
Examples of IN5270/IN9270 exam questions
from earlier semesters

IN5270/IN9270 Lecturer

December, 2020

Note:
This note only has the purpose of showing some examples of IN5270/IN9270 exam questions from earlier
semesters. It is not to be considered as a scoping of the course curriculum, which can be found
on the semester webpage. The actual amount of work needed during this semester’s home exam will
approximately equal 2∼3 such questions.

Example question 1
You are asked to approximate the function f (x) = 1+ 2x− x2 in the domain x ∈ [0,1] by the projection
method and using finite element basis functions.

1. Show the details and result of the calculation when a single P2 element is used to cover the domain.

2. Show the details and result of the calculation when two equal-sized P1 elements are used to cover
the domain.

3. Extend the projection method to using N equal-sized P1 elements. Show the details of how to set
up the corresponding linear system. (There’s no need to solve the linear system.)

4. If we want in addition that the approximation result, when using N equal-sized P1 elements, should
attain the same value of f (x) at x = 0 and x = 1, what are the changes needed in the calculation
above?

High-level solution suggestions

1.1: Recall that the general formula for setting up the needed linear system Ac = b is that each entry in
the matrix A is computed by Ai, j =

∫
Ω

ϕi(x)ϕ j(x)dx and each entry in the right-side vector b is computed
by bi =

∫
Ω

f (x)ϕi(x)dx.
The actual expression for the three P2 basis functions can either be derived directly (by using the

physical coordinates of the three nodes x0 = 0, x1 = 1
2 , x2 = 1) or mapped from the standardised basis

functions that are pre-defined using the reference local coordinate X ∈ [−1,1]. Here, the mapping is given
by x = xm+ h

2X or, the other way around, X = 2
h(x−xm). Remark that xm is the physical coordinate of the

mid-point of an element, which is xm = 1
2 for the case of a single P2 element covering the physical domain
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x ∈ [0,1]. The value h is the actual length of the element, which in this case is h = 1. Note: Details of the
3×3 matrix A and the right-hand side vector b are not given here, neither is the resulting c vector after
solving the linear system Ac = b.

1.2: Here, it is recommended to compute the element matrices and vectors for the two P1 elements
separately. (Actually, the element matrix remains the same.) Also, mapping to the standardised reference
element is recommended (although strictly speaking not absolutely necessary for this two-element case).
The resulting 3×3 linear system (by assembling the element matrices and vectors) is different from that
of Task 1.1. Note: The actual details are not given here.

1.3: Here, it is beneficial to map the computation of the element matrices and vectors to the standardised
reference element. Note that now each element is of length h = 1/N. For element e, 0 ≤ e < N, which
spans from x = eh to x = (e+ 1)h, the midpoint is thus xm = (e+ 1

2)h. The details are not given about
the resulting (N +1)× (N +1) linear system, which arises from assembling all the element matrices and
vectors.

1.4: The only change needed for the (N+1)× (N+1) linear system from above is to replace the first and
last equation with c0 = 1+2 ·0−02 = 1 and cN = 1+2 ·1−12 = 2, respectively.

Example question 2
You are asked to solve the 1D Poisson equation

−uxx = 1, 0 < x < 1

by a finite difference method. On the left boundary point of x= 0, the following mixed boundary condition

ux +Cu = 0

is valid, where C is a scalar constant. On the right boundary point of x = 1, the Dirichlet boundary
condition u = D is valid. We assume that a uniform mesh of N +1 points is used by the finite difference
method.

1. Discretize the Poisson equation on all the N−1 interior points.

2. Discretize the left boundary condition using appropriate finite differencing.

3. Show the details of setting up a linear system Au = b which can be used to find the approximations
of u(x) on the mesh points. (There’s no need to solve the linear system.)

4. How would you validate that the obtained numerical solutions converge towards the exact solution,
when the number of mesh points is increased? What is the expected convergence speed?

High-level solution suggestions

2.1: On each interior point, the finite difference discretisation result is simply −ui−1−2ui+ui+1
h2 = 1.
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2.2: We need to combine the finite difference discretisation of the boundary condition at the left boundary
point, u1−u−1

2h +Cu0 = 0, with−u−1−2u0+u1
h2 = 1, for the purpose of eliminating the temporarily introduced

“ghost” value u−1. Note: The actual details are not fully given here.

