
Part 3: Type Systems and Concurrency

Einar Broch Johnsen, S. Lizeth Tapia Tarifa, Eduard Kamburjan, Juliane Päßler

October 16, 2023

University of Oslo

Types: Foundations

Analyses

Next Lectures

� Types Systems

� Types for channels

� Ownership and Rust

Reading Material

� Types and Programming Languages, Benjamin Pierce, 2000, MIT Press

� Type Systems for Concurrent Programs, Naoki Kobayashi, 2002, Springer LNCS

� Uniqueness Typing Simplified, de Vries et al., 2007, Springer LNCS

� A Very Gentle Introduction to Multiparty Session Types, Yoshida and

Gheri, 2020, Springer LNCS

� Session types for Rust, Jespersen et al., 2015, ACM

1

Why Types?

� Detecting Errors

� Compiler detects errors before execution (static)

� Clearer error messages at runtime (dynamic)

� Enforcing certain programming patterns

� Abstraction

� Modularity by providing interfaces

� Hides memory/implementation details

� Documentation/Specification

� Expresses intended behavior

� Communication with other developers

� In contrast to comments/documents: enforced to be updated

Why Type Systems Here?

� Demystifying compilers

� Type systems are a formalization of how developers analyze: How to think about

programs?
2

Foundations of Types

“Well-typed programs cannot go wrong”(Robin Milner, ’78)

� What is a “type”?

� What means “well-typed”?

� What means “go wrong”?

� What kind of type systems exist?

� What does this mean especially for concurrent systems?

3

Foundations of Types – What is a type?

“Well-typed programs cannot go wrong”

Types for Expressions

� Types classify expressions

� Expression e has a type T if e will (always) evaluate to a value of type T

� {. . . ,−1, 0, 1, . . . } are values of type int

� 22+2 evaluates to 24, which has type int

� Data types of variables are abstractions over memory layout

� What is the type of a function? The type of a channel?

� For us: A type is an abstraction over data or behavior

� Channel types are behavioral types

4

Foundations of Types – What is well-typedness?

“Well-typed programs cannot go wrong”

Type Systems

If we know our abstractions, we need to ensure that our program adheres to them.

A type system is a method to check whether a program adheres to its types.

� Dynamic vs. static

� Dynamic systems check type tags at runtime

� Static systems check type annotations at compile time

� Gradual system check as much as possible statically, and refer the rest to a dynamic system

� Decidable vs. undecidable

� Static systems should not take too much time, more precise types abstract less

� Very precise type system can become undecidable (also on accident: see Java Generics)

� Strong vs. weak typing

� Strong type systems aim to cover as many possible error sources

� Weak type systems give more freedom
5

Foundations of Types – What are errors?

“Well-typed programs cannot go wrong”

Examples for Errors

� General: Applying operators that are not defined on all inputs

1+” s t r i n g ” // i l l −typed
1+1 // we l l−typed
. . .

p u b l i c I n t e g e r f (I n t e g e r i) { r e t u r n 2/ i ; }
. . .

f (t r u e) // i l l −typed
f (0) // i l l −typed ?

6

Foundations of Types – What are errors?

“Well-typed programs cannot go wrong”

Examples for Errors

� General: Applying operators that are not defined on all inputs

� OO: Calling a method that is not supported

p u b l i c c l a s s C {
p u b l i c I n t e g e r f (I n t e g e r i) { r e t u r n i *2 ; }

}
. . .

C c = new C () ;

c . g (1) ;

7

Foundations of Types – What are errors?

“Well-typed programs cannot go wrong”

Examples for Errors

� General: Applying operators that are not defined on all inputs

� OO: Calling a method that is not supported

� Concurrent: Deadlock

?? How to s p e c i f y d e a d l o c k s ? −> c h a n n e l t y p e s

8

Foundations of Types – What are errors?

“Well-typed programs cannot go wrong”

Examples for Errors

Not every error is considered a type error. Sometimes the line is not clear, e.g., for null access.

p u b l i c v o i d method (C o){ o .m() ; } // Java : Type C a l l ow s n u l l

. . .

t h i s . method (n u l l) ;

fun method (o : C){ o .m() ; }// Ko t l i n : Type C does not a l l ow n u l l

. . .

t h i s . method (n u l l) ;

9

Type Soundness

“Well-typed programs cannot go wrong”

Type Soundness

If a program adheres to its types at compile time, then certain errors do not occur at runtime

� Formalized either as reachability or reduction.

� e1 e2 is one execution/evaluation step from e1 to e2

Type Soundness as Reachability

� A bad operation results in an error state.

� Well-typed programs never reach an

error state.

(1 + 1) + 1 2 + 1 1 X

(1 + 1) + ”a” 2 + ”a” error X

Type Soundness as Reduction

� A bad operation blocks the program.

� Well-typed programs never block.

(1 + 1) + 1 2 + 1 1 X

(1 + 1) + ”a” 2 + ”a” X

10

Type Soundness

“Well-typed programs cannot go wrong”

Type Soundness

If a program adheres to its types at compile time, then certain errors do not occur at runtime

� Formalized either as reachability or reduction.

