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Course content (from the official course description)

The course provides a thorough introduction to design, analysis
(both theoretical and empirical), and programming of difference
and elemental methods to solve differential equations.

In addition, the subject also includes verification and software
testing for these numerical methods.



Curriculum

Stand-alone module: Finite Difference Computing with
Exponential Decay Models
Testbook 1: Finite Difference Computing with PDEs

Chapters 1, 2 & 5 (full overlap with Chapter 10 in Textbook 2)
Textbook 2: Introduction to Numerical Methods for
Variational Problems

Chapters 3, 4, 5, 6, 7 & 10
(Note: The numbering of the chapters follows the
bookmanuscript available online)

Please read the semester webpage for more info about the most
important parts in the different chapters.



Expected learning outcome

You’ll know some of the most common differential equations.
You’ll have mastered the basic steps in constructing and
applying the difference and element methods to simple
representative examples of differential equations.
You’ll have good knowledge of programming techniques for
implementing difference and element methods in simple 1D
cases and for the use of selected software in simple 2D and 3D
cases.
You’ll have basic knowledge of theoretical and empirical
analysis of the difference and elemental methods for accuracy
and stability.
You’ll have good knowledge of verification and software testing
of the difference and elemental methods.



Finite difference methods

The finite difference method is the simplest method for solving
differential equations
A very useful tool to know, even if you mainly aim at using the
finite element



Finite difference methods

Key concepts:

mesh
mesh function
finite difference approximations

The steps in the finite difference method:

1 discretizing the domain,
2 fulfilling the equation at discrete time points,
3 replacing derivatives by finite differences,
4 formulating a recursive algorithm or a system of (non)linear

algebraic equations



FDM for a basic model for exponential decay

The world’s simplest ordinary differential equation (ODE):

u′(t) = −au(t), u(0) = I , t ∈ (0,T ]

Although we know the exact solution of this mathematical model,
it serves as an illustrating example of FDM.



The unifying θ-rule (for the finite differencing schemes)

The Forward Euler, Backward Euler, and Crank-Nicolson schemes
can be formulated as one scheme with a varying parameter θ:

un+1 − un

tn+1 − tn
= −a(θun+1 + (1− θ)un) (1)

θ = 0: Forward Euler
θ = 1: Backward Euler
θ = 1/2: Crank-Nicolson

For this ODE, we can recursively solve for un+1 when un is known:

un+1 =
1− (1− θ)a(tn+1 − tn)

1 + θa(tn+1 − tn)
un (2)



Verifying an implementation

How can you ensure that an implementation of a numerical method
is correct?

Verification = bring evidence that the program works
Find suitable test problems

Often very useful: The method of manufactured solutions



Computing the norm of the error

The numerical error en (known at different time levels tn) is a
mesh function
Usually we want one number to quantify the error
Compute approximately a norm of the numerical error

Recall: Norms of a function f (t) defined over the entire domain
t ∈ [0,T ]:

||f ||L2 =

(∫ T

0
f (t)2dt

)1/2

(3)

||f ||L1 =

∫ T

0
|f (t)|dt (4)

||f ||L∞ = max
t∈[0,T ]

|f (t)| (5)



Norms of mesh functions

Problem: en = e(tn) is a mesh function and hence not defined
for all t. How to integrate e which is only known at discrete
time levels?
Idea: Apply a numerical integration rule, using only the mesh
points of the mesh function.

The trapezoidal rule for approximately computing L2 norm of e:

||e||L2 ≈

(
∆t

(
1
2

(e0)2 +
1
2

(eNt )2 +
Nt−1∑
n=1

(en)2

))1/2

Common simplification yields the L2 norm of a mesh function:

||e||L2 ≈

(
∆t

Nt∑
n=0

(en)2

)1/2



Even a correct implementation sometimes may not work!

For the ODE model of exponential decay, we can observe that the
Forward Euler and Crank-Nicolson schemes may produce (growing)
oscillating solutions, which don’t agree with the monotonly
decaying exact solution.

We ask the question (about stability):

Under what circumstances, i.e., values of the input data I , a,
and ∆t, will the Forward Euler and Crank-Nicolson schemes
result in undesired oscillatory solutions?

Another question (about accuracy) to be raised is

How does ∆t impact the error in the numerical solution?

Details can be found in the stand-alone module.



FDM for the simple ODE model of vibration

u′′(t) + ω2u = 0, u(0) = I , u′(0) = 0, t ∈ (0,T ]

Again, although we know the exact solution ue(t) = I cos(ωt), this
ODE model is used as another illustrating example of FDM.

