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Lecture 1 - Basics



Summary

• Shared Memory: variables accessed from multiple threads

• Interleaving semantics: handling multiple threads by interleaving their statements

• Problems with analysis: state space explosion

• Basic terminology: atomicity, synchronization, mutual exclusion

• Data races, interference, AMO
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Interaction Between Parallel Processes

To organize interactions, we use synchronization

Synchronization

Synchronization restricts the possible interleavings of parallel processes

to avoid unwanted behavior and enforce wanted behavior.

Definition (Atomic)

An operation is atomic if it cannot be subdivided into smaller operations.

• We can ignore concurrency inside atomic operations as they cannot be interleaved

• Assignments x := e are not atomic

• Increasing atomicity and mutual exclusion (Mutex) to introduce critical sections which can

not be executed concurrently

• Condition synchronization enforces that processes must wait for a specific condition to be

satisfied before execution can continue.
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Properties

Definition (Invariant)

An invariant is a property of program states, that holds for all reachable states of a program.

• Invariant (adj): constant, unchanging

• Prototypical safety property

• Appropriate for non-terminating systems (does not require a final state)

• All reachable states often too strong

Kinds of Invariants

• Strong invariant: Holds for all reachable states

• Weak invariant: Holds for all states where an atomic block starts or ends

• Loop invariant: Holds at the start and end of a loop body

• Global invariant: Reasons about state of many processes

• Local invariant: Reasons about state of one process
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Critical Sections

To enforce atomicity, we have a special construct in the language : <S> performs S atomically

Use of Critical Sections

• When the processes interfere: synchronization to restrict the possible interleavings

• Synchronization gives coarser grained atomic operations (“atomic blocks”)

• Combines operations into an atomic lock where the process shall not be interrupted

Characteristics of Atomic Operations

• Internal states are not visible to other processes.

• Variables cannot be changed underway by other processes.

Await

i n t x :=0; co <x :=x+1> | | <x :=x−1> oc {x=0}
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Lecture 2 - Java



Summary

• Threads and runnables

• Weak memory: breaks interleaving semantics through memory optimization

• volatile and synchronized
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Threads

• The Thread class encapsulates a system thread

• The Runnable interface is used to define thread behavior

Start vs run

• Thread.start() starts a new concurrent thread

• Runnable.run() just executes the code sequentially

• Thread.start() calls Runnable.run() internally

• Calling Runnable.run() directly rarely makes sense
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Synchronization

• Synchronized blocks can be used outside methods with explicit lock

• Any object can be a lock, synchronized methods have this as the lock

Java

pub l i c c l a s s C(){
i n t l = 0 ;

vo id method ( Object lock , boolean l e f t ){
synchron ized ( l o c k ){

i f ( l e f t ) l++ e l s e l −−; }}}

pub l i c c l a s s D(){
synchron ized vo id method ( ){ . . . }
vo id method ( ){ synchron ized ( t h i s ) { . . . } } }
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Weak Memory

Weak Memory Models can lead to very unintuitive results in concurrent settings

int x,y; //default 0

x := 1; //shared variable

r1 := y; //register

print r1;

y := 1; //shared variable

r2 := x;

print r2;

• If the read of x in the second thread is reordered, then 0,0 is possible

• This output cannot be explained by reasoning about interleavings

• If the language does not require variables to be initialized, we get out-of-thin-air values.

Then, even 12,13 is a possible output.
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Weak Memory

Sequential Consistency

Most weak memory models guarantee sequential consistency: If there is no data race, then

the observable behavior of the program is as if under a strong memory model.

• “No data race” may be a very strong restriction and lead to unnecessary synchronization

• The term observable behavior depends on the programming language

• We need more fine-grained control – volatile forbids reordering of accesses to this field
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Lecture 3 - Locks and Barriers



Summary

• Implementing ⟨await e; s⟩
• Critical sections

• Test-and-set, spin-lock for lock variables

• Contention and Fairness

• Barriers: synchronization at the same point for n threads
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General patterns for critical sections

• inside the CS we have operations on shared variables.

• Access to the CS must then be protected to prevent interference.

• Coarse-grained pattern for n uniform processes repeatably executing some critical section

Await

process p [ i=1 to n ] {
whi le ( t r u e ) {

CSentry # en t r y p r o t o c o l to CS

CS

CSex i t # e x i t p r o t o c o l from CS

non−CS
}

}

• Assumption: A process which enters the CS will eventually leave it.

⇒ Programming advice: be aware of exceptions inside CS!
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Critical sections using “locks”

Await

bool l o c k := f a l s e ;

process [ i=1 to n ] {
whi le ( t r u e ) {
< await ( ! l o c k ) l o c k := t r u e >;

CS ;

l o c k := f a l s e ;

non−CS
}

}

Safety Properties

• Mutex

• Absence of deadlock and absence of unnecessary waiting

Can we remove the angle brackets < ... >?
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Critical section with TS and spin-lock

Await

bool l o c k := f a l s e ;

process p [ i=1 to n ] {
whi le ( t r u e ) {

whi le (TS( l o c k ) ) { s k i p } ; # en t r y p r o t o c o l

CS

l o c k := f a l s e ; # e x i t p r o t o c o l

}
}

• TS(lock): set to true, return original value

• Safety: Mutex, absence of deadlock and of unnecessary delay.

• Strong fairness is needed to guarantee eventual entry for a process

• Problematic memory access pattern: lock as a hotspot
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Reducing Writes

Test, Test and Set

Test, Test and Set (TTAS) reduces the number of writes by introducing more reads in the

entry protocol.