� e1 e2 is one execution/evaluation step from e1 to e2

Type Soundness as Reachability

� A bad operation results in an error state.

� Well-typed programs never reach an

error state.

(1 + 1) + 1 2 + 1 1 X

(1 + 1) + ”a” 2 + ”a” error X

Type Soundness as Reduction

� A bad operation blocks the program.

� Well-typed programs never block.

(1 + 1) + 1 2 + 1 1 X

(1 + 1) + ”a” 2 + ”a” X

10

Type Soundness for Concurrent Programs

� The reduction view naturally generalizes to concurrency: avoid blocking due to misused

concurrency operations.

� ...

message order?

11

Type Analysis

How would we analyze this? How would we formally reason about it?

12

Completeness of Type Systems

Types and Logic

Type systems and logics share some properties

� Notions of soundness and completeness

� Judgment (later today)

� Dual use as documentation and specification

Static Types

Static type systems are typically incomplete

� In many cases because they are decidable

� Their wide adaption hints that the incomplete part is not important in practice

Dynamic Types

Dynamic Type systems are “complete”, but detect the error to late.

13

A Simple Type System

A typing discipline consists of

� A type syntax

� A subtyping relation

� A typing environment

� A type judgment

� A set of type rules (the type system itself)

� A notion of type soundness

Next Slides

A simple type system for a simple sequential language.

14

A Simple Type System

Typing Literal Expressions

Language Syntax

Expressions with integer and boolean literals:

e ::= n | true | false | e + e | e ∧ e | e ≤ e

Type Syntax

Booleans and integers:

T ::= Bool | Int

� 1

� 1 + 2 ≤ 3

� We allow parentheses if necessary (1 + 2 ≤ 3) ∧ true

15

A Simple Type System

A judgment is a meta-statement over formal constructs.

Typing Judgment

To express that an expression e is well-typed with type T . We write

` e : T

� Judgment is true: ` 1 + 1 : Int

� Judgment is false: ` 1 + 1 : Bool

� some more examples

16

A Simple Type System

Type Rules

� A typing rule contains one conclusion (Conclusion) and a list of premises (Premisei).

� Each conclusion and premise is one judgment

� Its meaning is that if all premises are true, then the conclusion is also true

� A rule without premises is an axiom and expresses that something is always true

Notation:

Premise1 . . . Premisen
rule name

Conclusion

Our axioms:

bool-f` false : Bool
bool-t` true : Bool

int-literal` n : Int

17

A Simple Type System

The following expresses that if e1 and e2 can be typed with boolean type, then so can e1 ∧ e2.

` e1 : Bool ` e2 : Bool
bool-and` e1 ∧ e2 : Bool

The following expresses that if e1 and e2 can be typed with integer type, then so can e1 + e2.

` e1 : Int ` e2 : Int
int-plus` e1 + e2 : Int

The following expresses that if e1 and e2 can be typed with integer type, then e1 ≤ e2 can be

typed with boolean type.

` e1 : Int ` e2 : Int
bool-leq` e1 ≤ e2 : Bool

18

A Simple Type System

A typing rule is a schema that can be applied to a concrete expression. If we do so repeatedly,

then the result is a typing tree.

Typing Tree

A typing tree is a tree, where each node is a type rule application on a concrete expression.

A tree is closed if all leaves are stemming from axioms.

19

A Simple Type System

A typing rule is a schema that can be applied to a concrete expression. If we do so repeatedly,

then the result is a typing tree.

Typing Tree

A typing tree is a tree, where each node is a type rule application on a concrete expression.

A tree is closed if all leaves are stemming from axioms.

Rule:

` e1 : Int ` e2 : Int
int-plus` e1 + e2 : Int

Rule application:

` 12 : Int ` 13 : Int int-plus` 12 + 13 : Int

19

A Simple Type System

A typing rule is a schema that can be applied to a concrete expression. If we do so repeatedly,

then the result is a typing tree.

Typing Tree

A typing tree is a tree, where each node is a type rule application on a concrete expression.

A tree is closed if all leaves are stemming from axioms.

int-literal` 1 : Int
int-literal` 2 : Intint-plus

` 1 + 2 : Int
int-literal` 3 : Int

bool-leq

` 1 + 2 ≤ 3 : Bool

This means that 1 + 2 ≤ 3 indeed has type Bool.

19

A Simple Type System

A typing rule is a schema that can be applied to a concrete expression. If we do so repeatedly,

then the result is a typing tree.

Typing Tree

A typing tree is a tree, where each node is a type rule application on a concrete expression.

A tree is closed if all leaves are stemming from axioms.

int-literal` 1 : Int
int-literal` 2 : Intint-plus

` 1 + 2 : Int
int-literal

` 3 : Int
bool-leq` 1 + 2 ≤ 3 : Bool

This means that 1 + 2 ≤ 3 indeed has type Bool.

