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Message Passing

Structure

• Part 1: Shared Memory (and Java)

• Part 2: Message Passing (and Go)

• Part 3: Analyses and Tool Support (and Rust)

Content of next part:

• Synchronous and asynchronous message passing

• Channels, actors, go-routines, asynchrounous programming

Outline Today

• Asynchronous message passing: channels, messages, primitives

• Example: filters and sorting networks

• Comparison of message passing and monitors

• Basics synchronous message passing
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Concurrent programming: shared state vs. messages

Concurrent programming

• Concurrent program: two or more processes that work together to perform a task.

• The processes work together by communicating with each other using:

• Shared variables: One process writes into a variable that is read by another.

• Message passing: One process sends a message that is received by another
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Program synchronization - recap

Two kinds of synchronization approaches (regardless of the form of communication)

• Mutual exclusion (mutex)

• A program mechanism that prevents processes from accessing a shared resource

at the same time.

• Only one process or thread owns the mutex at a time.

• Condition synchronization

• Delay a process until a given condition is true.

• To prevent race condition: when concurrent processes access and change

a shared resource.

• Used for critical section.

Recap

• So far: shared variable programming

• Now: Distributed programming
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Distributed Systems



Shared memory vs. distributed memory

System architectures with shared memory:

• Many processors access the same physical memory

• E.g., laptops, fileservers with many processors on one motherboard

Distributed memory architectures:

• Each processor has private memory, communication over a connections in a “network”

• examples:

• Multicomputer: asynchronous multi-processor with distributed memory

• Workstation clusters: PC’s in a local network, NFS (Network File System)

• Grid system: machines on the Internet, resource sharing

• cloud computing: cloud storage service

• NUMA-architectures

• cluster computing . . .
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Shared memory concurrency in the real world

shared memory

thread0 thread1

• Shared memory architecture is a simplification

• Out-of-order executions:

• Due to complex memory hierarchies, caches, buffers,. . .

• Due to weak memory, micro-ops, compiler optimizations,. . .
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SMP (symmetric multiprocessing), multi-core architecture, and NUMA
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Concurrent vs. distributed programming

Shared-Memory Systems

• Processors share one memory

• Processors communicate via reading and writing of shared variables

Concurrent programming provides primitives to synchronize over memory

Distributed Systems

• Memory is distributed: processes cannot share variables/memory locations

• Processes communicate by sending and receiving messages via e.g., shared channels,

• or (in future lectures): communication via RPC and rendezvous

Distributed programming provides primitives to communicate

• Some concepts from distributed systems are also useful abstractions for shared memory

• Abstractions can be decoded to different primitives, e.g., channels can shared-memory

• Also: mixed shared-distributed systems 7



Synchronous and Asynchronous

Message Passing



Message Passing

• Message passing refers to the sending of a message to a process.

• This message can be used to invoke a process

• Two types of message passing:

• Synchronous message passing

• Asynchronous message passing
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Synchronous message passing - high level concept
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Asynchronous message passing - high level concept
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Synchronous vs. asynchronous message passing - trade off

Synchronous message passing Asynchronous message passing

- No memory buffer is required - Memory buffer is required (memory is cheap)

- Concurrency is reduced - Have more concurrency

- Programs are more prone to deadlock - Programs are less prone to deadlock

We will comeback to this comparison later in the lecture.
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Asynchronous message passing: channel abstraction

Channel

Abstraction, e.g., of a physical communication network, for one-way communication between

two entities (similar to producer-consumer). For us:

• Unbounded FIFO (queue) of waiting messages

• Preserves message order

• Atomic access

• Error–free

• Typed

Numerous variants exists in different language: untyped, lossy, unnamed, bounded . . .

We will look at more complex types later
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Asynchronous message passing: primitives

Channel declaration

Await

chan c ( type1 id1 , . . . , typeN idN ) ;

Messages are n-tuples of respective types.