Await

bool l o c k = f a l s e ;

process p [ i = 1 to n ] {
whi le ( t r u e ) {

whi le ( l o c k ) { s k i p } ; # a d d i t i o n a l s p i n l o c k

whi le (TS( l o c k ) ) { whi le ( l o c k ) { s k i p } } ;
CS ;

l o c k := f a l s e ;

}
}
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Conditional Atomic Sections

Implementation of < await (B) S;> :

Await

CSentry ;

whi le ( !B) {CSex i t ; CSentry } ;
S ;

CSex i t ;
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Fairness notions

Possible status changes

• Disabled → enabled

• Enabled → disabled

In our language, only conditional atomic segments can have status changes

Different forms of fairness for different forms of statements

1. For statements that are always enabled

2. For those that once they become enable, they stay enabled

3. For those whose enabledness shows “on-off” behavior
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Fairness

Definition (Unconditional fairness)

A scheduling strategy is unconditionally fair if each enabled unconditional atomic action, will

eventually be chosen.

Definition (Weak fairness)

A scheduling strategy is weakly fair if

• unconditionally fair

• every conditional atomic action will eventually be chosen, assuming that the condition

becomes true and remains true until the action is executed.
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Fairness

Definition (Strongly fair scheduling strategy)

• unconditionally fair and

• each conditional atomic action will eventually be chosen, if the condition is true

infinitely often.

Await

bool x := t r u e ; y := f a l s e ;

co whi le ( x ) {y := t r u e ; y := f a l s e } | | < await ( y ) x := f a l s e > oc
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Lecture 4 - Semaphores



Summary

• Semaphores: built-in synchronization mechanisms

• Special variable with 2 operations, cannot be accessed directly
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Concept

Concept of a Semaphore

• Semaphore: special kind of shared program variable (with built-in sync. power)

• value of a semaphore: a non-negative integer

• can only be manipulated by two atomic operations:

The Semaphore Operations: P and V

• P: (Passeren) Wait for signal – want to pass

Wait until value is greater than zero, and decrease value by one

• V: (Vrijgeven) Signal an event – release

Increase the value by one

• Today, libraries and sys-calls prefer other names: up/down, wait/signal, acquire/release

• Different flavors of semaphores: binary vs. counting

• Most common: mutex as a synonym for binary semaphores
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Syntax and Semantics

Declaration

• sem s; default initial value is zero

• sem s := 1;

• sem s[4] := ([4] 1);

Operations and Semantics

P-operation P(s)

⟨await (s > 0)s := s − 1⟩
V-operation V(s)

⟨s := s + 1⟩

Processes waiting on a semaphore are woken up by the op. system.
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Remarks on Semaphores

Remark 1

Important: No direct access to the value of a semaphore.

For example, a test like if (s = 1) then ... else is forbidden!

Kinds of semaphores

General semaphore: Possible values: all non-negative integers

Binary semaphore: Possible values: 0 and 1
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Example: Mutual Exclusion (critical section)

Mutex implemented by a binary semaphore

Await

sem mutex := 1 ;

process CS [ i = 1 to n ] {
whi le ( t r u e ) {
P(mutex ) ;

# c r i t i c a l s e c t i o n

V(mutex ) ;

# n o n c r i t i c a l s e c t i o n

}
}

• The semaphore is initially 1

• Always P before V → (used as) binary semaphore
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Example: Barrier Synchronization

Semaphores may be used for signaling events

Await

sem a r r i v e 1 = 0 , a r r i v e 2 = 0 ;

process Worker1 {
. . .

V( a r r i v e 1 ) ; # reach b a r r i e r

P( a r r i v e 2 ) ; # wa i t f o r o t h e r

. . .

}
process Worker2 {

. . .

V( a r r i v e 2 ) ; # reach b a r r i e r

P( a r r i v e 1 ) ; # wa i t f o r o t h e r

. . .

}
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Split Binary Semaphores

Split binary semaphore

A set of semaphores, whose sum ≤ 1

Mutex by split binary semaphores

• Initialization: one of the semaphores =1, all others = 0

• Discipline: all processes call P on a semaphore, before calling V on (another) semaphore

⇒ Code between the P and the V

• All semaphores = 0

• Code executed in mutex
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Example: Producer/Consumer with Split Binary Semaphores

Await

process Producer {
whi le ( t r u e ) {

P( empty ) ;

b u f f := data ;

V( f u l l ) ;

}
}

Await

process Consumer {
whi le ( t r u e ) {

P( f u l l ) ;

d a t a c := bu f f ;

V( empty ) ;

}
}
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Example: Producer/Consumer with Split Binary Semaphores
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Lecture 5 - Monitors



Summary

• Special synchronization mechanism: program module encapsulating some data

• Fields accessible only through its procedures

• Synchronization through condition variables
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Monitors

Monitor

A monitor is a program module with more structure than semaphores:

Intuitively, a monitor is an abstract data type with built-in synchronization.
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Monitors

Monitor

A monitor is a program module with more structure than semaphores:

Intuitively, a monitor is an abstract data type with built-in synchronization.

State of a Monitor

• Contains variables that describe the state

• Variables can be changed only through the available procedures
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Monitors

Monitor

A monitor is a program module with more structure than semaphores:

Intuitively, a monitor is an abstract data type with built-in synchronization.

State of a Monitor

• Contains variables that describe the state

• Variables can be changed only through the available procedures

Synchronization of a Monitor

Implicit mutual exclusion: at most one procedure may be active at a time for a monitor

• A procedure has guaranteed mutex access to the data in the monitor

• Two procedures in the same monitor are never executed concurrently

28



Monitors

Monitor

A monitor is a program module with more structure than semaphores:

Intuitively, a monitor is an abstract data type with built-in synchronization.

Cooperative Scheduling: procedures coordinate their monitor access

• Condition synchronization blocks a process until a particular condition holds.