19

A Simple Type System

A typing rule is a schema that can be applied to a concrete expression. If we do so repeatedly,

then the result is a typing tree.

Typing Tree

A typing tree is a tree, where each node is a type rule application on a concrete expression.

A tree is closed if all leaves are stemming from axioms.

int-literal` 1 : Int
int-literal` 2 : Intint-plus

` 1 + 2 : Int

int-literal` 3 : Int
bool-leq` 1 + 2 ≤ 3 : Bool

This means that 1 + 2 ≤ 3 indeed has type Bool.

19

A Simple Type System

A typing rule is a schema that can be applied to a concrete expression. If we do so repeatedly,

then the result is a typing tree.

Typing Tree

A typing tree is a tree, where each node is a type rule application on a concrete expression.

A tree is closed if all leaves are stemming from axioms.

int-literal` 1 : Int
int-literal` 2 : Int

int-plus` 1 + 2 : Int
int-literal` 3 : Int
bool-leq` 1 + 2 ≤ 3 : Bool

This means that 1 + 2 ≤ 3 indeed has type Bool.

19

A Simple Type System

A typing rule is a schema that can be applied to a concrete expression. If we do so repeatedly,

then the result is a typing tree.

Typing Tree

A typing tree is a tree, where each node is a type rule application on a concrete expression.

A tree is closed if all leaves are stemming from axioms.

int-literal` 1 : Int

int-literal` 2 : Int int-plus` 1 + 2 : Int
int-literal` 3 : Int
bool-leq` 1 + 2 ≤ 3 : Bool

This means that 1 + 2 ≤ 3 indeed has type Bool.

19

A Simple Type System

A typing rule is a schema that can be applied to a concrete expression. If we do so repeatedly,

then the result is a typing tree.

Typing Tree

A typing tree is a tree, where each node is a type rule application on a concrete expression.

A tree is closed if all leaves are stemming from axioms.

int-literal` 1 : Int
int-literal` 2 : Int int-plus` 1 + 2 : Int

int-literal` 3 : Int
bool-leq` 1 + 2 ≤ 3 : Bool

This means that 1 + 2 ≤ 3 indeed has type Bool.

19

A Simple Type System

A typing rule is a schema that can be applied to a concrete expression. If we do so repeatedly,

then the result is a typing tree.

Typing Tree

A typing tree is a tree, where each node is a type rule application on a concrete expression.

A tree is closed if all leaves are stemming from axioms.

int-literal` 1 : Int
int-literal` 2 : Int int-plus` 1 + 2 : Int

int-literal` 3 : Int
bool-leq` 1 + 2 ≤ 3 : Bool

This means that 1 + 2 ≤ 3 indeed has type Bool.

` true : Int
int-literal` 2 : Int int-plus` true + 2 : Int

int-literal` 3 : Int
bool-leq` true + 2 ≤ 3 : Bool

This means that true + 2 ≤ 3 does not have type Bool.
19

A Simple Type System

We have types and typing rules, for type soundness we also need expression evaluation.

Evaluation

We do not define evaluation formally here, but assume that e1 e2 is one execution/evalu-

ation step from e1 to e2.

� 1 + 2 3

� 1 + 2 ≤ 5 3 ≤ 3

� 3 ≤ 3 true

Literals and Termination

An evaluation of expression e1 successfully terminates, if

e1 · · · efinal

and efinal is either a literal n, true, or false, or if e1 is one of these expressions itself.

20

A Simple Type System

Type Soundness

Typically, soundness requires three properties:

� All expressions that are successfully terminated are well-typed

� If a well-typed expression can evaluate, then the result is well-typed (Subject reduction)

� If a well-typed expression is not successfully terminated, then it can evaluate (Progress)

Together, these properties imply that if an expression is well-typed, and its evaluation termi-

nates, then it terminates successfully.

21

A Simple Type System

Type Soundness

Typically, soundness requires three properties:

� All expressions that are successfully terminated are well-typed

� If a well-typed expression can evaluate, then the result is well-typed (Subject reduction)

� If a well-typed expression is not successfully terminated, then it can evaluate (Progress)

Together, these properties imply that if an expression is well-typed, and its evaluation termi-

nates, then it terminates successfully.

Subject Reduction

If a well-typed expression can evaluate, then the result is well-typed

∀e, e′, T.
(
(e : T ∧ e e′)→ e′ : T

)
21

A Simple Type System

Type Soundness

Typically, soundness requires three properties:

� All expressions that are successfully terminated are well-typed

� If a well-typed expression can evaluate, then the result is well-typed (Subject reduction)

� If a well-typed expression is not successfully terminated, then it can evaluate (Progress)

Together, these properties imply that if an expression is well-typed, and its evaluation termi-

nates, then it terminates successfully.