Communication Primitives

• send c(expr1,..., exprN);

Non-blocking, i.e. asynchronous: message is sent and process continues its execution

• receive c(v1,...,vN);

Blocking: receiver process waits until message is sent on the channel

Message stored in variables v1,...,vN.

• empty(c);

True if channel is empty

13



Example: message passing

(x,y) = A B
foo

send receive

Await

chan f oo ( i n t ) ;

i n t x ; i n t y ;

process A {
send f oo ( 1 ) ;

send f oo ( 2 ) ; }

process B {
r e ce i v e f oo ( x ) ;

r e ce i v e f oo ( y ) ; }
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Example: message passing

(x,y) = (1,2) A B
foo

send receive

Await

chan f oo ( i n t ) ;

i n t x ; i n t y ;

process A {
send f oo ( 1 ) ;

send f oo ( 2 ) ; }

process B {
r e ce i v e f oo ( x ) ;

r e ce i v e f oo ( y ) ; }
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Example: Shared Channel

(x,y) =

A1

B

send
foo

receive

A2
send

Await

process A1 {
send f oo ( 1 ) ; }

process A2 {
send f oo ( 2 ) ; }

process B {
r e ce i v e f oo ( x ) ;

r e ce i v e f oo ( y ) ; }
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Example: Shared Channel

(x,y) = (1,2) or (2,1)

A1

B

send
foo

receive

A2
send

Await

process A1 {
send f oo ( 1 ) ; }

process A2 {
send f oo ( 2 ) ; }

process B {
r e ce i v e f oo ( x ) ;

r e ce i v e f oo ( y ) ; }
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Asynchronous message passing and semaphores

A channel acts as a semaphore, where sending and receiving have the same asymmetry

as V (increase the value of the semaphore by one) and P (wait until value of the semaphore is

greater than zero, and then decrease the value by one).

Comparison with general semaphores

channel ≃ semaphore

send ≃ V

receive ≃ P

Number of messages in queue ≃ value of semaphore

The value of the message plays no role for the semaphore-interpretation.

16



Filters: one–way interaction

Filters F

A filter F is a process which:

• Receives messages on input channels,

• Sends messages on output channels, such that

• the output is a function of the input (and the initial state).

out

outreceive
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receive
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.
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in

in
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.
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send

send

• A filter is specified as a predicate.

• Some computations are naturally seen as a composition of filters:

• cf. stream processing, feedback loops and dataflow programming 17



Example: A single filter process

Task: Sort a list of n numbers into ascending order.

Filter

Process Sort with input channels input and output channel output.

Example implementation: get n over input, then read n times from input and send the sorted

list at once over output.

Sort predicate

• n : number of values sent to output.

sent[i ] : i ’th value sent to output, received [j ]: j ’th value received in input,

∀i : 1 ≤ i < n.
(
sent[i ] ≤ sent[i + 1]

)
∧

∀i : 1 ≤ i < n. ∃j : 1 ≤ j < n. sent[i ] = received [j ]∧
∀i : 1 ≤ i < n. ∃j : 1 ≤ j < n. received [i ] = sent[j ] 18



Filter for merging of streams

Task: Merge two sorted input streams into one sorted stream.

Process Merge with input channels in1 and in2 and output channel out:

in1 : ⟨1 4 9 . . .⟩ in2 : ⟨2 5 8 . . .⟩ out : ⟨1 2 4 5 8 9 . . .⟩

Special value EOS marks the end of an input, but result should be output online.

Merge predicate

n : number of values sent to out so far, sent[n] : i ’th value sent to out so far.

