
Concurrency in Go

Einar Broch Johnsen, S. Lizeth Tapia Tarifa, Eduard Kamburjan, Juliane Päßler

October 9, 2023

University of Oslo

Repetition

� Distributed systems and synchronous channels

� Asynchronous channels

� Actors – asynchronous communication without channels

� Futures and Promises

� Active Objects – actors with object model and cooperative scheduling

Concurrent Programming Languages

� Concurrency model part of the language

� Provides abstraction and first-class primitives (in addition to libraries)

� C#, Erlang, . . .

� How to fit concurrency nicely into language design?

1

Go Basics

Background

Growing dissatisfaction with C and C++ as systems programming languages in 2000s, when

multi-core programs became more important

Common criticisms (back then)

� Concurrency hard to do, even harder to get right – no builtin language support

� Type system overly complex

� Long compilation times, complex build systems

� Memory safety

Emergent Solutions

� Solution 1: Make C++ better (e.g., coroutines in C++20, compositional futures in

C++23)

� Solution 2: A new language with simplicity and asynchronous communication first: Go

� Solution 3: A new language with type and memory safety first: Rust
2

History of Go

� First plans around 2007 at google, due to above dissatisfaction

� Public announcement 2009, first release 2012, widely adapted by now

� Inspired by:

� C (systems programming language)

� CSP (research model)

� Newsqueak (research language)

� Erlang (concurrent systems programming language)

� Concurrent ML (systems programming language)

� Python (scripting language)

� Very much a consolidation language along the idea of “less is more”

3

Go’s Non-revolutionary Feature Mix

� Imperative

� Compiled, no VM

� Garbage collected

� Concurrency with light-weight processes (goroutines) and channels

� Strongly typed

� Portable

� Higher-order functions and closures

� No orthodox OO, but common patterns for emulation

Agenda

1. Objects in Go

2. Types in Go

3. Concurrency in Go

Go code on the slides is slightly prettified to fit the format

4

Go Object Model

Go’s heterodox take on OO

� No classes

� No class inheritance, also no inheritance on records

� Interfaces as types

Coder reuse

Code reuse encouraged by

� Embedding

� Aggregation (internal records)

5

A First Glimpse at Go

Go

type P a i r s t r u c t { X, Y f l o a t 6 4 }

func main () {
var p a i r 1 P a i r

p a i r 2 := P a i r { 1 ,2 } // no t y p e needed i f i n i t i a l i z e d

p a i r 1 = P a i r { 3 ,4 }
var r e s f l o a t 6 4 = Abs(& p a i r 1) + Abs(& p a i r 2) // p o i n t e r s !

fmt . P r i n t l n (r e s)

}

func (x * P a i r) Abs () f l o a t 6 4 { . . . }

6

What is a Type?

Views on Types

� Compiler & run-time system

� A hint for the compiler of memory usage & representation layout

� Piece of meta-data about a chunk of memory

� Programmer

� Partial specification for safety

� Whatever I must do to make the compiler happy

� Orthodox OO

� A type is essentially a class (at least the interesting ones/custom types)

Milner’s dictum on Static Type Systems

“Well-typed programs cannot go wrong ”

For some notion of going wrong.

7

How to implement an interface with an object?

� Interfaces contain methods (but no fields)

� Records contain fields (but no methods)

What is an object?

data + control + identity

And how to get one, implementing an interface?

Java . . .

1. Interface: given

2. name a class which implements I

3. fill in data (fields)

4. fill in code (methods)

5. instantiate the class

Go

1. Interface: given

2. —

3. choose data (state)

4. bind methods

5. get yourself a data value

8

Interfaces

Go

type AbsI i n t e r f a c e { Abs () f l o a t 6 4 }
type T r i p l e s t r u c t { X, Y, Z f l o a t 6 4 }
func (x * T r i p l e) Abs () f l o a t 6 4 { . . . }
func main () {

var a AbsI // must c o n t a i n someth ing t h a t implements Abs I

t r i p l e := V e r t e x {3 ,4 ,5}

a = & t r i p l e // a * T r i p l e i s ok

a = t r i p l e // a T r i p l e i s not ok

}

9

Duck Typing

Duck Typing

“If it walks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.”

