); await duration(x,y);

while (timeValue(now()) − x < 60) { skip } ; duration(60,60); await duration(60,70);

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 16 / 43

http://www.envisage-project.eu

Modelling with Time

To express and compare resource usage, we need a notion of time in our models!

Timed semantics
• Let us assume that ABS programs execute under a maximal
progress timed semantics

• Our model has a global clock
• Assumption: Execution is “infinitely fast” unless we say otherwise
• We have explicit programming support to express that execution

takes time

Time x = now(); duration(x,y); await duration(x,y);

while (timeValue(now()) − x < 60) { skip } ; duration(60,60); await duration(60,70);

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 16 / 43

http://www.envisage-project.eu

Modelling with Time

To express and compare resource usage, we need a notion of time in our models!

Timed semantics
• Let us assume that ABS programs execute under a maximal
progress timed semantics

• Our model has a global clock
• Assumption: Execution is “infinitely fast” unless we say otherwise
• We have explicit programming support to express that execution

takes time

Time x = now();

duration(x,y); await duration(x,y);

while (timeValue(now()) − x < 60) { skip } ; duration(60,60); await duration(60,70);

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 16 / 43

http://www.envisage-project.eu

Modelling with Time

To express and compare resource usage, we need a notion of time in our models!

Timed semantics
• Let us assume that ABS programs execute under a maximal
progress timed semantics

• Our model has a global clock
• Assumption: Execution is “infinitely fast” unless we say otherwise
• We have explicit programming support to express that execution

takes time

Time x = now(); duration(x,y);

await duration(x,y);

while (timeValue(now()) − x < 60) { skip } ; duration(60,60); await duration(60,70);

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 16 / 43

http://www.envisage-project.eu

Modelling with Time

To express and compare resource usage, we need a notion of time in our models!

Timed semantics
• Let us assume that ABS programs execute under a maximal
progress timed semantics

• Our model has a global clock
• Assumption: Execution is “infinitely fast” unless we say otherwise
• We have explicit programming support to express that execution

takes time

Time x = now(); duration(x,y); await duration(x,y);

while (timeValue(now()) − x < 60) { skip } ; duration(60,60); await duration(60,70);

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 16 / 43

http://www.envisage-project.eu

Modelling with Time

To express and compare resource usage, we need a notion of time in our models!

Timed semantics
• Let us assume that ABS programs execute under a maximal
progress timed semantics

• Our model has a global clock
• Assumption: Execution is “infinitely fast” unless we say otherwise
• We have explicit programming support to express that execution

takes time

Time x = now(); duration(x,y); await duration(x,y);

while (timeValue(now()) − x < 60) { skip } ;

duration(60,60); await duration(60,70);

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 16 / 43

http://www.envisage-project.eu

Modelling with Time

To express and compare resource usage, we need a notion of time in our models!

Timed semantics
• Let us assume that ABS programs execute under a maximal
progress timed semantics

• Our model has a global clock
• Assumption: Execution is “infinitely fast” unless we say otherwise
• We have explicit programming support to express that execution

takes time

Time x = now(); duration(x,y); await duration(x,y);

while (timeValue(now()) − x < 60) { skip } ; duration(60,60);

await duration(60,70);

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 16 / 43

http://www.envisage-project.eu

Modelling with Time

To express and compare resource usage, we need a notion of time in our models!

Timed semantics
• Let us assume that ABS programs execute under a maximal
progress timed semantics

• Our model has a global clock
• Assumption: Execution is “infinitely fast” unless we say otherwise
• We have explicit programming support to express that execution

takes time

Time x = now(); duration(x,y); await duration(x,y);

while (timeValue(now()) − x < 60) { skip } ; duration(60,60); await duration(60,70);

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 16 / 43

http://www.envisage-project.eu

Deployment Components

Deployment components are abstract “cost centers”

• Each deployment component has a
given resource capacity

• Objects execute in the context of a
deployment component

• The resources are shared between the
component’s objects

• Object execution uses resources in a deployment component (via Cost annotations)

• How resources are assigned and consumed, depends on the kind of resource

• For cloud computing, let us focus on processing capacity

Server ...

...
objectEnv

[cost] Task1
[cost] Task2object 1

[cost] Task1
[cost] Task2

object n
[cost] Task1
[cost] Task2

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 17 / 43

http://www.envisage-project.eu

Deployment Components

Deployment components are abstract “cost centers”

• Each deployment component has a
given resource capacity

• Objects execute in the context of a
deployment component

• The resources are shared between the
component’s objects

• Object execution uses resources in a deployment component (via Cost annotations)

• How resources are assigned and consumed, depends on the kind of resource

• For cloud computing, let us focus on processing capacity

Server ...