The following shall hold when Merge terminates:

empty(in1) ∧ empty(in2) ∧ sent[n + 1] = EOS

∧ ∀i : 1 ≤ i < n
(
sent[i ] ≤ sent[i + 1]

)
∧ values sent to out are an interleave of values from in1 and in2
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Await

chan i n 1 ( i n t ) , i n 2 ( i n t ) , out ( i n t ) ;

process Merge {
i n t v1 , v2 ;

r e ce i v e i n 1 ( v1 ) ; # read the f i r s t two

r e ce i v e i n 2 ( v2 ) ; # i npu t v a l u e s

whi le ( v1 != EOS and v2 != EOS) {
i f ( v1 <= v2 ) { send out ( v1 ) ; r e ce i v e i n 1 ( v1 ) ; }
e l s e { send out ( v2 ) ; r e ce i v e i n 2 ( v2 ) ; }

}

whi le ( v1 != EOS) { send out ( v1 ) ; r e ce i v e i n 1 ( v1 ) ; }
whi le ( v2 != EOS) { send out ( v2 ) ; r e ce i v e i n 2 ( v2 ) ; }
send out (EOS ) ;

}
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Sorting network

To scale, we can now build a network that sorts n numbers, using a collection of Merge

processes with tables of shared input and output channels.

Merge
Value 2

Value n

Value n-1

Value 1

.

.

.

Merge

Merge
Sorted
stream

.

.

.
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Call-Backs to a channel

How to communicate a result back via channels?

e.g., Assume a process that adds two numbers it receives via a channel.

22



Call-Backs to a channel

How to communicate a result back via channels?

e.g., Assume a process that adds two numbers it receives via a channel.

Bi-directional channel

Await

chan c ( i n t ) ;

process P { i n t a , b ; r e ce i v e c ( a ) ; r e ce i v e c ( b ) ; send c ( a+b ) ; }

Requires same channel type for input and result.
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Call-Backs to a channel

How to communicate a result back via channels?

e.g., Assume a process that adds two numbers it receives via a channel.

Answer channel per sender

Await

chan c ( i n t ) , chan d [ n ] ( i n t ) ;

process P { i n t a , b ; i n t i d ;

r e ce i v e c ( a ) ; r e ce i v e c ( b ) ; r e ce i v e c ( i d ) ; send d [ i d ] ( a+b ) ; }

Requires pre-sharing of channels, rather static.
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Call-Backs to a channel

How to communicate a result back via channels?

e.g., Assume a process that adds two numbers it receives via a channel.

Call-back channel

Await

chan c ( . . . ) ;

process P {
i n t a , b ;

chan r e s ( i n t ) ;

r e ce i v e c ( a ) ; r e ce i v e c ( b ) ; r e ce i v e c ( r e s ) ;

send r e s ( a+b ) ;

}

Requires (a) sending channels over channels and (b) more complex type for c.
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Client-server applications using messages

Roles

• Server process: repeatedly handling requests from clients

• Client processes: send requests to server, retrieve results later

Await

chan r e q u e s t ( i n t , T1 ) ; # c l i e n t ID , arguments o f the o p e r a t i o n

chan r e p l y [ n ] ( T2 ) ; # r e s u l t o f the o p e r a t i o n

Await

process C l i e n t [ i = 1 to n ]{
. . .

send r e q u e s t ( i , a r g s ) ;

r e ce i v e r e p l y [ i ] ( va r ) ;

. . .

}

Await

process Se r v e r {
whi le ( t r u e ){ i n t i d ; . . .

r e ce i v e r e q u e s t ( id , a r g s ) ;

. . . # code o f the o p e r a t i o n

send r e p l y [ i d ] ( r e s u l t ) ;

} }
23



Monitor implemented using message passing

Monitors are very useful in a shared-memory setting, can we implement it in a channel-based

concurrency model?

Classical monitor

• Controlled access to shared resource

• Global variables safeguard the resource state

• Access to a resource via procedures

• Procedures are executed under mutual exclusion

• Condition variables for synchronization

Active Monitors

• One server process that actively runs a loop listens on a channel for requests

• Procedure calls correspond to values send over request channel

• Resource and variables are local to server process
24



Allocator for multi–unit resources

Task

Multi–unit resource: a resource consisting of multiple units, which can be allocated separately,

e.g., memory blocks, file blocks, etc.