Progress

If a well-typed expression is not successfully terminated (term(e)), then it can evaluate

∀e, T.
(
(e : T ∧ ¬term(e))→ ∃e′. e e′

)
21

A Simple Type System

Type Soundness

Typically, soundness requires three properties:

� All expressions that are successfully terminated are well-typed

� If a well-typed expression can evaluate, then the result is well-typed (Subject reduction)

� If a well-typed expression is not successfully terminated, then it can evaluate (Progress)

Together, these properties imply that if an expression is well-typed, and its evaluation termi-

nates, then it terminates successfully.

� Subject reduction states that typeability is an invariant

� Progress is almost deadlock freedom, typically harder to proof

� More general formulations possible

21

Typing Environment and

Subtyping

A Simple Type Environment

� We can now type boring expressions

� Enough to demonstrate all parts, but how do we move towards types for concurrency?

� Next two ingredients:

� Typing of variables

� Typing variables requires to keep track of which variables are declared

� We will record information in a type environment

� Subtyping

� We will introduce a second judgment to express the relation between types

� Typing environment and subtyping relation are critical for channel types

22

A Simple Type Environment

Language Syntax

Expressions with integer and boolean literals:

e ::= n | true | false | e + e | e ∧ e | e ≤ e | v

Type Syntax (unchanged)

Booleans and integers:

T ::= Bool | Int

� v

� 1 + v ≤ 3

� We allow parentheses if necessary (1 + v ≤ 3) ∧ w

23

A Simple Type Environment

Type Environment

A type environment Γ is a partial map from variables to types.

� Notation to access the type of a variable v in environment Γ: Γ(v)

� Notation for an environment with two integer variables v, w:

{v 7→ Int, w 7→ Int}

An empty type environment is denoted ∅.
� Notation for updating the environment

Γ[x 7→ T] = Γ′

where Γ′(x) = T and Γ′(y) = Γ(y) for all other variables y 6= x.

� Notation if a variable has no assigned type

Γ(x) = ⊥

24

A Simple Type Environment

Type Judgment

The type judgment includes the type environment:

Γ ` e : T

This reads as expression e has type T if all variables are as described by Γ.

New rule. The premise is a new judgment that holds iff the equality holds.

Γ(v) = T
var

Γ ` v : T

The type environment is added to all other rules and carried over from conclusion to premises.