• Condition synchronization is expressed by condition variables

• Monitors can be implemented using locks or semaphores
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Monitor Usage

• Process = active ⇔ Monitor: = passive/re-active

• A procedure is active, if a statement in the procedure is executed by some process

Monitor-Based Concurrency

• All shared variables: inside the monitor

• Processes communicate by calling monitor procedures

• Processes do not need to know all the implementation details

• Only the visible effects of public procedures are important

• Implementation can be changed, if visible effects remains

• Monitors and processes can be developed relatively independent of each other

⇒ Monitors make it easier to understand and develop parallel programs

29



Syntax & Semantics

Await
monitor name {
monitor v a r i a b l e s

## monitor i n v a r i a n t

i n i t i a l i z a t i o n code

p r o c edu r e s

}

• Only the procedure names are visible from outside the monitor:

call name.procedure(arguments)

• Statements inside a monitor: no access to variables outside the monitor

• Statements outside a monitor: no access to variables inside the monitor

• Monitor variables: initialized before the monitor is used

• Monitor invariant: describes a condition on the inner state

• The monitor invariant can be analyzed by sequential reasoning inside the monitor

30



Condition Variables

• Monitors contain a special type of variables: cond

• Condition variables are used for synchronization/to delay processes

• Each condition variable is associated with a wait condition

• The “value” of a condition variable: queue of delayed processes

• This value is not directly accessible by programmer

• Instead, it is manipulated by special operations

cond cv; # declares a condition variable cv

empty(cv); # asks if the queue on cv is empty

wait(cv); # causes process to wait in the cv queue

signal(cv); # wakes up a process in the queue to cv

signal all(cv); # wakes up all processes in the cv queue
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Signaling Disciplines (1)

• Statement signal(cv) has the following effect

• Empty queue: no effect

• Otherwise: the process at the head of the queue to cv is woken up

• A process executes signal(cv) while it is active

— how to activate the next process?

Signaling Disciplines

• Signal and Wait (SW): the signaler waits, and the signaled process gets to execute

immediately

• Signal and Continue (SC): the signaler continues, and the signaled process executes later
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Signaling Disciplines (2)

entry queue inside monitor

cv queue

call mon. free

sw

wait
sw

return

sc

Note: Two kinds of queues: entry queue and condition variable queue

Note: The figure is schematic and combines the “transitions” of signal-and-wait and

signal-and-continue in a single diagram. The corresponding transition, here labeled sw and sc

are the state changes caused by being signaled in the corresponding discipline.
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Lecture 6 and 7 - Message

Passing Concurrency



Summary

• Channels: synchronous and asynchronous channels

• Actors: monitors with asynchronous communication (and more!)

• Call-backs: (composable) futures, promises, channels, identities

• Language design: “colored” functions with async/await
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Concurrent vs. distributed programming

Shared-Memory Systems

• Processors share one memory

• Processors communicate via reading and writing of shared variables

Concurrent programming provides primitives to synchronize over memory

Distributed Systems

• Memory is distributed: processes cannot share variables/memory locations

• Processes communicate by sending and receiving messages via e.g., shared channels,

• or (in future lectures): communication via RPC and rendezvous

Distributed programming provides primitives to communicate

• Some concepts from distributed systems are also useful abstractions for shared memory

• Abstractions can be decoded to different primitives, e.g., channels can shared-memory

• Also: mixed shared-distributed systems
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Synchronous message passing - high level concept
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Asynchronous message passing - high level concept
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Actors

Fundamental idea: Decouple communication and control.

Capabilities of Actors

An actor reacts to incoming messages to

• change its state,

• send a finite number of messages to other actors, and

• create a finite number of new actors.

Intuition

We can think of an actor as an object that can only communicate asynchronously, but some

actor models can also pattern match over its message queue of incoming messages.
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Actors

Actors

• Recipients of messages are identified by name (no channels).

• An actor can only communicate with actors that it knows.

• An actor can obtain names from messages that it receives,

or because it has created the actor

The actor model is characterized by

• inherent concurrency among actors

• dynamic creation of actors,

• inclusion of actor names in messages, and

• interaction only through direct asynchronous message passing with no restriction on

message arrival order.

• message servers might be implemented by matching messages from the queue to

procedures 39



Example: Erlang-style Actors - Matching Messages

Publish and Subscribe Server

r u nS e r v e r ( Subs ) −>
r e ce i v e

{ sub , from} −> r u nS e r v e r ( Subs + from ) ; % s u b s c r i b e

{ pub l i s h , v a l u e } −> % pub l i s h

f o r ( i d i n Subs ) i d !{ v a l u e } , % b roadca s t v a l u e

r unSe r v e r ( Subs ) ;

−> r u nS e r v e r ( Subs ) ; % i g n o r e o t h e r messages

S e r v e r { % pub l i s h and s u b s c r i b e s e r v e r

s t a r t ( ) −> spawn ( fun ( ) −> r u nS e r v e r ( [ ] ) ) . } % s t a r t the s e r v e r

C l i e n t { % send r e q u e s t s to the s e r v e r

s t a r t ( ) −> Se r v e r !{ sub , s e l f } , S e r v e r !{ pub l i s h , 1 0} .}
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Futures and Promises

Futures.

• A future is a handle for the caller of a process

that will contain the result value once computed

• Most commonly: return value of a process

Java

Future<I n t> f = s e r v i c e . submit ( ( ) −> { re tu rn 1 ; } ) ;
. . .

I n t = f . ge t ( ) ;

Promises.

• What if the value will be computed somewhere else?

• A promise is a future which is not clear who computes it
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Promises

A promise:

• May be eventually completed (but maybe by somebody else)

• Can be completed only once

• Deadlock/starvation occurs if it is never completed

Java calls promises CompletableFutures:

Java

Comple tab leFuture<I n t e g e r> f = new Comple tab leFuture <>();

s e r v i c e . submit ( ( ) −> { f . comple te ( 1 ) ; re tu rn n u l l ; } ) ;
. . .