The resulting discrete equation at t = tn:

un+1 − 2un + un−1

∆t2
+ ω2un = 0

This will give a recursive algorithm for computing un+1 when un

and un−1 are known.



Computing the first step

Discretize u′(0) = 0 by a centered difference

u1 − u−1

2∆t
= 0 ⇒ u−1 = u1

Inserted in the scheme for n = 0 gives

u1 = u0 − 1
2

∆t2ω2u0



Analysis: deriving an exact solution of the discrete equations

We have a linear, homogeneous, difference equation for un.
Has solutions un ∼ IAn, where A is unknown (number).
Trick for simplifying the algebra: un = IAn, with
A = exp (i ω̃∆t), then find ω̃
ω̃: unknown numerical frequency (easier to calculate than A)
ω − ω̃ is the angular frequency error
Use the real part as the physical relevant part of a complex
expression



Expected exact solution of the discrete equations

un = IAn = I exp (i ω̃∆t n) = I exp (i ω̃t) = I cos(ω̃t) + iI sin(ω̃t)

un+1 − 2un + un−1

∆t2
= I

An+1 − 2An + An−1

∆t2

= I
exp (i ω̃(t + ∆t))− 2 exp (i ω̃t) + exp (i ω̃(t −∆t))

∆t2

= I exp (i ω̃t)
1

∆t2
(exp (i ω̃(∆t)) + exp (i ω̃(−∆t))− 2)

= I exp (i ω̃t)
2

∆t2
(cos(ω̃∆t)− 1)

= −I exp (i ω̃t)
4

∆t2
sin2

(
ω̃∆t

2

)



Solving for the numerical frequency

The discrete equation with un = I exp (i ω̃∆t n) = I exp (i ω̃t)
inserted gives

−I exp (i ω̃t)
4

∆t2
sin2

(
ω̃∆t

2

)
+ ω2I exp (i ω̃t) = 0

which after dividing by I exp (i ω̃t) results in

4
∆t2

sin2
(
ω̃∆t

2

)
= ω2

Solve for ω̃:

ω̃ = ± 2
∆t

sin−1
(
ω∆t

2

)
We can thus find the accuracy of ω̃ and the stability
requirement, both dependent on ∆t. (Read Section 1.4 of
Textbook 1 for details.)



FDM for a simple wave equation

∂2u

∂t2
= c2∂

2u

∂x2 , x ∈ (0, L), t ∈ (0,T ] (6)

u(x , 0) = I (x), x ∈ [0, L] (7)
∂

∂t
u(x , 0) = 0, x ∈ [0, L] (8)

u(0, t) = 0, t ∈ (0,T ] (9)
u(L, t) = 0, t ∈ (0,T ] (10)

Standard finite differencing:

un+1
i − 2uni + un−1

i

∆t2
= c2 u

n
i+1 − 2uni + uni−1

∆x2 , (11)

also need to handle initial and boundary conditions



Analysis of the difference equations

Mathematical analysis can be used to study both the accuracy and
stability of the finite difference scheme.

Details can be found in Section 2.10 of Textbook 1.



Combining prescribed basis functions for approximation

General idea of finding an approximation u(x) to some given f (x)
on a domain Ω:

u(x) =
N∑
i=0

ciψi (x)

where

ψi (x) are prescribed functions that span function space V

ci , i = 0, . . . ,N, are unknown coefficients to be determined

There are three approaches:

The least squares method
The projection (or Galerkin) method (main focus)
The interpolation (or collocation) method



The projection (or Galerkin) method

Minimizing the error e(x) = f (x)− u(x), which is known on every
point in the domain Ω, is achieved by requiring

(e, ψi ) ≡
∫

Ω
e(x)ψi (x)dx = 0, i ∈ Is

which is equivalent to

(e, v) = 0, ∀v ∈ V

Using v = ψi , for i = 0, 1, . . . ,N, we will get a linear system∑
j∈Is

Ai ,jcj = bi , i ∈ Is , Ai ,j = (ψi , ψj), bi = (f , ψi )



The collocation or interpolation method

Another idea for approximating f (x) by u(x) =
∑

j cjψj :

Force u(xi ) = f (xi ) at some selected collocation points
{xi}i∈Is
Then u is said to interpolate f

The method is known as interpolation or collocation

u(xi ) =
∑
j∈Is

cjψj(xi ) = f (xi ) i ∈ Is

This will result in a linear system with no need for integration:∑
j∈Is

Ai ,jcj = bi , i ∈ Is (12)

Ai ,j = ψj(xi ) (13)
bi = f (xi ) (14)



Lagrange polynomials

The Lagrange interpolating polynomials ψj are defined as

ψi (x) =
N∏

j=0,j 6=i

x − xj
xi − xj

=
x − x0

xi − x0
· · · x − xi−1

xi − xi−1

x − xi+1

xi − xi+1
· · · x − xN

xi − xN

They have the property that

ψi (xj) = δij , δij =

{
1, i = j
0, i 6= j

Lagrange polynomials are thus very convenient for the
interpolation method.
Moreover, Lagrange polynomials are heavily used to define
finite element basis functions.