• Client can request resources, use them, and return/free them

• All the access to resources is managed for safety by the allocator

• Unit usage itself is not managed

• Safety and efficient allocation is hard

• Several simplifications here, e.g., only one unit of resource requested at a time

• No focus on efficiency, resource is modeled as a set

Next Slides; Two versions

1. Allocator as (passive) monitor

2. Allocator as active monitor
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Recap: semaphore monitor passing the condition

Await
monitor Semaphore { # monitor i n v a r i a n t : s >= 0

i n t s := 0 ; # va l u e o f the semaphore

cond pos ; # wait c o n d i t i o n

procedure Psem ( ) {
i f ( s=0) wait ( pos ) ;

e l s e s := s − 1 ; }

procedure Vsem ( ) {
i f ( empty ( pos ) ) s := s + 1 ;

e l s e s i g n a l ( pos ) ; }
}
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Allocator as a monitor

Await
monitor Re s o u r c e A l l o c a t o r {

i n t a v a i l := MAXUNITS;

s e t u n i t s ;

cond f r e e ; // s i g n a l l e d when p r o c e s s wants a u n i t

procedure a c q u i r e ( i n t &id ) {
i f ( a v a i l = 0) wait ( f r e e ) ;

e l s e a v a i l := a v a i l −1;

remove ( un i t s , i d ) ; } // exac t management a b s t r a c t e d he r e

procedure r e l e a s e ( i n t i d ) {
i n s e r t ( un i t s , i d ) ;

i f ( empty ( f r e e ) ) a v a i l := a v a i l +1;

e l s e s i g n a l ( f r e e ) ; }
}
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Allocator as a server process: code design process for monitors

1. Interface and internal variables

1.1 Two types of operations: get unit, free unit

1.2 One request channel encoded in the arguments to a request.

2. Control structure

2.1 First check the kind of requested operation,

2.2 Then, perform resource management for that operation

3. Synchronization, scheduling, and mutex

3.1 Cannot wait (ie. wait(free)) when no unit is free.

3.2 Must save the request and return to it later

⇒ queue of pending requests (queue; insert, remove).

3.3 Upon request: synchronous/blocking call ⇒ “ack”-message back

3.4 No internal parallelism due to mutex
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Channel declarations

Await

t ype op k ind = enum(ACQUIRE , RELEASE ) ;

chan r e q u e s t ( i n t c l i e n t ID , op k i nd kind , i n t un i t ID ) ;

chan r e p l y [ n ] ( i n t un i t ID ) ;

process C l i e n t [ i = 0 to n−1] {
i n t un i t ID ;

send r e q u e s t ( i , ACQUIRE , un i t ID ) ; // make r e q u e s t

r e ce i v e r e p l y [ i ] ( un i t ID ) ; // works as ‘ ‘ i f s ynch ronous ’ ’

. . . // use r e s o u r c e un i t ID

send r e q u e s t ( i , RELEASE , un i t ID ) ; // f r e e r e s o u r c e

. . .

}

Note the problems with type-uniform channels: ACQUIRE request does not use he last param-

eter, RELEASE does not use the first one. 29



Await

process Re s o u r c e A l l o c a t o r {
i n t a v a i l := MAXUNITS;

s e t u n i t s := . . . // i n i t i a l v a l u e

queue pend ing ; // i n i t i a l l y empty

i n t c l i e n t ID , un i t ID ; op k i nd k ind ; . . .

whi le ( t r u e ) {
r e ce i v e r e q u e s t ( c l i e n t ID , k ind , un i t ID ) ;

i f ( k i nd = ACQUIRE) {
i f ( a v a i l = 0) i n s e r t ( pending , c l i e n t I D ) ; // save r e q u e s t

e l s e { // per fo rm r e qu e s t now

a v a i l := a v a i l −1;

remove ( un i t s , un i t ID ) ;

send r e p l y [ c l i e n t I D ] ( un i t ID ) ; } }
e l s e { // k ind = RELEASE

i f empty ( pend ing ) a v a i l := a v a i l +1; i n s e r t ( un i t s , un i t ID ) ;

e l s e { // a l l o c a t e s to wa i t i n g c l i e n t

remove ( pending , c l i e n t I D ) ;

send r e p l y [ c l i e n t I D ] ( un i t ID ) ; } } } } 30



Duality: monitors, message passing

monitor-based programs message-based programs

monitor variables local server variables

process-IDs request channel, operation types

procedure call send request(), receive reply[i]()

go into a monitor receive request()

procedure return send reply[i]()

wait statement save pending requests in a queue

signal statement get and process pending request (reply)

procedure body branches in branching over op. type
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Synchronous message passing

