
Actors, Active Objects and Asynchronous Communication

Einar Broch Johnsen, S. Lizeth Tapia Tarifa, Eduard Kamburjan, Juliane Päßler

02.10.2023

University of Oslo

Part 2: Message Passing

Structure

• Part 1: Shared Memory (and Java)

• Part 2: Message Passing (and Go)

• Part 3: Analyses and Tool Support (and Rust)

Content of this part:

• Synchronous and asynchronous message passing

• Channels, actors, go-routines, asynchrounous programming

Outline Today

• Actors

• Futures and promises

• Active objects

• Asynchronous communication with await-statement
1

Repetition

Message Passing and Channels

• Shared memory vs. distributed memory

• Synchronous and asynchronous message passing, the high level picture

• Asynchronous message passing: channels, messages, primitives

• Example: filters and sorting networks

• Comparison of message passing and monitors

• Basics synchronous message passing

2

Actors

Async. Communication without Channels

Channels

• Need additional primitives for concurrency; send and receive

• Channels are explicit while process/objects are implicit

• Complex typing disciplines

Can we do asynchronous communication without explicit channels?

• Actors: Messages between objects

• Active Objects: Messages between objects with cooperative scheduling

• Async/Await in mainstream languages: Using (lightweight) threads (with shared

memory)

3

Actors

• Actors: a programming concept for distributed concurrency which combines a number of

topics we have discussed in the course;

• active monitors,

• objects and encapsulation,

• race-free (no race conditions on shared state)

• Examples of programming languages that implement actors:

Erlang, Scala’s Akka library, Dart, Swift, etc.

4

Actors

• Actors: a programming concept for distributed concurrency which combines a number of

topics we have discussed in the course;

• active monitors,

• objects and encapsulation,

• race-free (no race conditions on shared state)

• Examples of programming languages that implement actors:

Erlang, Scala’s Akka library, Dart, Swift, etc.

4

Object-Oriented Programming and Language Design

What are objects

How do OO programs fit into the design of programming languages?

• State space: local or global?

• Thread interaction and objects

• Communication: shared variables, channels or messages?

• Communication: synchronous or asynchronous?

• Dynamic state allocation: object creation

What can we do to protect objects against races?

Can we combine objects with ideas from monitors?

• Passive monitors vs. active monitors

• A method is active, if a statement in the method is executed by some thread

5

Object-Oriented Programming and Language Design

What are objects

How do OO programs fit into the design of programming languages?

• State space: local or global?

• Thread interaction and objects

• Communication: shared variables, channels or messages?

• Communication: synchronous or asynchronous?

• Dynamic state allocation: object creation

What can we do to protect objects against races?

Can we combine objects with ideas from monitors?

• Passive monitors vs. active monitors

• A method is active, if a statement in the method is executed by some thread

5

Object-Oriented Programming and Language Design

What are objects

How do OO programs fit into the design of programming languages?

• State space: local or global?

• Thread interaction and objects

• Communication: shared variables, channels or messages?

• Communication: synchronous or asynchronous?

• Dynamic state allocation: object creation

What can we do to protect objects against races?

Can we combine objects with ideas from monitors?

• Passive monitors vs. active monitors

• A method is active, if a statement in the method is executed by some thread

5

Object-Oriented Programming and Language Design

What are objects

How do OO programs fit into the design of programming languages?

• State space: local or global?

• Thread interaction and objects

• Communication: shared variables, channels or messages?

• Communication: synchronous or asynchronous?

• Dynamic state allocation: object creation

What can we do to protect objects against races?

Can we combine objects with ideas from monitors?

• Passive monitors vs. active monitors

• A method is active, if a statement in the method is executed by some thread

5

Passive Monitors – Repetition

Await
monitor name {
monitor v a r i a b l e s

monitor i n v a r i a n t

i n i t i a l i z a t i o n code

p r o c edu r e s

}

• Threads communicate by calling monitor methods

• Threads do not need to know all the implementation details: only the procedure names

are visible from outside the monitor

• Statements inside a monitor: no access to variables outside the monitor

• Statements outside a monitor: no access to variables inside the monitor

• Monitor variables: initialized before the monitor is used

• Monitor invariant: describes a condition on the inner state

• The monitor invariant can be analyzed by sequential reasoning inside the monitor