...
objectEnv

[cost] Task1
[cost] Task2object 1

[cost] Task1
[cost] Task2

object n
[cost] Task1
[cost] Task2

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 17 / 43

http://www.envisage-project.eu

Deployment Components

Deployment components are abstract “cost centers”

• Each deployment component has a
given resource capacity

• Objects execute in the context of a
deployment component

• The resources are shared between the
component’s objects

• Object execution uses resources in a deployment component (via Cost annotations)

• How resources are assigned and consumed, depends on the kind of resource

• For cloud computing, let us focus on processing capacity

Server ...

...
objectEnv

[cost] Task1
[cost] Task2object 1

[cost] Task1
[cost] Task2

object n
[cost] Task1
[cost] Task2

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 17 / 43

http://www.envisage-project.eu

Deployment Components

Deployment components are abstract “cost centers”

• Each deployment component has a
given resource capacity

• Objects execute in the context of a
deployment component

• The resources are shared between the
component’s objects

• Object execution uses resources in a deployment component (via Cost annotations)

• How resources are assigned and consumed, depends on the kind of resource

• For cloud computing, let us focus on processing capacity

Server ...

...
objectEnv

[cost] Task1
[cost] Task2object 1

[cost] Task1
[cost] Task2

object n
[cost] Task1
[cost] Task2

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 17 / 43

http://www.envisage-project.eu

Deployment Components

Deployment components are abstract “cost centers”

• Each deployment component has a
given resource capacity

• Objects execute in the context of a
deployment component

• The resources are shared between the
component’s objects

• Object execution uses resources in a deployment component (via Cost annotations)

• How resources are assigned and consumed, depends on the kind of resource

• For cloud computing, let us focus on processing capacity

Server ...

...
objectEnv

[cost] Task1
[cost] Task2object 1

[cost] Task1
[cost] Task2

object n
[cost] Task1
[cost] Task2

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 17 / 43

http://www.envisage-project.eu

Example: Phone Services - Abstract Behavioral Model

Telephone Service

interface TelephoneService {
Unit call(Int calltime);

}
class TelephoneServer implements TelephoneService {

Unit call(Int calltime){
while (calltime > 0) { [Cost: 1] calltime = calltime − 1; await duration(1, 1); }

}
}

SMS Service

interface SMSService {
Unit sendSMS();

}
class SMSServer implements SMSService {

Unit sendSMS() {[Cost: 1] skip;}
}

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 18 / 43

http://www.envisage-project.eu

Example: Phone Services - Abstract Behavioral Model

Telephone Service

interface TelephoneService {
Unit call(Int calltime);

}
class TelephoneServer implements TelephoneService {

Unit call(Int calltime){
while (calltime > 0) { [Cost: 1] calltime = calltime − 1; await duration(1, 1); }

}
}

SMS Service

interface SMSService {
Unit sendSMS();

}
class SMSServer implements SMSService {

Unit sendSMS() {[Cost: 1] skip;}
}

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 18 / 43

http://www.envisage-project.eu

Example: Phone Services - Abstract Behavioral Model

Telephone Service

interface TelephoneService {
Unit call(Int calltime);

}
class TelephoneServer implements TelephoneService {

Unit call(Int calltime){
while (calltime > 0) { [Cost: 1] calltime = calltime − 1; await duration(1, 1); }

}
}

SMS Service

interface SMSService {
Unit sendSMS();

}
class SMSServer implements SMSService {

Unit sendSMS() {[Cost: 1] skip;}
}

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 18 / 43

http://www.envisage-project.eu

Example: The New Year’s Eve Client Behavior

50 70

Alternate
sms and call

Huge number of
sms per time interval

time

Alternate
sms and call

Midnight Window

class NYEclient(Int frequency,TelephoneService ts,SMSService smss){
Bool call=false;
Unit normalBehavior(){ ... }
Unit midnightWindow(){ ... } // Switch at appropriate time...

}

{// Main block:
DC smscomp = new DeploymentComponent(”smscomp”, Speed(50));
DC telcomp = new DeploymentComponent(”telcomp”, Speed(50));
[DC: smscomp] SMSService sms = new SMSServer();
[DC: telcomp] TelephoneService tel = new TelephoneServer();
Client c = new NYEclient (1,tel,sms); ... // Clients

}

How to deploy
the services?

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 19 / 43

http://www.envisage-project.eu

Example: The New Year’s Eve Client Behavior

50 70

Alternate
sms and call

Huge number of
sms per time interval

time

Alternate
sms and call

Midnight Window

class NYEclient(Int frequency,TelephoneService ts,SMSService smss){
Bool call=false;
Unit normalBehavior(){ ... }
Unit midnightWindow(){ ... } // Switch at appropriate time...

}

{// Main block:
DC smscomp = new DeploymentComponent(”smscomp”, Speed(50));
DC telcomp = new DeploymentComponent(”telcomp”, Speed(50));
[DC: smscomp] SMSService sms = new SMSServer();
[DC: telcomp] TelephoneService tel = new TelephoneServer();
Client c = new NYEclient (1,tel,sms); ... // Clients

}

How to deploy
the services?