For example,

Γ ` e1 : Bool Γ ` e2 : Bool
bool-and

Γ ` e1 ∧ e2 : Bool

25

A Simple Type Environment

Typing now depends on the type of the variables. Let Γ1 = {v 7→ Int}, Γ2 = ∅

int-literal
Γ1 ` 1 : Int

Γ1(v) = Int
var
Γ1 ` v : Int

int-plus
Γ1 ` 1 + v : Int

int-literal
Γ1 ` 3 : Int

bool-leq

Γ1 ` 1 + v ≤ 3 : Bool

int-literal
Γ2 ` 1 : Int

Γ2(v) = Int
var

Γ2 ` v : Int
int-plus

Γ2 ` 1 + v : Int
int-literal

Γ2 ` 3 : Int
bool-leq

Γ2 ` 1 + v ≤ 3 : Bool

26

A Simple Type Environment

Typing now depends on the type of the variables. Let Γ1 = {v 7→ Int}, Γ2 = ∅

int-literal
Γ1 ` 1 : Int

Γ1(v) = Int
var
Γ1 ` v : Int

int-plus
Γ1 ` 1 + v : Int

int-literal

Γ1 ` 3 : Int
bool-leq

Γ1 ` 1 + v ≤ 3 : Bool

int-literal
Γ2 ` 1 : Int

Γ2(v) = Int
var

Γ2 ` v : Int
int-plus

Γ2 ` 1 + v : Int
int-literal

Γ2 ` 3 : Int
bool-leq

Γ2 ` 1 + v ≤ 3 : Bool

26

A Simple Type Environment

Typing now depends on the type of the variables. Let Γ1 = {v 7→ Int}, Γ2 = ∅

int-literal
Γ1 ` 1 : Int

Γ1(v) = Int
var
Γ1 ` v : Int

int-plus

Γ1 ` 1 + v : Int
int-literal

Γ1 ` 3 : Int
bool-leq

Γ1 ` 1 + v ≤ 3 : Bool

int-literal
Γ2 ` 1 : Int

Γ2(v) = Int
var

Γ2 ` v : Int
int-plus

Γ2 ` 1 + v : Int
int-literal

Γ2 ` 3 : Int
bool-leq

Γ2 ` 1 + v ≤ 3 : Bool

26

A Simple Type Environment

Typing now depends on the type of the variables. Let Γ1 = {v 7→ Int}, Γ2 = ∅

int-literal
Γ1 ` 1 : Int

Γ1(v) = Int
var

Γ1 ` v : Int
int-plus

Γ1 ` 1 + v : Int
int-literal

Γ1 ` 3 : Int
bool-leq

Γ1 ` 1 + v ≤ 3 : Bool

int-literal
Γ2 ` 1 : Int

Γ2(v) = Int
var

Γ2 ` v : Int
int-plus

Γ2 ` 1 + v : Int
int-literal

Γ2 ` 3 : Int
bool-leq

Γ2 ` 1 + v ≤ 3 : Bool

26

A Simple Type Environment

Typing now depends on the type of the variables. Let Γ1 = {v 7→ Int}, Γ2 = ∅

int-literal
Γ1 ` 1 : Int

Γ1(v) = Int
var

Γ1 ` v : Int
int-plus

Γ1 ` 1 + v : Int
int-literal

Γ1 ` 3 : Int
bool-leq

Γ1 ` 1 + v ≤ 3 : Bool

int-literal
Γ2 ` 1 : Int

Γ2(v) = Int
var

Γ2 ` v : Int
int-plus

Γ2 ` 1 + v : Int
int-literal

Γ2 ` 3 : Int
bool-leq

Γ2 ` 1 + v ≤ 3 : Bool

26

A Simple Type Environment

Typing now depends on the type of the variables. Let Γ1 = {v 7→ Int}, Γ2 = ∅

int-literal
Γ1 ` 1 : Int

Γ1(v) = Int
var

Γ1 ` v : Int
int-plus

Γ1 ` 1 + v : Int
int-literal

Γ1 ` 3 : Int
bool-leq

Γ1 ` 1 + v ≤ 3 : Bool

int-literal
Γ2 ` 1 : Int

Γ2(v) = Int
var

Γ2 ` v : Int
int-plus

Γ2 ` 1 + v : Int
int-literal

Γ2 ` 3 : Int
bool-leq

Γ2 ` 1 + v ≤ 3 : Bool

26

A Simple Type Environment

Typing now depends on the type of the variables. Let Γ1 = {v 7→ Int}, Γ2 = ∅

int-literal
Γ1 ` 1 : Int

Γ1(v) = Int
var

Γ1 ` v : Int
int-plus

Γ1 ` 1 + v : Int
int-literal

Γ1 ` 3 : Int
bool-leq

Γ1 ` 1 + v ≤ 3 : Bool

int-literal
Γ2 ` 1 : Int

Γ2(v) = Int
var

Γ2 ` v : Int
int-plus

Γ2 ` 1 + v : Int
int-literal

Γ2 ` 3 : Int
bool-leq

Γ2 ` 1 + v ≤ 3 : Bool

26

A Simple Type Environment

Evaluation

Let σ be a store. A store is a map from variables to literals. We do not define evaluation

formally here, but assume that e1 σ e2 is one execution/evaluation step from e1 to e2. In

particular, v σ σ(v).

27

A Simple Type Environment

Evaluation

Let σ be a store. A store is a map from variables to literals. We do not define evaluation

formally here, but assume that e1 σ e2 is one execution/evaluation step from e1 to e2. In

particular, v σ σ(v).

Subject Reduction

If a well-typed expression can evaluate, then the result is well-typed

∀Γ, e, e′, T.
(
(Γ ` e : T ∧ e e′)→ Γ ` e′ : T

)

27

A Simple Type Environment

Evaluation

Let σ be a store. A store is a map from variables to literals. We do not define evaluation

formally here, but assume that e1 σ e2 is one execution/evaluation step from e1 to e2. In

particular, v σ σ(v).

Progress

If a well-typed expression is not successfully terminated (term(e)), then it can evaluate

∀Γ, e, T.
(
(Γ ` e : T ∧ ¬term(e))→ ∃e′. e e′

)

27

A Simple Type Environment

Evaluation

Let σ be a store. A store is a map from variables to literals. We do not define evaluation

formally here, but assume that e1 σ e2 is one execution/evaluation step from e1 to e2. In

particular, v σ σ(v).

� Additionally, we must ensure that σ, adheres to Γ

� For every variable v we must have ∅ ` σ(v) : Γ(v)

27

Simple Subtyping

� Let us introduce a simple subtype of the integers: positive numbers

� We need to extend the type syntax, adjust the typing rules and formalize subtyping

� Subtyping is formalized as a special typ

Type Syntax

Booleans, integers and positive integers:

T ::= Bool | Int | Pos

n < 0
int-literal` n : Int

n ≥ 0
pos-literal` n : Pos

28

Simple Subtyping

We introduce a new judgment to express that T1 is a subtype of T2: T1 <: T2

Reflexivity and Transitivity

Every type is a subtype of itself, subtyping is transitive

T-refl
T <: T

T1 <: S S <: T2
T-trans

T1 <: T2

Core Rules

The actual subtyping rules are specific for the language, for us it is just this one

T-pos
Pos <: Int

Application

At every point during type-checking, we can chose to use a subtype

S <: T Γ ` e : S
T-sub

Γ ` e : T 29

Simple Subtyping

Now we can type the literal 1 with Int using the new rules

T-pos
Pos <: Int

1 ≥ 0
pos-literal
∅ ` 1 : Pos

T-sub

∅ ` 1 : Int

� Soundness etc. is not affected by subtyping

� Rule T-sub is not syntax-directed

� Can always be applied

� Requires to chose a suitable S

� Hard to implement in an algorithmic

� This is orthogonal to concurrency, Pierce (Ch. 16) has details on algorithmic subtyping