6

Passive Monitors – Repetition

Await
monitor name {
monitor v a r i a b l e s

monitor i n v a r i a n t

i n i t i a l i z a t i o n code

p r o c edu r e s

}

• Threads communicate by calling monitor methods

• Threads do not need to know all the implementation details: only the procedure names

are visible from outside the monitor

• Statements inside a monitor: no access to variables outside the monitor

• Statements outside a monitor: no access to variables inside the monitor

• Monitor variables: initialized before the monitor is used

• Monitor invariant: describes a condition on the inner state

• The monitor invariant can be analyzed by sequential reasoning inside the monitor

6

Passive Monitors: Synchronization with condition variables – Repetition

• Monitors contain special type of variables: cond (condition)

• Used for synchronization/to delay processes

• Each such variable is associated with a wait condition

• The value of a condition variable: queue of delayed threads

• Not directly accessible by programmer, instead, manipulated by special operations

cond cv; # declares a condition variable cv

empty(cv); # asks if the queue on cv is empty

wait(cv); # causes thread to wait in the cv queue

signal(cv); # wakes up a thread in the queue to cv

signal all(cv); # wakes up all threads in the cv queue

7

Passive Monitors: Implementation of semaphores – Repetition

Monitors can be used to implement semaphores.

Await
monitor Semaphore { // mon i to r i n v a r i a n t : s ≥ 0

i n t s := 0 // va l u e o f the semaphore

cond pos ; // wa i t c o n d i t i o n v a r i a b l e

procedure Psem () {
wh i l e (s=0) { wait (pos) } ;
s := s − 1 }

procedure Vsem () {
s := s+1;

s i g n a l (pos) ; }}

• wait and signal: FIFO signaling strategy

• A thread in the monitor can execute signal(cv). If there is a waiting thread, do we get

two active methods in the monitor?
8

Objects as Passive Monitors in Java

Java

c l a s s Semaphore { // c l a s s i n v a r i a n t : t h i s . s >= 0

i n t s = 0 ; // va l u e o f the semaphore

Cond i t i on pos ; // wa i t c o n d i t i o n

pub l i c synchron ized vo id Psem () {
whi le (s == 0) { pos . awa i t () ; } ;
s = s − 1 ; }

pub l i c synchron ized vo id Vsem () {
s = s + 1 ;

pos . s i g n a l () ; }}

• How do condition variables and synchronized methods relate?

9

Objects as Passive Monitors in Java

Java

c l a s s Semaphore { // c l a s s i n v a r i a n t : t h i s . s >= 0

i n t s = 0 ; // va l u e o f the semaphore

Cond i t i on pos ; // wa i t c o n d i t i o n

pub l i c synchron ized vo id Psem () {
whi le (s == 0) { pos . awa i t () ; } ;
s = s − 1 ; }

pub l i c synchron ized vo id Vsem () {
s = s + 1 ;

pos . s i g n a l () ; }}

• How do condition variables and synchronized methods relate?

9

Actors

Fundamental idea: Decouple communication and control.

Capabilities of Actors

An actor reacts to incoming messages to

• change its state,

• send a finite number of messages to other actors, and

• create a finite number of new actors.

Intuition

We can think of an actor as an object that can only communicate asynchronously, but some

actor models can also pattern match over its message queue of incoming messages.

10

Actors

Fundamental idea: Decouple communication and control.

Capabilities of Actors

An actor reacts to incoming messages to

• change its state,

• send a finite number of messages to other actors, and

• create a finite number of new actors.

Intuition

We can think of an actor as an object that can only communicate asynchronously, but some

actor models can also pattern match over its message queue of incoming messages.

10

Actors

Fundamental idea: Decouple communication and control.

Capabilities of Actors

An actor reacts to incoming messages to

• change its state,

• send a finite number of messages to other actors, and

• create a finite number of new actors.

Intuition

We can think of an actor as an object that can only communicate asynchronously, but some

actor models can also pattern match over its message queue of incoming messages.

10

Implementation of Actors in Programming Languages

• Supported by numerous languages and frameworks

• Not always strictly OO: Erlang, . . .

• Sometimes as library, not part of language: Akka actors, . . .