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 19 / 43

http://www.envisage-project.eu

Example: The New Year’s Eve Client Behavior

50 70

Alternate
sms and call

Huge number of
sms per time interval

time

Alternate
sms and call

Midnight Window

class NYEclient(Int frequency,TelephoneService ts,SMSService smss){
Bool call=false;
Unit normalBehavior(){ ... }
Unit midnightWindow(){ ... } // Switch at appropriate time...

}

{// Main block:
DC smscomp = new DeploymentComponent(”smscomp”, Speed(50));
DC telcomp = new DeploymentComponent(”telcomp”, Speed(50));
[DC: smscomp] SMSService sms = new SMSServer();
[DC: telcomp] TelephoneService tel = new TelephoneServer();
Client c = new NYEclient (1,tel,sms); ... // Clients

}

How to deploy
the services?

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 19 / 43

http://www.envisage-project.eu

Example: The New Year’s Eve Client Behavior

50 70

Alternate
sms and call

Huge number of
sms per time interval

time

Alternate
sms and call

Midnight Window

class NYEclient(Int frequency,TelephoneService ts,SMSService smss){
Bool call=false;
Unit normalBehavior(){ ... }
Unit midnightWindow(){ ... } // Switch at appropriate time...

}
{// Main block:

DC smscomp = new DeploymentComponent(”smscomp”, Speed(50));
DC telcomp = new DeploymentComponent(”telcomp”, Speed(50));
[DC: smscomp] SMSService sms = new SMSServer();
[DC: telcomp] TelephoneService tel = new TelephoneServer();
Client c = new NYEclient (1,tel,sms); ... // Clients

}

How to deploy
the services?

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 19 / 43

http://www.envisage-project.eu

Example: The New Year’s Eve Client Behavior

50 70

Alternate
sms and call

Huge number of
sms per time interval

time

Alternate
sms and call

Midnight Window

class NYEclient(Int frequency,TelephoneService ts,SMSService smss){
Bool call=false;
Unit normalBehavior(){ ... }
Unit midnightWindow(){ ... } // Switch at appropriate time...

}
{// Main block:

DC smscomp = new DeploymentComponent(”smscomp”, Speed(50));
DC telcomp = new DeploymentComponent(”telcomp”, Speed(50));

[DC: smscomp] SMSService sms = new SMSServer();
[DC: telcomp] TelephoneService tel = new TelephoneServer();
Client c = new NYEclient (1,tel,sms); ... // Clients

}

How to deploy
the services?

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 19 / 43

http://www.envisage-project.eu

Example: The New Year’s Eve Client Behavior

50 70

Alternate
sms and call

Huge number of
sms per time interval

time

Alternate
sms and call

Midnight Window

class NYEclient(Int frequency,TelephoneService ts,SMSService smss){
Bool call=false;
Unit normalBehavior(){ ... }
Unit midnightWindow(){ ... } // Switch at appropriate time...

}
{// Main block:

DC smscomp = new DeploymentComponent(”smscomp”, Speed(50));
DC telcomp = new DeploymentComponent(”telcomp”, Speed(50));
[DC: smscomp] SMSService sms = new SMSServer();
[DC: telcomp] TelephoneService tel = new TelephoneServer();

Client c = new NYEclient (1,tel,sms); ... // Clients

}

How to deploy
the services?

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 19 / 43

http://www.envisage-project.eu

Example: The New Year’s Eve Client Behavior

50 70

Alternate
sms and call

Huge number of
sms per time interval

time

Alternate
sms and call

Midnight Window

class NYEclient(Int frequency,TelephoneService ts,SMSService smss){
Bool call=false;
Unit normalBehavior(){ ... }
Unit midnightWindow(){ ... } // Switch at appropriate time...

}
{// Main block:

DC smscomp = new DeploymentComponent(”smscomp”, Speed(50));
DC telcomp = new DeploymentComponent(”telcomp”, Speed(50));
[DC: smscomp] SMSService sms = new SMSServer();
[DC: telcomp] TelephoneService tel = new TelephoneServer();
Client c = new NYEclient (1,tel,sms); ... // Clients

}

How to deploy
the services?