30

Simple Subtyping

Now we can type the literal 1 with Int using the new rules

T-pos

Pos <: Int

1 ≥ 0
pos-literal

∅ ` 1 : Pos
T-sub∅ ` 1 : Int

� Soundness etc. is not affected by subtyping

� Rule T-sub is not syntax-directed

� Can always be applied

� Requires to chose a suitable S

� Hard to implement in an algorithmic

� This is orthogonal to concurrency, Pierce (Ch. 16) has details on algorithmic subtyping

30

Simple Subtyping

Now we can type the literal 1 with Int using the new rules

T-pos

Pos <: Int

1 ≥ 0
pos-literal

∅ ` 1 : Pos
T-sub∅ ` 1 : Int

� Soundness etc. is not affected by subtyping

� Rule T-sub is not syntax-directed

� Can always be applied

� Requires to chose a suitable S

� Hard to implement in an algorithmic

� This is orthogonal to concurrency, Pierce (Ch. 16) has details on algorithmic subtyping

30

Simple Subtyping

Now we can type the literal 1 with Int using the new rules

T-pos
Pos <: Int

1 ≥ 0
pos-literal

∅ ` 1 : Pos
T-sub∅ ` 1 : Int

� Soundness etc. is not affected by subtyping

� Rule T-sub is not syntax-directed

� Can always be applied

� Requires to chose a suitable S

� Hard to implement in an algorithmic

� This is orthogonal to concurrency, Pierce (Ch. 16) has details on algorithmic subtyping

30

Simple Subtyping

Now we can type the literal 1 with Int using the new rules

T-pos
Pos <: Int

1 ≥ 0
pos-literal

∅ ` 1 : Pos
T-sub∅ ` 1 : Int

� Soundness etc. is not affected by subtyping

� Rule T-sub is not syntax-directed

� Can always be applied

� Requires to chose a suitable S

� Hard to implement in an algorithmic

� This is orthogonal to concurrency, Pierce (Ch. 16) has details on algorithmic subtyping

30

Syntax-directed Subtyping

� Instead of T-sub, we can allow subtyping in other rules

� In the rest of the lecture, we do no use T-sub

` e1 : T1 T1 <: Int ` e2 : T2 T2 <: Int
int-plus` e1 + e2 : Int

31

Types for Statements

Syntax

Language

Expressions are as before, statements are a simple imperative language

s ::= return e | v = e; s | T v = e; s

| skip | if(e){s}s

Type Syntax

Integers, positive number, booleans, unit type. Subtyping as before.

T ::= Int | Pos | Bool | Unit

� Unit type is used to type statements

� A statement has unit type if it is typeable, and no type if it is not typeable

� Akin to void in Java

� No subtype relation to any other type
32

Type System

Rules for expressions are as before.

Simple Statements

Skip is always well-typed, return is well typed if its expression is well-typed for some type

skip
Γ ` skip : Unit

Γ ` e : T
return

Γ ` return e : Unit

Assignment

Assignment checks that the type of the expression is a subtype of the variable, and that the

continuation is typeable. Note that this also checks that the variable is declared – otherwise

Γ(v) = ⊥ and the second premise fails.

Γ ` e : S S <: Γ(v) Γ ` s : Unit
assign

Γ ` v = e; s : Unit

33

Type System

Declaration

Declaration is as before, but additionally updates the environment for the continuation.

Γ ` e : S S <: T Γ[v 7→ T] ` s : Unit
decl

Γ ` T v = e; s : Unit

Branching

Branching checks that the condition has boolean type, and both conditional statement and

continuation. This implements scoping: if the environment get updated by s1, then these

declarations are lost for s2.

Γ ` e : Bool Γ ` s1 : Unit Γ ` s2 : Unit
branch

Γ ` if(e){s1}s2 : Unit

34

Soundness

� Important: terminated program must be well-typed!

� If one uses the error state, it must not be well-typed.

Type Soundness

If statement s can be typed with Unit, and its execution terminates, then it terminates with

s is fully reduced to skip.

35

Soundness

� Important: terminated program must be well-typed!

� If one uses the error state, it must not be well-typed.

Type Soundness

If statement s can be typed with Unit, and its execution terminates, then it terminates with

s is fully reduced to skip.

Pos v = 1; v = v + 2

 v = v + 2 (v = 1)

 skip (v = 3)

35

Soundness

� Important: terminated program must be well-typed!

� If one uses the error state, it must not be well-typed.

Type Soundness

If statement s can be typed with Unit, and its execution terminates, then it terminates with

s is fully reduced to skip.

Pos v = 1; v = v + true

 v = v + true (v = 1)

35

Soundness

� Important: terminated program must be well-typed!

� If one uses the error state, it must not be well-typed.

Type Soundness

If statement s can be typed with Unit, and its execution terminates, then it terminates with

s is fully reduced to skip.