• Numerous differences on how basic capabilities are implemented or extended

• Type safety: Can we guaranteed statically whether messages can be processed?

• Integration with OO: Are messages methods? Do actors have a class?

• Integration with other primitives: Can actors share state?

• Integration with error handling: What happens when an actor fails?

• Here: foundations

11

Actors: Communication & Concurrency

Actors

• Recipients of messages are identified by name (no channels).

• An actor can only communicate with actors that it knows.

• An actor can obtain names from messages that it receives,

or because it has created the actor

The actor model is characterized by

• inherent concurrency among actors

• dynamic creation of actors,

• inclusion of actor names in messages, and

• interaction only through direct asynchronous message passing with no restriction on

message arrival order.

• message servers might be implemented by matching messages from the queue to

procedures

12

Actors: Communication & Concurrency

Actors

• Recipients of messages are identified by name (no channels).

• An actor can only communicate with actors that it knows.

• An actor can obtain names from messages that it receives,

or because it has created the actor

The actor model is characterized by

• inherent concurrency among actors

• dynamic creation of actors,

• inclusion of actor names in messages, and

• interaction only through direct asynchronous message passing with no restriction on

message arrival order.

• message servers might be implemented by matching messages from the queue to

procedures
12

Example: Erlang-style Actors - Matching Messages

Publish and Subscribe Server

r u nS e r v e r (Subs) −>
r e ce i v e

{ sub , from} −> r u nS e r v e r (Subs + from) ; % s u b s c r i b e

{ pub l i s h , v a l u e } −> % pub l i s h

f o r (i d i n Subs) i d !{ v a l u e } , % b roadca s t v a l u e

r unSe r v e r (Subs) ;

−> r u nS e r v e r (Subs) ; % i g n o r e o t h e r messages

S e r v e r { % pub l i s h and s u b s c r i b e s e r v e r

s t a r t () −> spawn (fun () −> r u nS e r v e r ([])) . } % s t a r t the s e r v e r

C l i e n t { % send r e q u e s t s to the s e r v e r

s t a r t () −> Se r v e r !{ sub , s e l f } , S e r v e r !{ pub l i s h , 1 0} .}
13

Example: Erlang-style Actors

• State as argument to recursive calls

• We can dynamically change the message server

• An actor can match different messages in different states

• ... but tricky to detect errors in message servers

r unSe r v e r 1 (Subs) −> r e ce i v e % sub s c r i b e when t h e r e i s space

{ sub , from} −> i f (s i z e (Subs) >= 9) runSe r v e r 2 (Subs + from)

e l s e r unSe r v e r 1 (Subs + from) ;

{unsub , from} −> r unSe r v e r 1 (Subs − from) ;

. . .

r unSe r v e r 2 (Subs) −> r e ce i v e % igno r e s u b s c r i b e r s

{unsub , from} −> r unSe r v e r 1 (Subs − from)

. . .

14

Example: Erlang-style Actors

• State as argument to recursive calls

• We can dynamically change the message server

• An actor can match different messages in different states

• ... but tricky to detect errors in message servers

r unSe r v e r 1 (Subs) −> r e ce i v e % sub s c r i b e when t h e r e i s space

{ sub , from} −> i f (s i z e (Subs) >= 9) runSe r v e r 2 (Subs + from)

e l s e r unSe r v e r 1 (Subs + from) ;

{unsub , from} −> r unSe r v e r 1 (Subs − from) ;

. . .

r unSe r v e r 2 (Subs) −> r e ce i v e % igno r e s u b s c r i b e r s

{unsub , from} −> r unSe r v e r 1 (Subs − from)

. . .

14

Example: Erlang-style Actors – Handling Return Values between Actors

i d 1 = spawn (fun () −> func1 ([])) ; i d 2 = spawn (fun () −> func2 ([]))

i d1 !{ s tep1 , 42 , i d2 } ;
. . .

func1 (h i s t o r y) −> r e ce i v e

{ s tep1 , data , o t h e r } −> newData = doSometh i ngF i r s t (data) ,

o t h e r !{ s tep2 , newData , s e l f } ,
func1 (i n s e r t (h i s t o r y , data)) ;

{ s tep3 , data , o t h e r } −> newData = doSometh ingThird (data) ,

o t h e r !{ s tep4 , newData , s e l f } ,
func1 (i n s e r t (h i s t o r y , data)) ;

func2 (h i s t o r y) −> r e ce i v e

{ s tep2 , data , o t h e r } −> newData = doSomethingSecond (data) ,

o t h e r !{ s tep3 , newData , s e l f } ,
func2 (i n s e r t (h i s t o r y , data)) ;

15

Futures

Futures – Handling Return Values between Actors

Welcome to callback hell!