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 19 / 43

http://www.envisage-project.eu

Example: NYEclient

class NYEclient (Int frequency, TelephoneServer ts, SMSServer smss) {
Bool call = False;

Unit normalBehavior() {
if (timeValue(now()) > 50 && timeValue(now()) < 70) { this!midnightWindow(); }
else {
if (call) { await ts!call(1); } else { smss!sendSMS(); }
call = ~ call;
await duration(frequency,frequency); this!normalBehavior(); }

}

Unit midnightWindow() {
if (timeValue(now()) >= 70) { this!normalBehavior(); }
else {

Int i = 0;
while (i < 10) { smss!sendSMS(); i = i + 1; }
await duration(1,1); this!midnightWindow(); }

}

Unit run(){ this!normalBehavior(); }
}

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 20 / 43

http://www.envisage-project.eu

Example: Simulation Results

Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte, Silvia Lizeth Tapia Tarifa:
Dynamic Resource Reallocation between Deployment Components. ICFEM 2010: 646-661

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 21 / 43

http://www.envisage-project.eu

Load Balancing with Vertical Scaling

smscomp

telcomp

Client

Client

sms()

call(n)

sms()

call(n)

tel

sms

Resource awareness: monitor & react
• dc.load(rtype,e): average load on dc during the last

e time intervals
• dc.total(rtype): currently allocated resources on dc
• dc.transfer(dc2, r, rtype): transfer r resources to dc2

• thisDC: reference to my
deployment component

• Reaction: resource reallocation,
object mobility, job distribution

Load Balancing Strategy for the Phone Services

Reallocate 1/2×total resources upon request from partner

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 22 / 43

http://www.envisage-project.eu

Load Balancing with Vertical Scaling

smscomp

telcomp

Client

Client

sms()

call(n)

sms()

call(n)

tel

sms

Resource awareness: monitor & react
• dc.load(rtype,e): average load on dc during the last

e time intervals
• dc.total(rtype): currently allocated resources on dc
• dc.transfer(dc2, r, rtype): transfer r resources to dc2

• thisDC: reference to my
deployment component

• Reaction: resource reallocation,
object mobility, job distribution

Load Balancing Strategy for the Phone Services

Reallocate 1/2×total resources upon request from partner

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 22 / 43

http://www.envisage-project.eu

Load Balancing with Vertical Scaling

smscomp

telcomp

Client

Client

sms()

call(n)

sms()

call(n)

tel

sms

Resource awareness: monitor & react
• dc.load(rtype,e): average load on dc during the last

e time intervals
• dc.total(rtype): currently allocated resources on dc
• dc.transfer(dc2, r, rtype): transfer r resources to dc2

• thisDC: reference to my
deployment component

• Reaction: resource reallocation,
object mobility, job distribution

Load Balancing Strategy for the Phone Services

Reallocate 1/2×total resources upon request from partner

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 22 / 43

http://www.envisage-project.eu

Load Balancing with Vertical Scaling

smscomp

telcomp

Client

Client

sms()

call(n)

sms()

call(n)

tel

sms

telb

smsb

request()

Resource awareness: monitor & react
• dc.load(rtype,e): average load on dc during the last

e time intervals
• dc.total(rtype): currently allocated resources on dc
• dc.transfer(dc2, r, rtype): transfer r resources to dc2

• thisDC: reference to my
deployment component

• Reaction: resource reallocation,
object mobility, job distribution

Load Balancing Strategy for the Phone Services

Reallocate 1/2×total resources upon request from partner

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 22 / 43

http://www.envisage-project.eu

Exercise 4: Solution

class Balancer() implements Balancer {
Balancer partner = null;

Unit run() {
await partner != null;
while (True) {

await duration(1, 1);
Rat ld = await thisDC()!load(Speed, 1);
if (ld > 90) { await partner!requestdc(thisDC()); }

}
}

Unit requestdc(DC comp) {
InfRat total = await thisDC()!total(Speed);
Rat ld = await thisDC()!load(Speed, 1);
if (ld < 50) { // we know total will not be InfRat
thisDC()!transfer(comp, finvalue(total) / 2, Speed);

}
}

Unit setPartner(Balancer p) { partner = p; }
}

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 23 / 43

http://www.envisage-project.eu

Example: Simulation Results

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 24 / 43

http://www.envisage-project.eu

Example: Simulation Results

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 24 / 43

http://www.envisage-project.eu

Pause

BREAK: 15 minutes

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 25 / 43

http://www.envisage-project.eu

An Interface to Cloud Providers

ABS modeling abstractions
• Dynamically created objects
• Very flexible synchronization:

asynchronous method calls and futures
• Execution with time and resources
• Deployment components

— can be dynamically created

All the building blocks we need to model an abstract cloud provider class

• DC launchInstance(Rat speed){...} // create dc
• Bool acquireInstance(DC instance){ ... } // start dc
• Bool releaseInstance(DC instance){ ... } // stop dc
• Rat getAccumulatedCost(){ ... }
• Unit shutdown(DC instance){ ... }

ApplicationServer

DC4
DC3

CalcServerDC2

CalcServer

DC1

CalcServer

AppWorkflow

CloudProvider

Invoke task

of VM
Total Cost

Application Server
=

Application Workflow
+

Application Resource Management
(load balancing, scalability)

CalcServer
=

Independent tasks
(can be parallelized)

AppRM

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 26 / 43

http://www.envisage-project.eu

An Interface to Cloud Providers

ABS modeling abstractions
• Dynamically created objects
• Very flexible synchronization:

asynchronous method calls and futures
• Execution with time and resources
• Deployment components