FEM uses basis functions with local support

Local support: ψi (x) 6= 0 for x only in a small subdomain of Ω

u(x) constructed by such “locally-supported” basis functions is
a piecewise polynomial defined over many (small) subdomains
We introduce ϕi as the name of these finite element functions
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Elements and nodes

Split Ω into Ne non-overlapping subdomains called elements:

Ω = Ω(0) ∪ · · · ∪ Ω(Ne−1)

On each element, use a certain number of points called nodes:

The finite element basis functions are named ϕi (x)

ϕi = 1 at node i and 0 at all other nodes
ϕi is a Lagrange polynomial on each element
For nodes at the boundary between two elements, ϕi is made
up of a Lagrange polynomial over each element



Example on elements with two nodes (P1 elements)
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Example on elements with three nodes (P2 elements)

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0



Interpretation of the coefficients ci

Important property: ci is the value of u(x) at node i , with
coordinate xi :

u(xi ) =
∑
j∈Is

cjϕj(xi ) = ciϕi (xi ) = ci

This is because ϕj(xi ) = 0 if i 6= j and ϕi (xi ) = 1.

Note: It is possible to evaluate u(x) =
∑

j∈Is cjϕj(x) for any x
inside the domain.



Properties of the basis functions

ϕi (x) 6= 0 only on those elements that contain global node i

ϕi (x)ϕj(x) 6= 0 if and only if i and j are global node numbers
in the same element

Since Ai ,j =
∫
ϕi (x)ϕj(x) dx , most of the elements in the

coefficient matrix will be zero

i+1ii−1i−2

x

ϕi−1 ϕi



Split the integrals into elementwise integrals

Ai ,j =

∫
Ω
ϕiϕjdx =

∑
e

∫
Ω(e)

ϕiϕjdx , A
(e)
i ,j =

∫
Ω(e)

ϕiϕjdx

Important observations:

A
(e)
i ,j 6= 0 if and only if i and j are nodes in element e

(otherwise no overlap between the basis functions)

All the nonzero entries in A
(e)
i ,j can be collected in a

“condensed” element matrix, Ã(e)
r ,s , whose number of rows and

columns equals the number of nodes in element e
The element matrix has contributions from the ϕi functions
associated with the nodes in element
It is convenient to introduce a local numbering of the nodes in
an element: r , s = 0, 1, . . . , d



Illustration of the matrix assembly: regularly numbered P1
elements



Mapping to a reference element

Instead of computing

Ã
(e)
r ,s =

∫
Ω(e)

ϕq(e,r)(x)ϕq(e,s)(x)dx

we now map Ω(e) = [xL, xR ] to a standardized reference element
domain [−1, 1] with local coordinate X

x =
1
2

(xL + xR) +
1
2

(xR − xL)X



Integral transformation

Reference element integration: just change integration variable
from x to X . Introduce local basis function

ϕ̃r (X ) = ϕq(e,r)(x(X ))

Ã
(e)
r,s =

∫
Ω(e)

ϕq(e,r)(x)ϕq(e,s)(x)dx =

1∫
−1

ϕ̃r (X )ϕ̃s(X )
dx

dX︸︷︷︸
det J=h/2

dX =

1∫
−1

ϕ̃r (X )ϕ̃s(X ) det J dX

b̃
(e)
r =

∫
Ω(e)

f (x)ϕq(e,r)(x)dx =

1∫
−1

f (x(X ))ϕ̃r (X ) det J dX



Advantages of the reference element

Always the same domain for integration: [−1, 1] in 1D cases
We only need formulas for ϕ̃r (X ) over one element (no need
for piecewise polynomial definition)
ϕ̃r (X ) is the same for all elements: no dependence on element
length and location, which is “factored out” in the mapping
and det J



Standardized basis functions for P1 elements

ϕ̃0(X ) =
1
2

(1− X ) (15)

ϕ̃1(X ) =
1
2

(1 + X ) (16)

Note: simple polynomial expressions (no need to consider
piecewisely defined functions)



Standardized basis functions for P2 elements

ϕ̃0(X ) =
1
2

(X − 1)X (17)

ϕ̃1(X ) = 1− X 2 (18)

ϕ̃2(X ) =
1
2

(X + 1)X (19)

Easy to generalize to arbitrary order!