• Problem: Logically related code is scattered in program

• We need a way to identify callback messages

• We also need a way to wait for that result

• Solution: futures, special mailboxes transmit return values

Reminder in Java:

Java

Ex e c u t o r S e r v i c e s e r v i c e = Execu to r s . newFixedThreadPool (2) ;

Future<I n t> f = s e r v i c e . submit (() −> { /∗ do ∗/ re tu rn 1 ; }) ;
. . .

I n t = f . ge t () ; // e s s e n t i a l l y a j o i n

16

Futures – Handling Return Values between Actors

Welcome to callback hell!

• Problem: Logically related code is scattered in program

• We need a way to identify callback messages

• We also need a way to wait for that result

• Solution: futures, special mailboxes transmit return values

Reminder in Java:

Java

Ex e c u t o r S e r v i c e s e r v i c e = Execu to r s . newFixedThreadPool (2) ;

Future<I n t> f = s e r v i c e . submit (() −> { /∗ do ∗/ re tu rn 1 ; }) ;
. . .

I n t = f . ge t () ; // e s s e n t i a l l y a j o i n

16

Futures – Handling Return Values between Actors

Welcome to callback hell!

• Problem: Logically related code is scattered in program

• We need a way to identify callback messages

• We also need a way to wait for that result

• Solution: futures, special mailboxes transmit return values

Reminder in Java:

Java

Ex e c u t o r S e r v i c e s e r v i c e = Execu to r s . newFixedThreadPool (2) ;

Future<I n t> f = s e r v i c e . submit (() −> { /∗ do ∗/ re tu rn 1 ; }) ;
. . .

I n t = f . ge t () ; // e s s e n t i a l l y a j o i n

16

Futures and Promises

Futures.

• A future is a handle for the caller of a process

that will contain the result value once computed

• Most commonly: return value of a process

Java

Future<I n t> f = s e r v i c e . submit (() −> { re tu rn 1 ; }) ;
. . .

I n t = f . ge t () ;

Promises.

• What if the value will be computed somewhere else?

• A promise is a future which is not clear who computes it
17

Promises

A promise:

• May be eventually completed (but maybe by somebody else)

• Can be completed only once

• Deadlock/starvation occurs if it is never completed

Java calls promises CompletableFutures:

Java

Comple tab leFuture<I n t e g e r> f = new Comple tab leFuture <>();

s e r v i c e . submit (() −> { f . comple te (1) ; re tu rn n u l l ; }) ;
. . .

I n t = f . ge t () ;

18

Promises – Example: Service Delegation

Java

/∗ the f u n c t i o n c a s t s a p romi se as a f u t u r e ∗/
/∗ from ou t s i d e the f u t u r e can on l y be r e t r i e v e d ∗/
Future<I n t e g e r> c a l l A s y n c () . . . {
Comple tab leFuture<I n t e g e r> comp l e t ab l eFu tu r e

= new Comple tab leFuture <>();

s e r v i c e 1 . submit (() −> {
i f (/∗ s e r v i c e 1 cannot p roce s s , then i t d e l e g a t e s to s e r v i c e 2 ∗/)

s e r v i c e 2 . submit (() −>
{ /∗ compute ∗/ comp l e t ab l eFu tu r e . complete (1) ; re tu rn n u l l })

e l s e { /∗ p r o c e s s the r e q u e s t ∗/
/∗ compute ∗/ comp l e t ab l eFu tu r e . complete (1) ; }

re tu rn n u l l ;

}) ;
re tu rn comp l e t ab l eFu tu r e ;}

19

Composition Futures/Promises

Logically related Futures/Promises scattered in the code.

Java

Comple tab leFuture<I n t e g e r> f 1

= Comp le tab l eFutu re . supp l yAsync (() −> 1) ;

. . .