— can be dynamically created

All the building blocks we need to model an abstract cloud provider class

• DC launchInstance(Rat speed){...} // create dc
• Bool acquireInstance(DC instance){ ... } // start dc
• Bool releaseInstance(DC instance){ ... } // stop dc
• Rat getAccumulatedCost(){ ... }
• Unit shutdown(DC instance){ ... }

ApplicationServer

DC4
DC3

CalcServerDC2

CalcServer

DC1

CalcServer

AppWorkflow

CloudProvider

Invoke task

of VM
Total Cost

Application Server
=

Application Workflow
+

Application Resource Management
(load balancing, scalability)

CalcServer
=

Independent tasks
(can be parallelized)

AppRM

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 26 / 43

http://www.envisage-project.eu

An Interface to Cloud Providers

ABS modeling abstractions
• Dynamically created objects
• Very flexible synchronization:

asynchronous method calls and futures
• Execution with time and resources
• Deployment components

— can be dynamically created

All the building blocks we need to model an abstract cloud provider class

• DC launchInstance(Rat speed){...} // create dc
• Bool acquireInstance(DC instance){ ... } // start dc
• Bool releaseInstance(DC instance){ ... } // stop dc
• Rat getAccumulatedCost(){ ... }
• Unit shutdown(DC instance){ ... }

ApplicationServer

DC4
DC3

CalcServerDC2

CalcServer

DC1

CalcServer

AppWorkflow

CloudProvider

Invoke task

of VM
Total Cost

Application Server
=

Application Workflow
+

Application Resource Management
(load balancing, scalability)

CalcServer
=

Independent tasks
(can be parallelized)

AppRM

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 26 / 43

http://www.envisage-project.eu

An Interface to Cloud Providers

ABS modeling abstractions
• Dynamically created objects
• Very flexible synchronization:

asynchronous method calls and futures
• Execution with time and resources
• Deployment components

— can be dynamically created

All the building blocks we need to model an abstract cloud provider class

• DC launchInstance(Rat speed){...} // create dc
• Bool acquireInstance(DC instance){ ... } // start dc
• Bool releaseInstance(DC instance){ ... } // stop dc
• Rat getAccumulatedCost(){ ... }
• Unit shutdown(DC instance){ ... }

ApplicationServer

DC4
DC3

CalcServerDC2

CalcServer

DC1

CalcServer

AppWorkflow

CloudProvider

Invoke task

of VM
Total Cost

Application Server
=

Application Workflow
+

Application Resource Management
(load balancing, scalability)

CalcServer
=

Independent tasks
(can be parallelized)

AppRM

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 26 / 43

http://www.envisage-project.eu

Elastic Cloud Computing Architecture

Environment

Client
Client

Client
Client

Client
Client

Busy Workers

CloudProvider

VM

Worker

VM

Worker

VM

Worker

VM

Worker

VM

Worker

VM

Worker

VM

Worker

VM

Worker

Database
Access Data

Cloud API allows to
create, and shutdown

machines.

Application Manager

Service
Endpoint

Resource Management

Load Balancer AutoscalerStart/Release
 Worker

Process

Launch/shutdown InstanceInvoke Service

Available Workers

VM

Worker

VM

Worker

VM

Worker

Add/Remove
 Worker

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 27 / 43

http://www.envisage-project.eu

Example: Load Balancing

Scenario
We assume given a class Worker. Define a Load Balancer class which implements round robin load balancing

• A field: List<Worker> available = list[];

• A field: List<Worker> inuse = list[];

• Implement a method getWorker(){...} which returns a Worker object
• Implement a method Unit releaseWorker(Worker w){...}

• Implement a method Unit addWorker(Worker w){...}

You can assume operations on lists: head, tail, isEmpty, appendright, without

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 28 / 43

http://www.envisage-project.eu

A Round-Robin Load Balancer

class RoundRobinLoadBalancer() implements LoadBalancer {
List<Worker> available = list[];
List<Worker> inuse = list[];

Worker getWorker(){
await (!isEmpty(available));
Worker w = head(available);
available = tail(available);
inuse = appendright(inuse,w);
return w;

}

Unit releaseWorker(Worker w){ available = appendright(available,w); inuse = without(inuse,w); }

Unit addWorker(Worker w){ available = appendright(available,w); }
}

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 29 / 43

http://www.envisage-project.eu

Example: Workers

Let us define tasks and workflows

type TaskID=Int;
data Workflow=Workflow(List<Task> tasks);
data Task=Task(TaskID tID, Rat cost, List<TaskID> dependencies);

Scenario
Define a Worker class

• Implements a method processTask which receives a task
• The Worker has already been started,
• It should stop when execution is completed (i.e., returned to the load balancer)

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 30 / 43

http://www.envisage-project.eu

Example: Workers

Let us define tasks and workflows
type TaskID=Int;
data Workflow=Workflow(List<Task> tasks);
data Task=Task(TaskID tID, Rat cost, List<TaskID> dependencies);