I n t = f . ge t ( ) ;
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Composition Futures/Promises

Logically related Futures/Promises scattered in the code.

Java

Comple tab leFuture<I n t e g e r> f 1

= Comp le tab l eFutu re . supp l yAsync ( ( ) −> 1 ) ;

. . .

Comple tab leFuture<I n t e g e r> f 2

= Comp le tab l eFutu re . supp l yAsync ( ( ) −> f 1 . ge t + 1 ) ;

// Connect ing Fu tu r e s / Promises ( compos i t i on )

Comple tab leFuture<I n t e g e r> f

= Comp le tab l eFutu re . supp l yAsync ( ( ) −> 1)

. thenApp ly ( ( r e s ) −> r e s + 1 ) ;

Very similar patterns are common in web development with JavaScript
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Active Objects: actors + object-orientation

• Each object runs one thread and each method call spawns a task

• Thread is responsible to schedule tasks in some order

• Waiting on future suspends the task, not the thread!

• Reading blocks task and thread – no other task can run

ABS
c l a s s Dine r ( IWa i t e r w) implements ID i n e r {

Unit ea t ( Dish d ) {
Fut<Meal> fm = w! o r d e r ( d ) ; // p l a c e o r d e r w i th wa i t e r

await fm ? ; // wh i l e wa i t i n g do someth ing e l s e

Meal m = fm . get ; // r e c e i v e meal

Fut<Unit> f c = t h i s ! consume (m) ;

Fut<Unit> f p = w! pay ( t h i s , d ) ; // ea t i ng , pay ing i n some o r d e r

await f c ? & fp ? ; // eaten and pa id − r eady to l e a v e !

}
Unit t a k eC a l l ( ){ . . . }
. . .

}
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Lecture 8 - Go



Go Concurrency

Go’s concurrency mantra

“Don’t communicate by sharing memory, share memory by communicating!”

• Go does have shared memory via global variables, heap memory etc.

• But you are supposed to only send references – getting a reference transfers ownership,

i.e., the permission to write/read it

Go’s primitives

• Goroutines – lightweight threads

• Own call stack, small stack memory (2KB initially), handled by go runtime

• Very cheap context switch

• First-class constructs of language

• Channels

• Synchronous, Typed

• Communication between (lightweight) threads

• Main means of synchronization 45



Goroutines

3 ways to call a function

• f(x) – ordinary (synchronous) function call, where f is a defined function or a

functional definition

• go (x) – called as an asynchronous process, i.e. go-routine

• defer f(x) – the call is delayed until the end of this process
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Channels in Go

• Channels provide a way to send messages form one go routine to another.

• Channels are created with make

• The arrow operator (<-) is used both to signify the direction of a channel and to send or

receive data over a channel

Go

func m(){
c h l := make( chan f loat64 )

go w r i t e f ( c h l ) ; go r e a d f ( c h l )

}
func w r i t e f ( ch chan<− f l oat64 ) {

ch <− 0 .5 }
func r e a d f ( ch <−chan f loat64 ){

v := <−ch }
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Waiting for Go routines to finish

Go

func main ( ) {
var wg sync . WaitGroup

var i i n t = −1

var f i l e s t r i ng

fo r i , f i l e = range os . Args [ 1 : ] {
wg . Add (1 ) //add b e f o r e async . c a l l !

go func ( ) { //anon . f u n c t i o n

compress ( f i l e )

wg . Done ( ) } ( )
}
wg . Wait ( )

fmt . Pr in t f ( ” compressed %d f i l e s \n” , i +1)

}
48



Channels in Go

• Channels are bidirectional, synchronous and typed

• Careful which routine is reading and which is writing

• Type support to enforce that

49



Channel operations

• Send and receive

• Create channels

• Close a channel
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Channel operations

• Send and receive

• Create channels

• Close a channel
Go

func m() {
ch := make( chan int , 2) // async channe l

ch <− 1 // does not b l o ck !

ch <− 2

fmt . Pr in t ln(<−ch )

fmt . Pr in t ln(<−ch )

}
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Channel operations

• Send and receive

• Create channels

• Close a channel
Go

func m() {
ch := make( chan int , 1) // async channe l

ch <− 1

ch <− 2 // dead lock

fmt . Pr in t ln(<−ch )

fmt . Pr in t ln(<−ch )

}
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Channel operations

• Send and receive

• Create channels

• Close a channel
Go

func m() {
ch := make( chan i n t ) // sync channe l

go w r i t e ( ch )

f o r {
i , ok := <−ch

i f ( ! ok ) break

fmt . Pr in t ln ( i ) } }

func w r i t e ( ch chan<− i n t ) {
ch <− 1 ; ch <− 2 ; c lose ( ch ) }
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Channel operations

• Send and receive

• Create channels

• Close a channel
Go

func m() {
ch := make( chan i n t )

go w r i t e ( ch )

<−ch

<−ch } // e r r o r

func w r i t e ( ch chan<− i n t ) {
ch <− 1 ; c lose ( ch ) }
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Lecture 9 - General Types



Summary

A typing discipline consists of

• A type syntax

• A subtyping relation

• A typing environment

• A type judgement

• A set of type rules (the type system itself)

• A notion of type soundness

Data and Behavioral Types

• A data type is an abstraction over the contents of memory

• Can it be interpreted as a member of a set? E.g., integers

• Are certain operations defined on it? E.g., + or method lookup

• A behavioral type is an abstraction over allowed operations
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Environment and Judgment

Type Environment

A type environment Γ is a partial map from variables to types.