� If interface and record are detached, a method can be called if the record fits its signature

� Dynamic duck typing: check at runtime whether the record fits

� Static duck typing: check at compile time whether the type of the value/variable fits

Beware: Go does static duck typing: smaller runtime, no need for time tagging

10

Code Reuse with Embeddings

Go

type P a i r s t r u c t { X, Y f l o a t 6 4 }
type T r i p l e s t r u c t {

P a i r // no v a r i a b l e name , m u l t i p l e a r e p o s s i b l e

Z f l o a t 6 4

}

type F i r s t i n t e r f a c e { g e t F i r s t () f l o a t 6 4 }
fun g e t F i r s t (x P a i r) f l o a t 6 4 { return x . X }

func main (){
t r i p l e := T r i p l e { P a i r { 1 ,2 } , 3}
r e s := g e t F i r s t (t r i p l e) // embedding u n r o l l e d a u t o m a t i c a l l y

}
11

Go Concurrency

Go Concurrency

Go’s concurrency mantra

“Don’t communicate by sharing memory, share memory by communicating!”

� Go does have shared memory via global variables, heap memory etc.

� But you are supposed to only send references – getting a reference transfers ownership,

i.e., the permission to write/read it

Go’s primitives

� Goroutines – lightweight threads

� Own call stack, small stack memory (2KB initially), handled by go runtime

� Very cheap context switch

� First-class constructs of language

� Channels

� Synchronous, Typed

� Communication between (lightweight) threads

� Main means of synchronization 12

Goroutines

3 ways to call a function

� f(x) – ordinary (synchronous) function call, where f is a defined function or a

functional definition

� go f(x) – called as an asynchronous process, i.e. go-routine

� defer f(x) – the call is delayed until the end of this process

13

Goroutines

3 ways to call a function

� f(x) – ordinary (synchronous) function call, where f is a defined function or a

functional definition

� go f(x) – called as an asynchronous process, i.e. go-routine

� defer f(x) – the call is delayed until the end of this process

13

Goroutines

3 ways to call a function

� f(x) – ordinary (synchronous) function call, where f is a defined function or a

functional definition

� go f(x) – called as an asynchronous process, i.e. go-routine

� defer f(x) – the call is delayed until the end of this process

13

Channels in Go

� Channels provide a way to send messages form one go routine to another.

� Channels are created with make

� The arrow operator (<-) is used both to signify the direction of a channel and to send or

receive data over a channel

Go

func m(){
c h l := make(chan f l o a t 6 4)

go w r i t e f (c h l) ; go r e a d f (c h l)

}
func w r i t e f (ch chan<− f l o a t 6 4) {

ch <− 0 . 5 }
func r e a d f (ch <−chan f l o a t 6 4){

v := <−ch }

14

Go Routines - Example 1

back to our server

Go

func main () {
l i n k s := [] s t r i n g {

” h t t p s : / / g o o g l e . com” ,

” h t t p s : / / f a c e b o o k . com” ,

” h t t p s : / / g o l a n g . org ” ,

” h t t p s : / / s t a c k o v e r f l o w . com” ,

}
c := make(chan s t r i n g)

f o r , l i n k := range l i n k s { go c h e c k l i n k (l i n k , c) }
f o r i := 0 ; i < l en (l i n k s) ; i++ { fmt . P r i n t l n(<−c) }

}

15

Go Routines - Example 1

Go

func c h e c k l i n k (l i n k s t r i n g , c chan s t r i n g) {
, e r r := h t t p . Get (l i n k) // p a i r s as l a n g u a g e b u i l t i n s

i f e r r != n i l {
c <− ” I t s down ! ”

return

}
c <− ” I t s up ! ”

}

� The four checklink goroutines starts up concurrently and four calls to http.Get are made

concurrently as well.

� The main process does not wait until one response comes back before sending out the

next request.
16

Go Routines- Explained

17

Waiting for Go routines to finish in Go

Go offers several synchronization primitives in the sync package to avoid using channels in

certain situations.

WaitGroup

A WaitGroup is a semaphore, used to join over several activities

� The Add method is used to add a counter to the WaitGroup.

� The Done method of WaitGroup is scheduled using a defer statement to decrement the

WaitGroup counter.

� The Wait method of the WaitGroup type waits for the program to finish all goroutines:

The Wait method is called inside the main function, which blocks execution until the

WaitGroup counter reaches the value of zero and ensures that all goroutines are

executed.