Scenario
Define a Worker class

• Implements a method processTask which receives a task
• The Worker has already been started,
• It should stop when execution is completed (i.e., returned to the load balancer)

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 30 / 43

http://www.envisage-project.eu

Example: Workers

Let us define tasks and workflows
type TaskID=Int;
data Workflow=Workflow(List<Task> tasks);
data Task=Task(TaskID tID, Rat cost, List<TaskID> dependencies);

Scenario
Define a Worker class
• Implements a method processTask which receives a task
• The Worker has already been started,
• It should stop when execution is completed (i.e., returned to the load balancer)

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 30 / 43

http://www.envisage-project.eu

Workers

Here, we assume given
• a load balancer lb,
• futures for all tasks in the dependencies,
• a deadline for task execution, and
• a starting time.

class WorkerObject(LoadBalancer lb) implements Worker {

Bool processTask(Rat taskCost, Time started, Duration deadline, List<Fut<Bool>> dependencies){
while(dependencies != Nil) {
Fut<Bool> dep = head(dependencies);
dependencies = tail(dependencies);
await dep?;

}
[Cost: taskCost] skip; // This is the part we abstract from!
Rat spentTime = timeDifference(now(),started);
lb!releaseWorker(this);
return (spentTime <= durationValue(deadline));

}

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 31 / 43

http://www.envisage-project.eu

Validating the Models

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 32 / 43

http://www.envisage-project.eu

Case Study: Montage (1)

Montage is a toolkit for assembling astronomical images into customized mosaics
http://montage.ipac.caltech.edu/

mProject

mProjExec

mImgtbl mOverlaps

mDiffExec

mDiff

mFitExec

mFitplane

mBgModel

mBackground

mBgExec

mAdd

Re-project
Image

Background
modeling

Background
matching

Final
mosaic

Partly ordered workflow and highly parallelizable tasks

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 33 / 43

http://montage.ipac.caltech.edu/
http://www.envisage-project.eu

Case Study: Montage (2)

DC4
DC3

CalcServerDC2

CalcServer

DC1

CalcServer

CloudProvider

Invoke task

ApplicationServer
=

AppWorkflow + AppRM

CalcServer
=

Independent tasks

of VM
Total Cost

ApplicationServer

AppWorkflow

AppRM

Model the Montage toolkit using the Cloud Provider API, run simulations
varying the deployment scenario, and compare the results.

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 34 / 43

http://www.envisage-project.eu

Case Study: Montage (3)

Cost vs. Time Tradeoff: can we reproduce the results
of other informal cloud simulation tools (GridSim)?

!"

!#"

!##"

!###"

!####"

!" $" %" &" !'" ($" '%" !$&"

!"

#$"

$!"

%$"

&!!"

&" #" '" (" &)" *#")'" &#("

Lo
ga

rit
hm

ic
 s

ca
le

60 cents for
1 processor

Lo
ga

rit
hm

ic
 s

ca
le

approx 4 $ for
128 processors

approx 5.5 hrs
for 1 processor

approx 18 min for
128 processors

432270

1152

C
PU

 C
os

t

89

2
8

Ti
m

e

The cost of doing science on the cloud: The Montage example.
E. Deelman, G. Singh, M. Livny, G. B. Berriman, and J. Good.
(SC’08), pages 1–12. IEEE/ACM, 2008.

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 35 / 43

http://www.envisage-project.eu

Case Study: Big Data Processing Frameworks (1)

Hadoop YARN and SPARK Clusters:
Open-source software framework that implements a cluster
management technology for distributed processing.

Popular cloud framework
for big data processing:
• Resource allocation
• Code distribution
• Distributed data processing
• Streaming data

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 36 / 43

http://www.envisage-project.eu

Case Study: Big Data Processing Frameworks (2)

How does the ABS YARN compare to the actual YARN implementation?

(a) Normalized starting time (b) Normalized finish time

(c) Cumulative completed jobs (d) Total number of completed jobs

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 37 / 43

http://www.envisage-project.eu

Case Study: Fredhopper Replication Server (1)

The Fredhopper Access Server (FAS) is a distributed, concurrent OO system providing search and
merchandising services to e-Commerce companies.
The Replication Server is one part of FAS.

Acceptor

Cloud

Provider

ClientJob

ClientJob

ClientJob

SyncClient

job(schedule)

SyncClient

SyncClient

...

...

LIVE STAGING

SyncServer create()

CLOUD

DC4

Connection

Thread

getConnection(schedule)

getConnection(schedule)

getConnection(schedule)

job(schedule)

job(schedule)

DC3

Connection

Thread

replication

DC2

Connection

Thread

replication

DC1

Connection

Thread

replication

• Very detailed model: consists of 5000 lines of ABS
• Model API: use actual system logs to run simulations
• SLA monitoring framework for failure metrics at end-points

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 38 / 43

http://www.envisage-project.eu

Case Study: Fredhopper Replication Server (2)

How does the accumulated cost in our model compare to the actual Java implementation?