Remarks

� Usual subject reduction and progress properties

� Initial typing starts with empty environment, i.e., no declared variables

� Each branch and programs ends in skip or return. We omit trailing skips from now on in

examples.

35

Example

A variable v must be declared to be recorded in the environment, otherwise any rule that tries

to evaluate Γ(v) fails.

{v 7→ Int} ` v + 2 : Int Int <: Int {v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = v + 2; skip : Unit ∅ ` 1 : Int

∅ ` Int v = 1; v = v + 2; skip : Unit

{v 7→ Int} ` w : Int Int <: Int {v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = w; skip : Unit ∅ ` 1 : Int

∅ ` Int v = 1; v = w; skip : Unit

36

Example

A variable v must be declared to be recorded in the environment, otherwise any rule that tries

to evaluate Γ(v) fails.

{v 7→ Int} ` v + 2 : Int Int <: Int {v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = v + 2; skip : Unit

∅ ` 1 : Int

∅ ` Int v = 1; v = v + 2; skip : Unit

{v 7→ Int} ` w : Int Int <: Int {v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = w; skip : Unit ∅ ` 1 : Int

∅ ` Int v = 1; v = w; skip : Unit

36

Example

A variable v must be declared to be recorded in the environment, otherwise any rule that tries

to evaluate Γ(v) fails.

{v 7→ Int} ` v + 2 : Int Int <: Int {v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = v + 2; skip : Unit ∅ ` 1 : Int

∅ ` Int v = 1; v = v + 2; skip : Unit

{v 7→ Int} ` w : Int Int <: Int {v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = w; skip : Unit ∅ ` 1 : Int

∅ ` Int v = 1; v = w; skip : Unit

36

Example

A variable v must be declared to be recorded in the environment, otherwise any rule that tries

to evaluate Γ(v) fails.

{v 7→ Int} ` v + 2 : Int Int <: Int

{v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = v + 2; skip : Unit ∅ ` 1 : Int

∅ ` Int v = 1; v = v + 2; skip : Unit

{v 7→ Int} ` w : Int Int <: Int {v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = w; skip : Unit ∅ ` 1 : Int

∅ ` Int v = 1; v = w; skip : Unit

36

Example

A variable v must be declared to be recorded in the environment, otherwise any rule that tries

to evaluate Γ(v) fails.

{v 7→ Int} ` v + 2 : Int

Int <: Int {v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = v + 2; skip : Unit ∅ ` 1 : Int

∅ ` Int v = 1; v = v + 2; skip : Unit

{v 7→ Int} ` w : Int Int <: Int {v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = w; skip : Unit ∅ ` 1 : Int

∅ ` Int v = 1; v = w; skip : Unit

36

Example

A variable v must be declared to be recorded in the environment, otherwise any rule that tries

to evaluate Γ(v) fails.

{v 7→ Int} ` v + 2 : Int Int <: Int {v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = v + 2; skip : Unit ∅ ` 1 : Int

∅ ` Int v = 1; v = v + 2; skip : Unit

{v 7→ Int} ` w : Int Int <: Int {v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = w; skip : Unit ∅ ` 1 : Int

∅ ` Int v = 1; v = w; skip : Unit

36

Example

A variable v must be declared to be recorded in the environment, otherwise any rule that tries

to evaluate Γ(v) fails.

{v 7→ Int} ` v + 2 : Int Int <: Int {v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = v + 2; skip : Unit ∅ ` 1 : Int

∅ ` Int v = 1; v = v + 2; skip : Unit

{v 7→ Int} ` w : Int Int <: Int {v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = w; skip : Unit ∅ ` 1 : Int

∅ ` Int v = 1; v = w; skip : Unit

36

Example

A variable v must be declared to be recorded in the environment, otherwise any rule that tries

to evaluate Γ(v) fails.

{v 7→ Int} ` v + 2 : Int Int <: Int {v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = v + 2; skip : Unit ∅ ` 1 : Int

∅ ` Int v = 1; v = v + 2; skip : Unit

{v 7→ Int} ` w : Int Int <: Int {v 7→ Int} ` skip : Unit

{v 7→ Int} ` v = w; skip : Unit ∅ ` 1 : Int

∅ ` Int v = 1; v = w; skip : Unit

36

Example

Scoping is implemented by not transferring the updated environment. In our rule for branching,

we type the continuation with the type environment before the branching – all variables

declared within are lost.

∅ ` true : Bool

...
∅ ` Int v = 1; skip : Unit ∅ ` v = 2; skip : Unit

∅ ` if(true){Int v = 1; skip}v = 2; skip : Unit

37

Channel Types

Typing Channels

� From now on, we will not fully define language and give all rules

� Syntax will be Go-like (goroutines, channel operations)

� Real Go-Code will be annotated with Go

Mismatched Message Types

The basic error is that the receiver expects the result to be of a different type than the value

the sender sends. Implemented in Go.

Go

c := make(chan i n t)

go func () { c <− ” f o o ” }
r e s := (<−c) + 1

cannot use "foo" (untyped string constant)

as int value in send

Next: Types, Subtypes, Type System

38

A Simple Type System for Channels

Types

If T is type then chan T is a type.