Comple tab leFuture<I n t e g e r> f 2

= Comp le tab l eFutu re . supp l yAsync (() −> f 1 . ge t + 1) ;

Connecting Futures/Promises (composition)

Java

Comple tab leFuture<I n t e g e r> f

= Comp le tab l eFutu re . supp l yAsync (() −> 1)

. thenApp ly ((r e s) −> r e s + 1) ;

Very similar patterns are common in web development with JavaScript

20

Composition Futures/Promises

Logically related Futures/Promises scattered in the code.

Java

Comple tab leFuture<I n t e g e r> f 1

= Comp le tab l eFutu re . supp l yAsync (() −> 1) ;

. . .

Comple tab leFuture<I n t e g e r> f 2

= Comp le tab l eFutu re . supp l yAsync (() −> f 1 . ge t + 1) ;

Connecting Futures/Promises (composition)

Java

Comple tab leFuture<I n t e g e r> f

= Comp le tab l eFutu re . supp l yAsync (() −> 1)

. thenApp ly ((r e s) −> r e s + 1) ;

Very similar patterns are common in web development with JavaScript

20

Interpreting Futures/Promises as Channels

Channel-view on single-read futures

• Create channel and send it via an asynchronous message

• For the caller, the channel behaves as a future: caller wait on the channel for a return

(caller side does not write on the channel).

• For the callee, the channel behaves as a promise: it can be passed around, and

eventually someone will write on it exactly once (callee side does not read on the

channel)

Limits of this view

• Futures may be read more than once

• “immediately creating and sharing a channel” may be more complex and its

implementation is delegated to the programmer

Part 3 of this course: type check that a channel is correctly used as a future/promise
21

Active Objects

Motivation

• How to combine monitors and actors?

• How to make signalling less error-prone?

• How to make conditions/invariants easier to use?

• How to connect futures/promises with actors?

Active Objects

An active object a is an actor with an implicit message server, that communicates only asyn-

chronously, but allows internal message handlers to use cooperative scheduling.

• One process/thread per object

• Messages identified with methods

• Implicit queue of tasks (procedures in the methods)

• Explicit synchronization

aThe ABS language: a modelling language to run simulations of distributed systems. The simulation tool is

maintained by IFI-UiO (8th floor): https://abs-models.org/

22

Motivation

• How to combine monitors and actors?

• How to make signalling less error-prone?

• How to make conditions/invariants easier to use?

• How to connect futures/promises with actors?

Active Objects

An active object a is an actor with an implicit message server, that communicates only asyn-

chronously, but allows internal message handlers to use cooperative scheduling.

• One process/thread per object

• Messages identified with methods

• Implicit queue of tasks (procedures in the methods)

• Explicit synchronization

aThe ABS language: a modelling language to run simulations of distributed systems. The simulation tool is

maintained by IFI-UiO (8th floor): https://abs-models.org/

22

Cooperative concurrency

Active Monitors as Active Objects

• Cooperative concurrency: constructs to suspend and resume execution (=task) of a

local method

• External cooperation (operations on futures)

• Send is asynchronous: Fut ⟨ T ⟩ f = o!m(...); ... ;

• Retrieve value is blocking: x = f.get;

• Check for value is suspending: await f?

• Interaction patterns between methods

• Fut ⟨ T ⟩ f = o!m(...);x = f.get;

• Fut ⟨ T ⟩ f = o!m(...); ...; x = f.get;

• Fut ⟨ T ⟩ f = o!m(...); ...; await f?; x = f.get;

23

Cooperative Scheduling – Example: The Diner

• Each object runs one thread and each method call spawns a task

• Thread is responsible to schedule tasks in some order

• Waiting on future suspends the task, not the thread!

• Reading blocks task and thread – no other task can run

ABS
c l a s s Dine r (IWa i t e r w) implements ID i n e r {

Unit ea t (Dish d) {
Fut<Meal> fm = w! o r d e r (d) ; // p l a c e o r d e r w i th wa i t e r

await fm ? ; // wh i l e wa i t i n g do someth ing e l s e , e . g , take a phone c a l l

Meal m = fm . get ; // r e c e i v e meal

Fut<Unit> f c = t h i s ! consume (m) ;

Fut<Unit> f p = w! pay (t h i s , d) ; // ea t i ng , pay ing i n some o r d e r

await f c ? & fp ? ; // eaten and pa id − r eady to l e a v e !