Synchronous Channels

• Asynchronous channels pass messages, but do not synchronize two processes

• Next: Synchronous channels

• Natural connection to barriers

Primitives

synch send c(expr1,...,exprN);

• Sender waits until message is received via the channel,

• Sender and receiver synchronize by the sending and receiving of message

• Same receiving primitive
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Synchronous message passing: discussion

Advantages

• Gives maximum size of channel (for fixed number of processes), as sender synchronizes

with receiver

• Receiver has at most 1 pending message per channel per sender

• Each sender has at most 1 unsent message

Disadvantages

• Reduced parallelism: when 2 processes communicate, 1 is always blocked

• Higher risk of deadlock
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Example: blocking with synchronous message passing

Await

chan v a l u e s ( i n t ) ;

process Producer {
i n t data [ n ] ;

f o r ( i = 0 to n−1) {
. . . // computat ion

s ynch s end v a l u e s ( data [ i ] ) ; } }

process Consumer {
i n t r e s u l t s [ n ] ;

f o r ( i = 0 to n−1) {
r e ce i v e v a l u e s ( r e s u l t s [ i ] ) ;

. . . // computat ion

} }

• Assume both producer and consumer vary

in time complexity.

• Communication using

synch send/receive will block.

• With asynchronous message passing, the

waiting is reduced.
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Example:

Await

chan i n 1 ( i n t ) , i n 2 ( i n t ) ;

process P1 {
i n t v1 = 1 , v2 ;

s ynch s end i n2 ( v1 ) ;

r e ce i v e i n 1 ( v2 ) ; }

process P2 {
i n t v1 , v2 = 2 ;

s ynch s end i n1 ( v2 ) ;

r e ce i v e i n 2 ( v1 ) ; }

• P1 and P2 both block on synch send –

program deadlocks

• One process must be modified to do

receive first ⇒ asymmetric solution.

• With asynchronous channels, all goes well
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Example: deadlock using synchronous message passing

Await

chan i n 1 ( i n t ) , i n 2 ( i n t ) ;

process P1 {
i n t v1 = 1 , v2 ;

s ynch s end i n2 ( v1 ) ;

r e ce i v e i n 1 ( v2 ) ; }

process P2 {
i n t v1 , v2 = 2 ;

s ynch s end i n1 ( v2 ) ;

r e ce i v e i n 2 ( v1 ) ; }

• P1 and P2 both block on synch send –

program deadlocks

• One process must be modified to do

receive first ⇒ asymmetric solution.

• With asynchronous channels, all goes well
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Encoding

• Despite all, many implementations (e.g., Go) and theories (e.g., π-calculus have

synchronous channels

• Main reason: It is easier to encode asynchronous message passing with synchronous

channels than vice versa

• Requires way to spawn new thread/process

Await

chan v ( i n t ) ;

process Send{
spawn { s ynch s end v ( 1 ) ; } // spawns new th r ead and c on t i n u e s

}
process Rece i v e {

i n t r e s

r e ce i v e v ( r e s ) ;

}
36



Summary

Today’s lecture

• Shared memory vs. distributed memory

• Synchronous and asynchronous message passing, the high level picture

• Asynchronous message passing: channels, messages, primitives

• Example: filters and sorting networks

• Comparison of message passing and monitors

• Basics synchronous message passing

Next lectures in this module

• Actors with asynchronous communication / Await primitive

• Concurrency in Go

37


	Distributed Systems
	Synchronous and Asynchronous Message Passing
	Channels
	Message Passing
	Synchronous message passing