• Notation to access the type of a variable v in environment Γ: Γ(v)

• Example notation for an environment with two integer variables v, w: {v 7→ Int, w 7→ Int}
• Notation for updating the environment: Γ[x 7→ T]

• Notation if a variable has no assigned type: Γ(x) = ⊥

Type Judgment

To express that statement s is well-typed with type T in environment Γ.

Γ ⊢ e : T

52



Type Soundness

Type soundness expresses that if the initial program is well-typed, then we do not get stuck,

i.e., if we terminate, then successfully.

• Three intermediate lemmas (error states are not well-types, subject reduction, progress)

• Note that we do not ensures termination

• Main thinking point for later: are deadlocked states successfully terminated?

Subject Reduction

If a well-typed expression can be execute, then the result is well-typed

∀s, s ′, Γ.
(
(Γ ⊢ s : Unit ∧ s ⇝ s ′) → ∃Γ′. Γ′ ⊢ s ′ : Unit

)
Progress

If a statement is well-typed, but not successfully terminated (i.e., skip or return), then it can

make a step

∀s.
(
(Γ ⊢ s : Unit ∧ ¬term(s) → ∃s ′. s ⇝ s ′

)
53



Types for Channels

Typing Writing

Γ ⊢ e : chan T Γ ⊢ e′ : T′ T′ <: T
Γ ⊢ e <− e′ : Unit

• First premise types channel

• Second premise types sent value

• Third premise connects via subtyping

Typing Reading

Γ ⊢ e : chan T’ T’ <: T
Γ ⊢ <− e : T
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Input/Output Modes

• How to enforce that one thread reads and one writes?

• Idea: use modes to encode read or write capabilities

• Use subtyping and weakening to split and restrict capabilities

func main ( ) {
chn := make( chan ! ? i n t ) // ! ?

go r ead ( chn ) // ! ?

//weaken chn to chan ! i n t

chn <− v //<− chn would be i l l e g a l

}
func r ead ( c chan? i n t ) i n t { // f o r g e t s ! mode

re tu rn <−c // c <− 1 would be i l l e g a l

}
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Lecture 10 - Linear and Usage

Types



Summary

• Linear types, affine types, usage types

• Unrestricted environment

• Splitting the environment (and type)

• Different ways to enforce order: in rules or in specification
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Comparison: Session Types (ST) and other Channel Types

Type System Form Split Order Guarantee Specification Expressiveness

Data Types chan int – – Data Safety Minimal No communication

patterns

Modes chan?! int Implicit

in rules

Implicit in rules

arbitrary often

– Minimal

Only interfaces

Distinguishes reader

from writer

Linear Types chan?1,!1 int Implicit

in rules

Implicit in rules

once

No DL

on single channels

Minimal

Only interfaces

Single-use channels,

distinguishes reader

from writer

Usage Types chan!.?.0+?.!.0 int Explicit

in spec.

Explicit in spec. – Considerate

No consistency checking

Simple protocols,

more than 2 partici-

pants

Binary ST chan !int.?string.0 Implicit

at declaration

Explicit in spec. No DL

on single channels

Medium effort

Consistency checked

Complex protocols

with branching be-

tween 2 participants

Multi-Party ST chan p → q : int.0 Extra mecha-

nism

Explicit in spec. No DL

on single channels

Considerate

Consistency checked

Complex protocols

with branching be-

tween n participants
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Linear Types: Defining Splitting

Typing Environment

A typing environment Γ can be split into two environments Γ1 + Γ2 by

• Having all variables with non-channel types in both Γ1 and Γ2.

• For each x with channel type we have Γ(x) = Γ1(x) + Γ2(x), where

chan?n1,!m1 T + chan?n2,!m2 T = chan?n1+n2,!m1+m2 T

• chan?1,!1 T = chan?0,!1 T+ chan?1,!0 T

• chan?1,!1 T = chan?1,!1 T+ chan?0,!0 T

{n 7→ Int, c 7→ chan?0,!1 Int} =

{n 7→ Int, c 7→ chan?0,!0 Int}+ {n 7→ Int, c 7→ chan?0,!1 Int}
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Linear Types: Defining Complete Use

Literals and Termination

• Γ is unrestricted if all contained channels have n = 0 and m = 0. We write un(Γ).

• All literals only type check in a unrestricted environment

• First, sub-system only for for expressions

un(Γ)
L-true

Γ ⊢ true : Bool

un(Γ)
L-int

Γ ⊢ n : Int

un(Γ) Γ(v) = T
L-var

Γ ⊢ v : T

un(Γ)

{c 7→ chan?0,!0} ⊢ 1 : Int

{c 7→ chan?1,!0} ⊢ 1 : Int
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Type Soundness – Enforce Parallelism

Writing

• Check that we can write but not read c now

• Remove write capability and split the environment into two parts

• One (Γ1) records the write capability and the capabilities afterwards

• One (Γ2) record the capabilities of the evaluated expression

• The first must allow one write

• The second must allow no read – otherwise one can type c <− c

• Also prohibits sequential self-locks c <− 1; <− c

Γ[c 7→ chan?0,!0 T ] = Γ1 + Γ2 Γ(c) = chan?0,!1 T Γ1 ⊢ s : Unit Γ2 ⊢ e : T

Γ ⊢ c <− e; s : Unit
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Usage Types by Example

Go

func main (){
g l o b a l = 0

l o c k := make ( chan < ! . ? . 0 + ? . ! . ? . ! . 0 + ? . ! . ? . ! . 0 > i n t )

f i n i s h := make ( chan <?.? .0 + ! . 0 + !.0> i n t )

go dua l (1 , l ock , f i n i s h )

go dua l (2 , l ock , f i n i s h )

l o c k <− 0

<− f i n i s h

<− f i n i s h

}
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Example

• Let Γ = {lock 7→ chan!.?.0+?.!.?.!.0+?.!.?.!.0 Int, finish 7→
chan?.?.0+!.0+!.0 Int, global 7→ Int