}
Unit t a k eC a l l (){ . . . }
. . .

}
24

Example (Continuation): – The Waiter

ABS
c l a s s Waiter (ICook c , I n t pu r s e) implements IWa i t e r {

Meal o r d e r (Dish d) {
Fut<Meal> fm = c ! p r epa r e (d) ; // p l a c e o r d e r w i th cook

await fm ? ; // wa i t e r s e r v e s o t h e r g u e s t s wh i l e meal i s cooked

Meal m = fm . get ; // r e c e i v e meal r e u s e names f o r l o c a l v a r i a b l e s

r e t u r n m; // ready to s e r v e the meal !

}
Unit pay (ID i n e r g , Dish d) {

I n t amount = p r i c e (d) ; // lookup p r i c e i n the menu

g . take (amount) ; // synch ronous (b l o c k i n g) c a l l , no wa i t

t h i s . pu r s e = t h i s . pu r s e + amount ; // no data r a c e p o s s i b l e

}
}

25

Example (Continuation) – The Restaurant Experience

Diner this

begin execution of eat

order(d) on w

Fut<Meal> fm = w!order(d)

begin execution of order(d)
Fut<Meal> fm = c!prepare(d)

delay

prepare(d) on c

begin execution of prepare(d)
terminationawait fm?

suspension

get fm
termination

await fm?

get fm

26

Example (Continuation) – The Restaurant Experience

Diner this

begin execution of eat

order(d) on w

Fut<Meal> fm = w!order(d)

begin execution of order(d)
Fut<Meal> fm = c!prepare(d)

delay

prepare(d) on c

begin execution of prepare(d)
terminationawait fm?

suspension

get fm
termination

await fm?

get fm

26

Example (Continuation) – The Restaurant Experience

Diner this

begin execution of eat

order(d) on w

Fut<Meal> fm = w!order(d)

begin execution of order(d)
Fut<Meal> fm = c!prepare(d)

delay

prepare(d) on c

begin execution of prepare(d)
terminationawait fm?

suspension

get fm
termination

await fm?

get fm

26

Example (Continuation) – The Restaurant Experience

Diner this

begin execution of eat

order(d) on w

Fut<Meal> fm = w!order(d)

begin execution of order(d)
Fut<Meal> fm = c!prepare(d)

delay

prepare(d) on c

begin execution of prepare(d)

terminationawait fm?

suspension

get fm
termination

await fm?

get fm

26

Example (Continuation) – The Restaurant Experience

Diner this

begin execution of eat

order(d) on w

Fut<Meal> fm = w!order(d)

begin execution of order(d)
Fut<Meal> fm = c!prepare(d)

delay

prepare(d) on c

begin execution of prepare(d)
terminationawait fm?

suspension

get fm
termination

await fm?

get fm

26

Example (Continuation) – The Restaurant Experience

Diner this

begin execution of eat

order(d) on w

Fut<Meal> fm = w!order(d)

begin execution of order(d)
Fut<Meal> fm = c!prepare(d)

delay

prepare(d) on c

begin execution of prepare(d)
terminationawait fm?

suspension

get fm

termination
await fm?

get fm

26

Example (Continuation) – The Restaurant Experience

Diner this

begin execution of eat

order(d) on w

Fut<Meal> fm = w!order(d)

begin execution of order(d)
Fut<Meal> fm = c!prepare(d)

delay

prepare(d) on c

begin execution of prepare(d)
terminationawait fm?

suspension

get fm
termination

await fm?

get fm

26

Example (Continuation) – The Restaurant Experience

Diner this

begin execution of eat

order(d) on w

Fut<Meal> fm = w!order(d)

begin execution of order(d)
Fut<Meal> fm = c!prepare(d)

delay

prepare(d) on c

begin execution of prepare(d)
terminationawait fm?

suspension

get fm
termination

await fm?

get fm

26

Condition Synchronization

• Condition variables can be derived from monitor invariant

• Or can be bound to some other condition

• Error-prone implementations

• Active Object approach: condition synchronization as primitive

ABS
c l a s s C () {

i n t i = 0 ;