18

Waiting for Go routines to finish

Go

func main () {
var wg sync . WaitGroup

var i i n t = −1

var f i l e s t r i n g

f o r i , f i l e = range os . Args [1 :] {
wg . Add (1) // add b e f o r e async . c a l l !

go func () { // anon . f u n c t i o n

compress (f i l e)

wg . Done () } ()

}
wg . Wait ()

fmt . P r i n t f (” compressed %d f i l e s \n” , i +1)

}
19

Waiting for Go routines to finish

Go

func compress (f i l e n a m e s t r i n g) e r r o r { // e r r o r s as b u i l t i n t y p e

in , e r r := os . Open (f i l e n a m e)

i f e r r != n i l {
return e r r }

defer i n . C l o s e ()

out , e r r := os . C r e a t e (f i l e n a m e + ” . gz ”)

i f e r r != n i l {
return e r r }

defer out . C l o s e ()

gzout := g z i p . NewWriter (out)

. . .

}

20

Channels

Channels in Go

� Channels are bidirectional, synchronous and typed

� Careful which routine is reading and which is writing

� Type support to enforce that

21

Channel operations

� Send and receive

� Create channels (with capacity)

� Close a channel

22

Channel operations

� Send and receive

� Create channels (with capacity)

� Close a channel

Go

func m() {
ch := make(chan int , 2)

ch <− 1 // does not b l o c k !

ch <− 2

fmt . P r i n t l n(<−ch)

fmt . P r i n t l n(<−ch)

}

22

Channel operations

� Send and receive

� Create channels (with capacity)

� Close a channel

Go

func m() {
ch := make(chan int , 1)

ch <− 1

ch <− 2 // d e a d l o c k

fmt . P r i n t l n(<−ch)

fmt . P r i n t l n(<−ch)

}

22

Channel operations

� Send and receive

� Create channels (with capacity)

� Close a channel
Go

func m() {
ch := make(chan i n t)

go w r i t e (ch)

f o r {
i , ok := <−ch

i f (! ok) break

fmt . P r i n t l n (i) } }

func w r i t e (ch chan<− i n t) {
ch <− 1 ; ch <− 2 ; c l o s e (ch) }

22

Channel operations

� Send and receive

� Create channels (with capacity)

� Close a channel
Go

func m() {
ch := make(chan i n t)

go w r i t e (ch)

f o r i := range ch {
fmt . P r i n t l n (i)

}
}

func w r i t e (ch chan<− i n t) {
ch <− 1 ; ch <− 2 ; c l o s e (ch) }

22

Channel operations

� Send and receive

� Create channels (with capacity)

� Close a channel
Go

func m() {
ch := make(chan i n t)

go w r i t e (ch)

<−ch

<−ch } // e r r o r

func w r i t e (ch chan<− i n t) {
ch <− 1 ; c l o s e (ch) }

22

Channel operations

Selection

� Waiting on several channels in parallel

� The select statement can watch multiple channels (zero or more). Until something

happens, it will wait (or execute a default statement, if supplied).

� When a channel has an event, the select statement will execute that event.

23

Channel operations

Selection

� Waiting on several channels in parallel

� The select statement can watch multiple channels (zero or more). Until something

happens, it will wait (or execute a default statement, if supplied).

� When a channel has an event, the select statement will execute that event.

Go

ch1 := make(chan i n t) ; ch2 := make(chan i n t)

go m(ch1) ; go m(ch2)

s e l e c t {
case i 1 = <−ch1 : fmt . P r i n t l n (” f i r s t c a l l %i ” , i 1)

case i 2 = <−ch2 : fmt . P r i n t l n (” second c a l l %i ” , i 2) }

23

Channel operations

Selection

� Waiting on several channels in parallel

� The select statement can watch multiple channels (zero or more). Until something

happens, it will wait (or execute a default statement, if supplied).

� When a channel has an event, the select statement will execute that event.