2.3: It is simply achieved by combining the result from Task 2.2 (for i = 0), with the result from Task 2.1
(for i = 1,2, . . . ,N−1), and uN = D to form a (N +1)× (N +1) linear system.

2.4: The basic idea is to check the speed of convergence for the L2 norm of the error, that is, the difference
between the exact solution (which can be derived, details not shown here) and the numerical solution. This
will require a sequence of experiments with finer and finer mesh resolution h, as well as using a numerical
integration rule (such as the trapezoidal rule) to approximately calculate the L2 norm of the error. (The
latter is because we only know the numerical solution at the discrete mesh points in a finite difference
method.) The expected convergence rate is second-order with respect to h.

Example question 3
The following 1D stationary convection diffusion equation

ux = εuxx

is to be solved by finite differencing in the domain 0 < x < 1, where ε > 0 is a given constant and the
boundary conditions are u(0) = 0 and u(1) = 1.

1. Show that the above equation has u(x) =
1− ex/ε

1− e1/ε
as its exact solution.

2. Assume a uniform mesh that consists of N +1 points: x0, x1, . . ., xN , where xi = i ·h. Use centered
finite differences to discretize the equation, and show the details of how to set up the resulting linear
system. (There’s no need to solve the linear system.)

3. Prove that the analytical solution of the centered finite difference scheme is of form ui = C1βi
1 +

C2βi
2, where β1 = 1 and β2 =

1+ h
2ε

1− h
2ε

. The values of C1 and C2 should be determined using the

boundary conditions. What is the stability condition for the numerical solution?

4. Derive another numerical scheme where the convection term ux is discretized by so-called upwind
finite difference. That is, ux is approximated at x = xi by

ui−ui−1

h

Any advantage and/or disadvantage of this numerical scheme in comparison with the above scheme?

High-level solution suggestions

3.1: This is straightforwardly done by inserting u(x) =
1− ex/ε

1− e1/ε
into the equation and verify that it per-

fectly fits. Remember to also verify that the boundary conditions are satisfied. Note that the exact solution
is monotonly increasing.
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3.2: Using centered finite difference will give ui+1−ui−1
2h = ε

ui+1−2ui+ui−1
h2 on each interior mesh point, which

can be rewritten as (−h−2ε)ui−1 +4εui +(h−2ε)ui+1 = 0. Using this for i = 1,2, . . . ,N−1, combined
with u0 = 0 and uN = 1, will give a (N +1)× (N +1) linear system.

3.3: It is noted that (−h− 2ε)ui−1 + 4εui +(h− 2ε)ui+1 = 0 is also a homogeneous difference equation
with constant coefficients. The mathematical theory says that the general solution of such difference
equations is Cβi. To determine the possible values of β, we replace ui−1 with Cβi−1, ui with Cβi and ui+1
with Cβi+1. Then we will get a quadratic polynomial equation (h−2ε)β2 +4εβ− (h+2ε) = 0. Solving

this quadratic equation will give two roots, namely, β1 = 1 and β2 =
1+ h

2ε

1− h
2ε

. The values of C1 and C2 can

be determined using the boundary conditions. There is a limit of how large h can be, because if h exceeds
2ε, the numerical solution will exhibit an unwanted oscillatory feature (due to β2 < 0), thus considered
numerically unstable. Note: The details are not fully given here.

3.4: Note: The details are not given here, but the take-home message is that the change in the discretisa-
tion of ux will lead to a different quadratic polynomial equation that have positive values for both β1 and
β. The numerical scheme is thus unconditionally stable, at the cost of lower accuracy.

Example question 4
We consider the following nonlinear diffusion equation (which is applicable for multiple space dimen-
sions):

∂u
∂t

= ∇ · (α(x, t)∇u)+ f (u) x ∈Ω, t ∈ (0,T ],

u(x,0) = I(x) x ∈Ω,

∂u
∂n

= g x ∈ ∂Ω, t ∈ (0,T ].

Note: ∂u
∂n denotes the outward normal derivative on the boundary ∂Ω, and g is a constant.

1. Use the Crank-Nicolson scheme in time and show the resulting time discrete problem for each time
step.

2. Formulate Picard iterations to linearize the time discrete problem.

3. Use the Galerkin method to discretize the stationary linear PDE per Picard iteration. Show the
details of how to derive the corresponding variational form.