Unit i n c () { i = i +1; r e t u r n ; }
I n t i sGreate rThanTen (){ await i > 10 ; r e t u r n i ; }

}

• Condition variables: explicit suspension instead of busy waiting

• Every time the object is unblocked, the object thread evaluates all conditions of suspended

tasks, otherwise it waits for new messages to arrive

27

Objects as Passive Monitors (reminder) – Example: The Semaphore

Java

c l a s s Semaphore {
i n t s = 0 ;

Cond i t i on pos ;

pub l i c synchron ized vo id Psem () {
whi le (s == 0) { pos . awa i t () ; } ;

s = s − 1 ;

}

pub l i c synchron ized vo id Vsem () {
s = s + 1 ;

pos . s i g n a l () ;

}
}

28

Monitors with active objects – Example: The Semaphore

ABS
c l a s s Semaphore {

i n t s = 0

Unit Psem () {
await (s !=0) ;

s = s − 1 ;

}

Unit Vsem () {
s = s+1;

}
}

• With cooperative concurrency, we can avoid error-prone signaling in the monitor.

• The active object only has one queue, but reactivation of Psem methods can only happen

when the await-condition holds

29

Bounded Buffer Synchronization with Active Objects(1)

Let us now solve the bounded buffer problem with active objects

Bounded buffer synchronization

• buffer of size n (“channel”, “pipe”)

• producer: performs put operations on the buffer.

• consumer: performs getVal operations on the buffer.

• two access operations (“methods”)

• put operations must wait if buffer full

• getVal operations must wait if buffer empty

30

Bounded Buffer Synchronization with Active Objects (2)

ABS
c l a s s Bounded Bu f f e r (I n t n) {

L i s t<T> buf = [] ;

Unit put (T data){
await (l e n g t h (buf) < n) ;

buf = append r i gh t (buf , data) ;

}
T getVa l () {

await (l e n g t h (buf) > 0) ;

T tmp = head (buf) ; buf = t a i l (buf) ; r e t u r n tmp ;

}
}

31

Deadlocks

What is a deadlock?

A system is deadlocked if it is stuck: It cannot

continue execution, and it has not finished its

execution.

A system is deadlocked if there is a circular

dependency: There is a sequence of

components C1, . . . ,Cn, such that Ci depends

on Ci+1 before it can continue and Cn depends

on C1.

• Actors without futures/channels cannot deadlock – they can always continue execution

• In some concurrency models a system can only get stuck because of a circular dependency.

32

Local Dependencies – Between the Object and its Tasks

• A task may depend on an object – waiting to be scheduled

• An object may depends on a task – waiting to release control

ABS
c l a s s C (){

Unit m(){
Fut<T> f = t h i s ! n () ;

f . get ; // dead l ock

}

T n (){ /∗ do some computat ion ∗/ r e t u r n v a l u e ; }

}

33

Dependencies due to Synchronization Between Tasks

• A task depends on another task if it waits for its future

ABS
c l a s s C {

Fut<Unit> f 1 ;

Unit s t o r e (Fut<Unit> f u t) { f 1 = f u t ; }
Unit m(){ await f 1 ? ; r e t u r n ; }} // depends on d . n

c l a s s D(C c) {
Unit n (){

Fut<Unit> f 2= c !m() ;

await f 2 ? ; // depends on c .m

r e t u r n ; } }

{
C c = new C () ; D d = new D(c) ;

Fut<Unit> f ;

await c ! s t o r e (f) ; f= d ! n () ; // dead l ock

} 34

Dependencies Related to the State of an Object

• In a given state a task t1, that might be stuck on condition e1,

depends on another task t2, that might be stuck on condition e2.

• Here e1 and e2 are conditions related to the state of an object,

which create dependencies between the tasks.

ABS
c l a s s D { // he r e e x c l ama t i on mark i s n ega t i on

Bool b1 = f a l s e ; Bool b2 = f a l s e ;

Unit m(){ b1 = t r u e ; await b2 ; b1 = ! b2 ;}
Unit n (){ await ! b1 ; b2 = ! b1 ;}}

• There is no procedure to decide whether an arbitrary program ever deadlocks because it

depends on the scheduling of tasks

35

Outlook: Analysis and Modelling

Reasoning

Monitors and actors are suited for manual and automatic reasoning

• Builtin mutex ensures that between interaction points, code can be seen as sequential

• Sequential reasoning has to be extended only at these points

• Full concurrency requires non-local reasoning at every point

Programming is Modelling

A program can be used to model a part of the world.