• Let Γ1 = {lock 7→ chan!.?.0+?.!.?.!.0 Int, finish 7→ chan?.?.0+!.0 Int, global 7→ Int

• Let Γ2 = {lock 7→ chan?.!.?.!.0 Int, finish 7→ chan!.0 Int, global 7→ Int

...
Γ1 ⊢ s : Unit

...
Γ2 ⊢ dual(1, lock, finish) : Unit

Γ = go dual(1, lock, finish); s : Unit
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Lecture 11 - Session Types



Summary

• Session: a channel used for a single communication

• Different data types communicated

• Treating two endpoints of a channel with different types and variables

• Duality to ensure endpoints match

• active choice (I chose) vs. passive choice (I react)

• Multi-party settings: duality generalizes to projection
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Requirements for Session Types

Session

A session is a sequence of related interactions between ≥ 2 parties over a certain time frame.

• Idea: a channel is only used for a single session

• A linear type describes a session with a single interaction

• A usage types describes a complex session and distributes interactions using +

Requirements for a Type System for Sessions

• Specify precisely possible orders of operations as protocols

• Clarify roles in sessions

• Must be able to handle branching in protocols

• Must be able to send different data types during protocol
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Two Views on Channels

Establishing a Session

Creating a channel results in two values, for two endpoint

(x, y) := make(chan T1, chan T2)

• The values of x, y have the “same” channel.

Binary Session Types

• Make sure types T1,T2 match using duality

• Channel is used for one session described by T1,T2 and completed on termination
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Binary Session Types

Type Syntax

• Data type of sent values is now part of protocol/session type

• Additional difference to usage types: no +

T ::= S Session Type

| chan T Channel Type

| D Data types

S ::= !T .S Send

| ?T .S Receive

| 0 Termination

... (next page)

Session to tend an integer and get some Boolean answer: chan !int.?bool.0
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Binary Session Types

Type Syntax

S ::= ... (previous page)

| ⊕ {l1 : S1, . . . , ln : sn} Internal choice

| &{l1 : S1, . . . , ln : sn} External choice

(repetition ∗ can be added if needed)

• Intuition: The party using ⊕ decides on branch and send the label

• Intuition: The party using & receives the label and continues with the corresponding

branch
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Binary Session Types

Duality

• Ensures that both parties communicating over a channel have a symmetric or dual view.

• Given a binary session type, we can syntactically construct its dual.

• Alternatively: Given two binary session types, we chan check whether they are duals

0 = 0

!T .S =?T .S

?T .S =!T .S

&{l1 : S1, . . . , ln : Sn} = ⊕{l1 : S1, . . . , ln : Sn}
⊕{l1 : S1, . . . , ln : Sn} = &{l1 : S1, . . . , ln : Sn}
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Subtyping and Type Soundness

Subtyping

Subtyping has same idea of duality as the type.

• Internal choice can have more branches

Intuition: active choice to never take these branches.

• External choice can have less branches

Intuition: these branches are never chosen anyway.

⊕{li : Si}i∈I <: ⊕{li : S ′
i }i∈I ′ iff I ⊇ I ′ ∧ ∀i ∈ I . Si <: S ′

i

&{li : Si}i∈I <: &{li : S ′
i }i∈I ′ iff I ⊆ I ′ ∧ ∀i ∈ I ′. Si <: S ′

i
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Multi-Party Session Types

Type Syntax

Unify all constructs into one type expressing that p sends a label li together with a data value

of type Ti to q, and the communication continues as Si .

S ::= 0 | p → q : {l1(T1) : S1, . . . , ln(Tn) : Sn}

We omit the outermost parentheses if n = 1.

Alice → Bob :

{
l1(int) : Bob → Carol :

{
l2(int) : Carol → Alice : l4(int).0

l3(int) : Carol → Alice : l4(int).0

}}
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Multi-Party Session Types

Local Types

Two actions, which are the unification of internal choice and sending, and the unification of

external choice and receiving.

L ::=0

| &{p1?l1(T1).L1, . . . , pn?ln(Tn).Ln}
| ⊕ {q1!l1(T1).L1, . . . , qn!ln(Tn).Ln}

LAlice = Bob!l1(int).Carol?l4(int).0

LBob = Alice?l1(int).⊕

{
Carol!l2(int).0

Carol!l3(int).0

}

LCarol = &

{
Bob?l2(int).Alice!l4(int).0

Bob?l3(int).Alice!l4(int).0

}
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Multi-Party Session Types

• Duality is generalized to projection: generate a local type for each role from a global type

• When projecting on receiver q, turn p → q into a ?

• When projecting on sender p, turn p → q into a !

• When projecting on any one else, each branch must be the same – this party is not

communicated which branch is taken

Projection

Generate local type Lp = G ↾ p from global type G and role p

0 ↾ p = 0

p → q : {l1(T1) : S1, . . . , ln(Tn) : Sn}↾p = ⊕{q!l1(T1).(S1 ↾ p), . . . , q!l1(T1).(S1 ↾ p)}
p → q : {l1(T1) : S1, . . . , ln(Tn) : Sn} ↾ q = &{p?l1(T1).(S1 ↾ q), . . . , p?ln(Tn).(Sn ↾ q)}
p → q : {l1(T1) : S1, . . . , ln(Tn) : Sn} ↾ r = L where ∀i . L = Si ↾ r
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Lecture 12 - Rust



Summary

• Ownership: Affinity types for copying

• Only one writing pointer per memory cell

• Automatic deallocation, data race freedom

• Owner vs. reference

• Lifetime of owner is lifetime of value

73



Connecting Syntax and Semantics

Resource Allocation Is Initialization (RAII)