0

17.5

35

52.5

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

7500

15000

22500

30000

Ru
nn

in
g

tim
e

[s
]

Environments

Si
m

ul
at

io
n

co
st

Model simulation cost Implementation running time

Measured execution time of the implementation (left scale)
Accumulated cost of the simulation (right scale)

The deviation roughly seems to correspond to the start-up time of JVM

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 39 / 43

http://www.envisage-project.eu

Kubernetes

• Service: logical collection of load-balanced pods, with given service end-point & load balancer
• Container: units of deployment, corresponds to Workers in the previous slides
• Pods: scheduling unit, group of containers (one service container + sidecar and helper containers for

health probing etc)
• Nodes: Explicit resource capabilities (CPU, memory, etc), contain pods
• Scheduler assigns pods to nodes based on resource requirements and capacities

• Load balancing: choice of loadbalancer crucial to the performance of a Kubernetes cluster
(layer-4, layer-7)

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 40 / 43

http://www.envisage-project.eu

Kubernetes

• Service: logical collection of load-balanced pods, with given service end-point & load balancer
• Container: units of deployment, corresponds to Workers in the previous slides
• Pods: scheduling unit, group of containers (one service container + sidecar and helper containers for

health probing etc)
• Nodes: Explicit resource capabilities (CPU, memory, etc), contain pods
• Scheduler assigns pods to nodes based on resource requirements and capacities

• Load balancing: choice of loadbalancer crucial to the performance of a Kubernetes cluster
(layer-4, layer-7)

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 40 / 43

http://www.envisage-project.eu

Kubernetes

• Service: logical collection of load-balanced pods, with given service end-point & load balancer
• Container: units of deployment, corresponds to Workers in the previous slides
• Pods: scheduling unit, group of containers (one service container + sidecar and helper containers for

health probing etc)
• Nodes: Explicit resource capabilities (CPU, memory, etc), contain pods
• Scheduler assigns pods to nodes based on resource requirements and capacities

• Load balancing: choice of loadbalancer crucial to the performance of a Kubernetes cluster
(layer-4, layer-7)

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 40 / 43

http://www.envisage-project.eu

Kubernetes Model

Client

Application
Endpoint &

Loadbalancer

Node
Node

Node Scheduler

Master

send
(clientRequest)

deliver
Requests
(requests)

[rps]

deployPod
(pod)

Node : node

AutoScaler

process
Request
(request)

[millicores]

consumeCpu
(amount)

deployPod
(pod)

create /
delete

Service

Pod
Pod

Pod
Pod

Node : node

Challenge: A cluster can support many workflows. Solution: Costs depend on wf and node configuration

Problem: Pods are not fully isolated. Solution: Costs modelled in tables, depend on wf/node config

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 41 / 43

http://www.envisage-project.eu

Kubernetes Model

Client

Application
Endpoint &

Loadbalancer

Node
Node

Node Scheduler

Master

send
(clientRequest)

deliver
Requests
(requests)

[rps]

deployPod
(pod)

Node : node

AutoScaler

process
Request
(request)

[millicores]

consumeCpu
(amount)

deployPod
(pod)

create /
delete

Service

Pod
Pod

Pod
Pod

Node : node

Challenge: A cluster can support many workflows.

Solution: Costs depend on wf and node configuration

Problem: Pods are not fully isolated. Solution: Costs modelled in tables, depend on wf/node config

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 41 / 43

http://www.envisage-project.eu

Kubernetes Model

Client

Application
Endpoint &

Loadbalancer

Node
Node

Node Scheduler

Master

send
(clientRequest)

deliver
Requests
(requests)

[rps]

deployPod
(pod)

Node : node

AutoScaler

process
Request
(request)

[millicores]

consumeCpu
(amount)

deployPod
(pod)

create /
delete

Service

Pod
Pod

Pod
Pod

Node : node

Challenge: A cluster can support many workflows. Solution: Costs depend on wf and node configuration

Problem: Pods are not fully isolated. Solution: Costs modelled in tables, depend on wf/node config

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 41 / 43

http://www.envisage-project.eu

Kubernetes Model

Client

Application
Endpoint &

Loadbalancer

Node
Node

Node Scheduler

Master

send
(clientRequest)

deliver
Requests
(requests)

[rps]

deployPod
(pod)

Node : node

AutoScaler

process
Request
(request)

[millicores]

consumeCpu
(amount)

deployPod
(pod)

create /
delete

Service

Pod
Pod

Pod
Pod

Node : node

Challenge: A cluster can support many workflows. Solution: Costs depend on wf and node configuration

Problem: Pods are not fully isolated.