• A program analysis then can be used to derive properties over the world

• For example, 5 philosophers programs are executable models

• Allows analysis for deadlock freedom.

More on ABS (last lecture): one lecture on ABS and cloud system modelling.

36

Async/Await

Recap on Message Passing

Message Passing So Far

• Channels: Asynchronous shared entities

• Actors: Monitors that send asynchronous messages

• Active Objects: Monitors with its own thread that send asynchronous message

37

Java and Async/Await

Reminder in Java:

Java

Ex e c u t o r S e r v i c e s e r v i c e = Execu to r s . newFixedThreadPool (2) ;

Future<I n t> f = s e r v i c e . submit (() −> { /∗ do ∗/ re tu rn 1 ; }) ;
. . .

I n t = f . ge t () ; // e s s e n t i a l l y a j o i n

• Executed function disconnected from classes

• Much boilerplate code, especially when call-backs are involved

• Asynchronous code (library) does not mirror synchronous code (language constructs)

38

C# and Async/Await

C#’s Asynchronous Concurrency

• Better abstraction to handle Futures/Tasks.

• Concurrency as first-class construct of language

• Methods annotated with async can only be called asynchronously

• Methods annotated with async return a Task

• Only methods annotated with async can perform an await

• Expression await suspends the thread until the task has finished.

39

C# and Async/Await – Example: Comp. Two Numbers

• Example: Reading two numbers from user and performing some long-lasting computation

• Synchronous version

• Await version: Note that Method must be async to use await

• Asynchronous version: Now both reads can be concurrent

40

C# and Async/Await – Example: Comp. Two Numbers

• Example: Reading two numbers from user and performing some long-lasting computation

• Synchronous version

• Await version: Note that Method must be async to use await

• Asynchronous version: Now both reads can be concurrent

C#
c l a s s C{

vo id Method () {
I n t i 1 = GetF i r s tNumber () ;

I n t i 2 = GetSecondNumber () ;

I n t r e s = Compute (i1 , i 2) ;

}
I n t GetF i r s tNumber () { . . . }
. . .

}

40

C# and Async/Await – Example: Comp. Two Numbers

• Example: Reading two numbers from user and performing some long-lasting computation

• Synchronous version

• Await version: Note that Method must be async to use await

• Asynchronous version: Now both reads can be concurrent

C#
c l a s s C{

vo id async Method () {
I n t i 1 = await GetF i r s tNumber () ;

I n t i 2 = await GetSecondNumber () ;

I n t r e s = await Compute (i1 , i 2) ;

}
Task<Int> async GetF i r s tNumber () { . . . }
. . .

}

40

C# and Async/Await – Example: Comp. Two Numbers

• Example: Reading two numbers from user and performing some long-lasting computation

• Synchronous version

• Await version: Note that Method must be async to use await

• Asynchronous version: Now both reads can be concurrent

C#
c l a s s C{

vo id async Method () {
Task<Int> t1 = GetF i r s tNumber () ; Task<Int> t2 = GetSecondNumber () ;

I n t i 1 = await t1 ; I n t i 2 = await t2 ;

I n t r e s = await Compute (i1 , i 2) ;

}
Task<Int> async GetF i r s tNumber () { . . . }
. . .

}

40

Pros and Cons of Async/Await

What Color is your Function

• Only async methods can access results of async methods

• Separates whole program into two sets of methods

that can only interact at specific points

• Sometimes called colored-function problem, after a popular blog entrya

ahttps://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

• Forces programmer to think about concurrency

• Can still use threads and tasks directly to circumvent all this

41

Wrap-Up

Today’s Lecture

• Actors – Monitors with message passing

• Futures/Promises – Handling asynchronous results

• Active Objects – Actors with cooperative concurrency and futures

• Async/Await – Language-integrated asynchronicity with threads and futures

Next Lectures

• Next Week: Another take on language-based concurrency: Go

• Next Block: How to type channels?

Note: ABS example courtesy of Reiner Hähnle

42

	Actors
	Futures
	Active Objects
	Async/Await