4. Restrict now the spatial domain to the 1D case of x∈ (0,1), let α be a constant and choose f (u)= u2.
(The boundary conditions are now ux = −g at x = 0 and ux = g at x = 1.) Suppose the 1D spatial
domain consists of N equal-sized P1 elements. Carry out the calculation in detail for computing the
element matrix and vector for the leftmost P1 element.

5. What is the resulting global linear system Ax = b?

High-level solution suggestions
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4.1: u`−u`−1

∆t = 1
2

(
∇ · (α(x, t`)∇u`)+ f (u`)+∇ · (α(x, t`−1)∇u`−1)+ f (u`−1)

)
4.2: u`,k−u`−1

∆t = 1
2

(
∇ · (α(x, t`)∇u`,k)+ f (u`,k−1)+∇ · (α(x, t`−1)∇u`−1)+ f (u`−1)

)
for k = 1,2, . . . until

convergence on time level t`. Note: This is a stationary linear PDE per Picard iteration. For the initial
guess per time step, we will use u`,0 = u`−1.

4.3: The main idea is to multiply the stationary linear PDE per Picard iteration (from above) with v ∈ V
and integrate over the entire domain. Using integration by parts (in multiple dimensions, also called
Green’s first identify) will result in the weak variational formulation. Note: Details are not given here.

4.4: Details are not given here.

4.5: Details are not given here.

Example question 5
You are asked to solve the 2D Poisson equation:

−∇ ·∇u = 2

in the unit square (x,y) ∈ [0,1]2. A homogeneous Neumann condition ∂u
∂n = 0 applies on the entire bound-

ary ∂Ω (which has four sides: y = 0, x = 1, y = 1, x = 0).
We will use a 2D uniform mesh consisting of M×N elements (N elements in the x direction, M

elements in the y direction), which all adopt bilinear basis functions.

1. Use the Galerkin method, derive the variational form of the above PDE in detail.

2. What are the degrees of freedom and how many are they in total? How would you number the
degrees of freedom, with respect to the rows in a global linear system to be set up?

3. Describe in detail how the bilinear basis functions ϕ̃0(X ,Y ), ϕ̃1(X ,Y ), ϕ̃2(X ,Y ) and ϕ̃3(X ,Y ) are
defined in a reference cell (X ,Y ) ∈ [−1,1]2.
(Hint: Each basis function is of the form (aX + b) · (cY + d) with suitable choices of the a,b,c,d
scalar values.)

4. For element number e, how can the physical coordinates (x,y) be mapped from the local coordinates
(X ,Y ) of the reference cell?

5. Compute the element matrix and vector for element number e, with help of the reference cell.

High-level solution suggestions

5.1: The weak variational formulation is
∫

Ω
∇u ·∇vdx =

∫
Ω

2vdx for all v∈V . Note: Green’s first identify
has been used, which also indirectly enforces the homogeneous Neumann boundary condition. The details
are not fully given here.

5.2: The number of degrees of freedom is (M+1)(N +1), the same as the number of mesh nodes. Each
degree of freedom c j is the weight of the corresponding basis function ϕ j(x,y), altogether giving the
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numerical solution u(x,y) = ∑c jϕ j(x,y). The easiest 1D numbering scheme of the degrees of freedom is
to go through all the mesh nodes row-by-row, from bottom to top.

5.3: Note: Details are not shown here, but the idea is to find suitable values of a,b,c,d such that each
basis function attains value 1 on its corresponding node and zero on the other three nodes.

5.4: For a uniform 2D mesh of rectangular elements, the simplest mapping from the reference local
coordinates (X ,Y ) ∈ [−1,1]2 to the physical coordinates is given by x = xm + ∆x

2 X and y = ym + ∆y
2 Y ,

where ∆x = 1/N and ∆y = 1/M.

5.5: Note: Details are not shown here, but it is worth mentioning that ∇ϕ j ·∇ϕi in 2D is ∂ϕ j
∂x

∂ϕi
∂x +

∂ϕ j
∂y

∂ϕi
∂y .

For carrying out the element-wise computation using the standardised reference element we need to use
the mapping from Task 5.4.
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