• Memory management for local (=stack) instances

• Memory used by class allocated by constructor

• Memory deallocated by destructor

• No explicit deallocation needed, destructor called upon leaving the stack scope

c l a s s C { p u b l i c i n t ∗ p ;

C( ) { p = new i n t [ 4 ] ; }
˜C( ) { d e l e t e [ ] data ; } }

vo i d f ( ) {
C c ( ) ;

c . f ( ) ; }
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Ownership

• Reassignment of ownership (as in let b = a) is a move

• Affinity is considered with respect to moves

• Once ownership has been given away, a variable can no longer be used

• a is “used up” and therefore unusable

• Values with copy trait and literals are not moved, but copied

Rust

fn main ( ) {
l e t a = vec! [ 1 , 2 , 3 ] ; // a v e c t o r

l e t b = a ; // move : ‘ a ‘ can no l o n g e r be used

p r i n t l n ! ( ”{0} {1}” , a [ 0 ] , b [ 0 ] ) ; // e r r o r : borrow o f moved va l u e : ’ a ’

}
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Ownership

• Reassignment of ownership (as in let b = a) is a move

• Affinity is considered with respect to moves

• Once ownership has been given away, a variable can no longer be used

• a is “used up” and therefore unusable

• Values with copy trait and literals are not moved, but copied

Rust

fn main ( ) {
l e t a = 1 :

l e t b = a ; // not a move : ‘ a ‘ i s c o p i e d !

p r i n t l n ! ( ”{0} {1}” , a , b ) ; //works

}
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Passing Ownership

Passing a value also passes ownership of the value

Rust

fn make vec ( ) −> Vec<i32> {
l e t mut vec = Vec : : new ( ) ;

vec . push ( 1 ) ;

vec // t r a n s f e r owne r sh ip back to the c a l l e r

}
fn u s e v e c ( ) {

l e t vec = make vec ( ) ; // take owne r sh ip o f the v e c t o r

p r i n t v e c ( vec ) ; // pas s owne r sh ip to p r i n t v e c

}
fn p r i n t v e c ( vec : Vec<i32>) { // vec i s owned by p r i n t v e c

f o r i i n vec . i t e r ( )

p r i n t l n ! ( ”{}” , i )

} // now , vec i s d e a l l o c a t e d
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Passing Ownership

Rust

fn u s e v e c ( ) {
l e t vec = make vec ( ) ; // take owner sh ip o f v e c t o r

p r i n t v e c ( vec ) ; // pas s owne r sh ip to p r i n t v e c

f o r i i n vec . i t e r ( ) // ERROR: con t i nu e u s i n g vec

p r i n t l n ! ( ”{}” , i ∗ 2)

}

• Ownership is not transferred again by print vec, vec it destroyed here.

• Trying to use the vec again gives an error

• More than just “discipline”: the vector has already been deallocated at this point!
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Lifetime

• Deallocation is handled by lifetimes

• Value, references and variables all have lifetimes

• A reference/variable has a lifetime from until it goes out-of-scope.

• A value has a lifetime until its owener goes out-of-scope

• References are not owners: Reference must have shorter lifetimes than their value
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Lifetime

• Deallocation is handled by lifetimes

• Value, references and variables all have lifetimes

• A reference/variable has a lifetime from until it goes out-of-scope.

• A value has a lifetime until its owener goes out-of-scope

• References are not owners: Reference must have shorter lifetimes than their value

Rust

fn main ( ) {
l e t r f ; //−−−+ L i f e t im e o f r e f

{ // |
l e t vec = vec ! [ 1 , 2 , 3 ] ; //−+ | L i f e t im e o f vec and va l u e

r f = &vec ; // | | r e f bor rows read a c c e s s

} //−+ | vec goes out−of−scope , v a l u e d e a l l o c a t e d

p r i n t l n ! ( ”{}” , (∗ r f ) [ 0 ] ) ; // | a c c e s s i n v a l i d !

} //−−−+
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Lifetime

• Deallocation is handled by lifetimes

• Value, references and variables all have lifetimes

• A reference/variable has a lifetime from until it goes out-of-scope.

• A value has a lifetime until its owener goes out-of-scope

• References are not owners: Reference must have shorter lifetimes than their value

Rust

fn main ( ) {
l e t vec = vec! [ 1 , 2 , 3 ] ; //−−−+
l e t r f = &vec ; //−+ |
p r i n t l n ! ( ”{}” , (∗ r f ) [ 0 ] ) ; // | |

} //−+−+
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Referencing in Rust

A reference to a value cannot outlive the owner

Rust

l e t v = vec ! [ 1 , 2 ] ;

l e t x=&v [ 0 ] ;

l e t v2=v ; // Owner changes from v to v2 !

l e t y = ∗x + 1 // ERROR − x r e f e r s to v , but v i s not an owner !

A value can have one mutable reference or many immutable references

Rust

l e t mut v = vec ! [ 1 , 2 ] ;

l e t x=&v [ 0 ] ; // immutable borrow he r e

Vec : : push (&mut v , 3 ) ; // ERROR: mutable borrow he r e

l e t y = ∗x +1; // removing t h i s l i n e f i x e s the examp le !
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Exam



Languages

Languages for Answers

• Await and monitor languages for shared memory

• “Erlang” for actors, Go for channels and types, Rust

• All needed typing rules will be included in the exam sheet, typing derivations can be

entered in ASCII
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Languages

Languages for Answers

• Await and monitor languages for shared memory

• “Erlang” for actors, Go for channels and types, Rust

• All needed typing rules will be included in the exam sheet, typing derivations can be

entered in ASCII

----------------------

{ x -> int }(x) = int

-----------------------

{ x -> int } |- x : int (2)

-------------------------------------

{ x -> int } |- int v = x; s : Unit

...