Go

ch1 := make(chan i n t) ; ch2 := make(chan i n t)

go m(ch1) ; go m(ch2)

s e l e c t {
case i 1 = <−ch1 : fmt . P r i n t l n (” f i r s t c a l l %i ” , i 1)

case i 2 = <−ch2 : fmt . P r i n t l n (” second c a l l %i ” , i 2)

d e f a u l t : fmt . P r i n t l n (” I don ’ t b l o c k ”) }

23

Select Operation on Channels in Go

Go

func main () {
done := t ime . A f t e r (30 * t ime . Second)

echo := make (chan [] byte)

go r e a dS td i n (echo)

f o r {
s e l e c t {

case buf := <−echo :

os . Stdout . Wr i te (buf)

case <−done :
fmt . P r i n t l n (”Timed out ”)

os . E x i t (0) } } }

func r e a dS td i n (out chan<− [] byte) {
f o r {

data := make ([] byte , 1024)

l , := os . S td i n . Read (data)

i f (l > 0) {out <− data} } }

24

Lock implementation Channels in Go

Avoiding synchronization primitives beyond channels

Go

func main () {
l o c k := make (chan bool , 1)

f o r i := 1 ; i < 7 ; i++ {
go worker (i , l o c k)

}
t ime . S l e ep (10 * t ime . Second)

}

func worker (i d i n t , l o c k chan boo l) {
fmt . P r i n t f (”%dwant s the l o ck\n” , i d)

l o c k <− t r u e

fmt . P r i n t f (”%dha s t h e l o c k \n” , i d)

t ime . S l e ep (500 * t ime . M i l l i s e c o n d)

fmt . P r i n t f (”%d i s r e l e a s i n g the l o c k \n” , i d)

<−l o c k

}

25

Producer Consumer Implementation in Go

Go

const producerCount i n t = 4

const consumerCount i n t = 3

func produce (l i n k chan<− s t r i n g , i d i n t , wg * sync . WaitGroup) {
d e f e r wg . Done ()

f o r , msg := range messages [i d] {
l i n k <− msg

}
}

func consume (l i n k <−chan s t r i n g , i d i n t , wg * sync . WaitGroup) {
d e f e r wg . Done ()

f o r msg := range l i n k {
fmt . P r i n t f (”Message \”v\” i s consumed by consumer v\n” , msg , i d)

}
}

26

Producer Consumer Implementation in Go

Go

func main () {
l i n k := make (chan s t r i n g)

wp := &sync . WaitGroup{}
wc := &sync . WaitGroup{}

wp . Add(producerCount)

wc . Add(consumerCount)

f o r i := 0 ; i < producerCount ; i++ {
go produce (l i n k , i , wp)

}

f o r i := 0 ; i < consumerCount ; i++ {
go consume (l i n k , i , wc)

}

wp . Wait ()

c l o s e (l i n k)

wc . Wait ()

27

Dining Philosophers

Go

// Goes from t h i n k i n g to hungry to e a t i n g

// done e a t i n g then s t a r t s ove r .

func (p p h i l o s o p h e r) ea t () {
d e f e r eatWgroup . Done ()

f o r j := 0 ; j < 3 ; j++ {
p . l e f t F o r k . Lock ()

p . r i g h t F o r k . Lock ()

say (” e a t i n g ” , p . i d)

t ime . S l e ep (t ime . Second)

p . r i g h t F o r k . Unlock ()

p . l e f t F o r k . Unlock ()

say (” f i n i s h e d e a t i n g ” , p . i d)

t ime . S l e ep (t ime . Second)}

}

28

Dining Philosophers by channels

Go

// Crea te f o r k s

f o r k s := make ([] * f o rk , count)

f o r i := 0 ; i < count ; i++ {
f o r k s [i] = new (f o r k)

}
// Crea te ph i l o s p oh e r ,

a s s i g n them 2 f o r k s , send them to the d i n i n g t a b l e

p h i l o s o p h e r s := make ([] * ph i l o s o ph e r , count)

f o r i := 0 ; i < count ; i++ {
p h i l o s o p h e r s [i] = &ph i l o s o p h e r {

i d : i , l e f t F o r k : f o r k s [i] , r i g h t F o r k : f o r k s [(i+1)%count]}
eatWgroup . Add (1)

go p h i l o s o p h e r s [i] . e a t ()

}
eatWgroup . Wait ()

}

29

Wrap-Up

Today’s Lecture

� Object-orientation in Go: interface types and embeddings

� Goroutines: lightweight threads with builtin support

� Channels in mainstream programming: selection, creation, typing

Next block: Types and Rust

30

	Go Basics
	Go Concurrency
	Channels