Solution: Costs modelled in tables, depend on wf/node config

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 41 / 43

http://www.envisage-project.eu

Kubernetes Model

Client

Application
Endpoint &

Loadbalancer

Node
Node

Node Scheduler

Master

send
(clientRequest)

deliver
Requests
(requests)

[rps]

deployPod
(pod)

Node : node

AutoScaler

process
Request
(request)

[millicores]

consumeCpu
(amount)

deployPod
(pod)

create /
delete

Service

Pod
Pod

Pod
Pod

Node : node

Challenge: A cluster can support many workflows. Solution: Costs depend on wf and node configuration

Problem: Pods are not fully isolated. Solution: Costs modelled in tables, depend on wf/node config

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 41 / 43

http://www.envisage-project.eu

Building a Kubernetes Model from an Application

Methodology

1. Instrument the cluster

2. Identify suitable workflows

3. Identify node configurations

4. Define a sampling strategy for service
loads to derive cost tables

5. Perform model-based predictions by
means of simulations

Cost tables
• The cost table captures resource

consumption on a node for specific
configurations.

• The cost table stores information about
resource consumption for each workflow
and service for different RPS entries

(workflow, serviceName,RPS) 7→ cost

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 42 / 43

http://www.envisage-project.eu

Building a Kubernetes Model from an Application

Methodology

1. Instrument the cluster

2. Identify suitable workflows

3. Identify node configurations

4. Define a sampling strategy for service
loads to derive cost tables

5. Perform model-based predictions by
means of simulations

Cost tables
• The cost table captures resource

consumption on a node for specific
configurations.

• The cost table stores information about
resource consumption for each workflow
and service for different RPS entries

(workflow, serviceName,RPS) 7→ cost

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 42 / 43

http://www.envisage-project.eu

Example: Google’s Online Boutique Microservices Demo

• Workflows: get index page, change currency, view random product, …
• Workflows like these invovle a surprising number of services!
• We obtain very good prediction models for static deployments!
• Source: Google microservices demo

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 43 / 43

http://www.envisage-project.eu

Example: Google’s Online Boutique Microservices Demo

• Workflows: get index page, change currency, view random product, …
• Workflows like these invovle a surprising number of services!
• We obtain very good prediction models for static deployments!
• Source: Google microservices demo

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 43 / 43

http://www.envisage-project.eu

Conclusions

Work with executable actor models!
• ABS models are easy to understand and very efficient for exploring

designs and deployment decisions for distributed software
• Actors, asynchronous method calls: express flexible synchronization patterns
• Basic building blocks for resource-aware models: Cost annotations and deployment components
• Service end-points, load balancers, autoscaling etc etc easy to model
• Methodology for how to model of a real system: a concrete Kubernetes cluster with diverse workflows

• ABS is open source and well documented: http://www.abs-models.org

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 44 / 43

http://www.abs-models.org
http://www.envisage-project.eu

Conclusions

Work with executable actor models!
• ABS models are easy to understand and very efficient for exploring

designs and deployment decisions for distributed software
• Actors, asynchronous method calls: express flexible synchronization patterns
• Basic building blocks for resource-aware models: Cost annotations and deployment components
• Service end-points, load balancers, autoscaling etc etc easy to model
• Methodology for how to model of a real system: a concrete Kubernetes cluster with diverse workflows

• ABS is open source and well documented: http://www.abs-models.org

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 44 / 43

http://www.abs-models.org
http://www.envisage-project.eu

References

Einar Broch Johnsen, Rudolf Schlatte, Silvia Lizeth Tapia Tarifa: Modeling Resource-Aware Virtualized
Applications for the Cloud in Real-Time ABS. ICFEM 2012: 71-86 [Preprint]

Einar Broch Johnsen, Rudolf Schlatte, Silvia Lizeth Tapia Tarifa: Integrating deployment architectures and
resource consumption in timed object-oriented models. J. Log. Algebraic Methods Program. 84(1): 67-91
(2015) [Preprint]

Einar Broch Johnsen, Ka I Pun, Silvia Lizeth Tapia Tarifa: A formal model of cloud-deployed software and its
application to workflow processing. SoftCOM 2017: 1-6 [Preprint]

Gianluca Turin, Andrea Borgarelli, Simone Donetti, Ferruccio Damiani, Einar Broch Johnsen, Silvia Lizeth
Tapia Tarifa: Predicting resource consumption of Kubernetes container systems using resource models. J. Syst.
Softw. 203: 111750 (2023) [Preprint]

S. L. Tapia Tarifa (U. Oslo) ABS: Modeling with resource-sensitive actors Oslo, 13.11.2023 45 / 43

https://ebjohnsen.org/publication/12-icfem/12-icfem.pdf
https://ebjohnsen.org/publication/15-jlamp1/15-jlamp1.pdf
https://ebjohnsen.org/publication/17-softcom/17-softcom.pdf
https://ebjohnsen.org/publication/23-jss/23-jss.pdf
http://www.envisage-project.eu