{ x -> int, v -> int } |- s : Unit

-----------------------------------

(2)
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Languages

Languages for Answers

• Await and monitor languages for shared memory

• “Erlang” for actors, Go for channels and types, Rust

• All needed typing rules will be included in the exam sheet, typing derivations can be

entered in ASCII

• Other languages (Java, ABS, . . . ) must be understood, can occur in questions

• For Rust, you can expect <10 lines of code

• Slight syntax derivations are allowed, but do not mix languages
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Expectations (incomplete! list of possible question formats)

• Explain a concept

“What is a linear channel?”

• Explain the differences between concepts

“What are the differences and commonalities between a monitor and an actor?”

• Given a scenario, implement it in concurrency model X

• Given a scenario, model it in type system X

• Given some code, does it have property Y (describe why, why not)

“Can this code deadlock?”

• Given some code, does it have property Y under assumption Z (describe why, why not)

“Can this code deadlock under the signal-and-continue discipline?”

• Compute properties of types: splits, duals, projections, subtypes

• Given some code, give a type in System X for the channel to make it type-safe

• Given some code, does it type check? If yes, give a type derivation, otherwise
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Typing Exercises

Give binary session types for S ,T so the program is well-typed. Labels are prefixed with t .

f unc f ( i i n t ){
( c1 , c2 ) := make ( chan S , S Dual )

go f ( c2 ) ;

i f ( i > 0 ) {
c1 <− l b i g

d := <−c1

d <− i

} e l s e {
c1 <− l s m a l l

c1 <− i

d := <−c1

d <− 0− i

}
}

f unc g ( c chan S){
( d1 , d2 ) := make ( chan T, T Dual )

sw i t c h <− c{
ca se l b i g :

c <− d1

p r i n t (<−d2 )

ca se l s m a l l :

v := <−c

c <− d1

p r i n t (<−d2 + v )

}
}
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Typing Exercises

Give binary session types for S ,T so the program is well-typed. Labels are prefixed with t .

f unc f ( i i n t ){
( c1 , c2 ) := make ( chan +{ l b i g : ?( chan ! i n t . 0 ) . 0 ,

l s m a l l : ! i n t . ? ( chan ! i n t . 0 ) . 0 , S Dual )

go f ( c2 ) ;

i f ( i > 0 ) { c1 <− l b i g ; d := <−c1 ; d <− i }
e l s e { c1 <− l s m a l l ; c1 <− i ; d := <−c1 ; d <− 0− i }}

f unc g ( c chan . . . ) {
( d1 , d2 ) := make ( chan ! i n t . 0 , T Dual )

sw i t c h <−c {
ca se l b i g : c <− d1 ; p r i n t (<−d2 )

ca se l s m a l l : v := <−c ; c <− d1 ; p r i n t (<−d2 + v ) }}
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Typing Exercises

Show that the following is not well-typed and annotate the environment in every line when

after type checking this statement. Explain which property of usage types is violated.

f unc f ( ){
c := make ( chan < ! . ? .0+?. ! .0 > i n t ) ;

i := 0 ;

go g ( c ) ;

c <− i ;

<− c ;

s k i p ;

}

f unc g ( c chan <?.!.0> i n t ){
v := <− c

i f ( v <= 0 ){
c <− 0 ;

s k i p ;

} e l s e {
s k i p ;

}
s k i p

}
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Typing Exercises

f unc f ( ){
c := make ( . . . ) ; // {c −> chan < ! . ? .0+?. ! .0 > i n t }
i := 0 ; // {c −> chan < ! . ? .0+?. ! .0 > i n t , i −> i n t }
go g ( c ) ; // {c −> chan <!.?.0> i n t , i −> i n t }

// + {c −> chan <?.!.0> i n t , i −> i n t }
c <− i ; // {c −> chan<?.0> i n t , i −> i n t }
<− c ; // {c −> chan<0> i n t , i −> i n t }
s k i p // {c −> chan<0> i n t , i −> i n t }

}
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Typing Exercises

f unc g ( c chan <?.! .0>){
v := <−c ; // c −> chan<!.0> i n t , v −> i n t }
i f ( v <= 0 ){ // c −> chan<!.0> i n t , v −> i n t } ( then )

c <− 0 ; // c −> chan<0> i n t , v −> i n t }
s k i p ; // c −> chan<0> i n t , v −> i n t }

} e l s e { // c −> chan<!.0> i n t , v −> i n t } ( e l s e )

s k i p ; // c −> chan<!.0> i n t , v −> i n t }
}

}

Usage types require that the communication is performed until the end, but g does not always

send back.
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Typing Exercises

Is the following Rust code well-typed? Annotate the lifetimes of x , y , z , the owner of the x in

every line and argue whether type checking succeeds.

Rust

fn f (mut z : Vec<i32>){ . . . }
fn g ( q : &Vec<i32>){ . . . }
fn main ( ) {

l e t mut x = vec! [ 1 , 2 , 3 ] ;

g(&x ) ;

l e t y = x ;

f ( y ) ;

g(&y ) ;

}
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Typing Exercises

Is the following Rust code well-typed? Annotate the lifetimes of x , y , owner of the created

verctor in main in every line and argue whether type checking succeeds.

Rust

fn f (mut z : Vec<i32>){ . . . }
fn g ( q : &Vec<i32>){ . . . }
fn main ( ) {

l e t mut x = vec! [ 1 , 2 , 3 ] ; // x −+
g(&x ) ; // x |
l e t y = x ; // y −+ −+
f ( y ) ; // z@f −−−−+
g(&y ) ; // none

}
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