Variance

Let T <: T′, with T 6= T′. A type constructor C is

� Covariant if C(T) <: C(T′)

� Contravariant if C(T′) <: C(T)

� Invariant if C(T′) 6<: C(T) ∧ C(T) 6<: C(T′)

Subtyping

Channels types are covariant: If T is a subtype of T′ then chan T is a subtype of chan T′.

39

A Simple Type System for Channels

Typing Writing

Γ ` e : chanT Γ ` e′ : T′ T′ <: T
Γ ` e <− e′ : Unit

� First premise types channel

� Second premise types sent value

� Third premise connects via subtyping

Go

type Animal i n t e r f a ce { . . . }
type Cat i n t e r f a ce {Animal . . . } type Car i n t e r f a ce { . . . }

c := make(chan Animal)

go func () { c <− Cat {} }
40

A Simple Type System for Channels

Typing Reading

Γ ` e : chan T’ T’ <: T
Γ ` <− e : T

� Essentially the same as calling a method and reading its result

� Note the inversion of subtyping

Go

type Animal i n t e r f a ce { . . . }
type Cat i n t e r f a ce {Animal . . . } type Car i n t e r f a ce { . . . }

func (c chan Cat) Animal{ return <−c ; }

41

A Glimpse of Input/Output Modes

Beware! The next slides use modified Go-like syntax:

� <-chan becomes chan?

� chan<- becomes chan!

� chan becomes chan!?

Modes

� The previous system makes sure the sent data has the right data, but does not consider

the direction.

� Modes specify the direction of a channel in a given scope

Go

c := make(chan i n t)

go func () { c<−1 }
r e s := (<−c) + 1

42

A Glimpse of Input/Output Modes

Types

Channel types are now annotated with their mode or capability.

T := ...| chanM T M ::= ! | ? | !?

� A channel that can be read: ?

� A channel that can be written: !

� A channel that allows both: !?

Subtyping

We can pass a channel that allows both operation to a more constrained context

chan! T <: chan!? T

chan? T <: chan!? T

43

A Glimpse of Input/Output Modes

� How to use channels with restricted mode !?

� Either use subtyping at every evaluation (like in Go)

� Or use weakening to enforce that subtyping relation is used only once

� This ensures that once a channel is used for reading (writing) once in a thread, then it is

only used for reading (writing) afterwards

f u n c main () {
chn := make (chan ! ? i n t) // ! ?

go r e a d (chn) // ! ?

//weaken chn to chan ! i n t

chn <− v //<− chn would be i l l e g a l

}
f u n c r e a d (c chan ? i n t) i n t { // f o r g e t s ! mode

r e t u r n <−c // c <− 1 would be i l l e g a l

}
44

Input/Output Modes

Weakening Rule

Allows to make a type less specific. This is not just using the T-sub rule – we modify the

stored type in the environment.

Γ, {x 7→ T ′′} ` s : T T ′′ <: T ′
T-weak

Γ, {x 7→ T ′} ` s : T

Other Rules: Read and Write with Modes

Γ ` e : chan! T Γ ` v : T′ T′ <: T
M-write

Γ ` e <− v : Unit

Γ ` e : chan?T
′ T’ <: T

M-read
Γ ` <− e : T

45

Input/Output Modes

Other Rules: Read and Write with Modes

Γ ` e : chan! T Γ ` v : T′ T′ <: T
M-write

Γ ` e <− v : Unit

Γ ` e : chan?T
′ T’ <: T

M-read
Γ ` <− e : T

Important: No subtyping on chan?T
′ and chan1T. A channel must be weakened before it can

be used!

Next Lecture: Typing go func and operations on the type environment.

46

Input/Output Modes

Other Rules: Read and Write with Modes

Γ ` e : chan! T Γ ` v : T′ T′ <: T
M-write

Γ ` e <− v : Unit

Γ ` e : chan?T
′ T’ <: T

M-read
Γ ` <− e : T

Important: No subtyping on chan?T
′ and chan1T. A channel must be weakened before it can

be used!

Next Lecture: Typing go func and operations on the type environment.

46

Input/Output Modes

Other Rules: Read and Write with Modes

Γ ` e : chan! T Γ ` v : T′ T′ <: T
M-write

Γ ` e <− v : Unit

Γ ` e : chan?T
′ T’ <: T

M-read
Γ ` <− e : T

Important: No subtyping on chan?T
′ and chan1T. A channel must be weakened before it can

be used!

Next Lecture: Typing go func and operations on the type environment.

46

Wrap-Up

This Lecture

� General structure of static type systems

� Simple type systems for channels

� Introduction: Modes

Next Lectures

� More on modes

� More complex channel types

� Linear types

� Usage and Session types

� Uniqueness types, towards the ownership system of Rust

47

	Types: Foundations
	A Simple Type System
	Typing Environment and Subtyping
	Types for Statements
	Channel Types