Variational form of PDE; notation

ue(x) is the exact solution of L(ue) = 0 and Bi (ue) = 0
u(x) denotes an approximate solution
V = span{ψ0(x), . . . , ψN(x)}, V has basis {ψi}i∈Is
We seek u ∈ V

Is = {0, . . . ,N} is an index set
u(x) =

∑
j∈Is cjψj(x)

Inner product: (u, v) =
∫

Ω uv dx

Norm: ||u|| =
√

(u, u)



Residual-minimizing principles

When solving a PDE of the form L(ue) = 0, we do not know
ue and thus cannot work directly with the error e = ue − u

We know, however, the error in the equation: the residual R

Inserting u =
∑

j cjψj(x) in L = 0 gives a residual R , which is a
function of x inside Ω

L(u) = L

∑
j

cjψj(x)

 = R(x) 6= 0

Goal: minimize R with respect to {ci}i∈Is (and hope it makes a
small e too)

R = R(c0, . . . , cN ; x)



The Galerkin method

Idea: make R orthogonal to V ,

(R, v) = 0, ∀v ∈ V

This implies

(R, ψi ) = 0, i ∈ Is

N + 1 equations for N + 1 unknowns {ci}i∈Is



Terminology: Test and trial functions

ψj used in
∑

j cjψj is called trial function
ψi that is used as weight in Galerkin’s method is called test
function



Boundary conditions

u known: Dirichlet boundary condition
u′ known: Neumann boundary condition
Must have ψi = 0 where Dirichlet conditions apply



Integration by parts has many advantages

Second-order derivatives should be integrated by parts, for example,∫ L

0
u′′(x)v(x)dx = −

∫ L

0
u′(x)v ′(x)dx + [vu′]L0

= −
∫ L

0
u′(x)v ′(x)dx + u′(L)v(L)− u′(0)v(0)

Motivation:

Lowers the order of derivatives
Gives more symmetric forms (incl. matrices)
Enables easy handling of Neumann boundary conditions
Finite element basis functions ϕi have discontinuous
derivatives (at cell boundaries) and are not suited for terms
with ϕ′′i



We use a boundary function to deal with non-zero Dirichlet
boundary conditions

What about nonzero Dirichlet conditions? Say u(L) = D

We always require ψi (L) = 0 (i.e., ψi = 0 where Dirichlet
conditions applies)
Problem: u(L) =

∑
j cjψj(L) =

∑
j cj · 0 = 0 6= D - always!

Solution: u(x) = B(x) +
∑

j cjψj(x)

B(x): user-constructed boundary function that fulfills the
Dirichlet conditions
If u(L) = D, make sure B(L) = D

No restrictions of how B(x) varies in the interior of Ω



The resulting linear system

Example:

−u′′ = f , u′(0) = C , u(L) = D, u = D +
∑
j

cjψj

Variational formulation:∫
Ω
u′v ′dx =

∫
Ω
fvdx − v(0)C ∀v ∈ V

Resulting linear system Ac = b

A = (Aij), Aij =

∫
Ω
ψ′j(x)ψ′i (x)dx

b = (bi ), bi =

∫
Ω
f (x)ψi (x)dx − ψi (0)C



Computing with finite elements

Finite element basis function ϕj replaces ψj .

How to deal with the boundary conditions? We must enforce
ϕi = 0 at the Dirichlet part of the boundary.

Example: u(0) = 0 and u(L) = 0. We just exclude ϕ0 and ϕNn−1
and work with

u =
∑
j∈Is

cjϕν(j), ν(j) = j + 1



General construction of a boundary function

In case of nonzero Dirichlet conditions, with finite element basis
functions, ϕi , B(x) can be constructed in a completely general way.

Define

Ib: set of indices with nodes where u is known
Ui : Dirichlet value of u at node i , i ∈ Ib

The general formula for B is now

B(x) =
∑
j∈Ib

Ujϕj(x)

The approximation u(x) is thus of the form:

u =
∑
j∈Is

cjϕν(j) +
∑
j∈Ib

Ujϕj



Cellwise computation & reference element

Cellwise computation: Each elements computes an element
matrix and vector. These are later assembled to the global linear
system.

Use of a reference element (X ∈ [−1, 1]) is based on a mapping
from the physical coordinate x to the reference local coordinate X .

Please refer to Section 6.1.4 in the manuscript of Textbook 2.



Variational form for time-dependent PDEs

First, use finite differencing to discretize the time derivative(s).
Then, treat the resulting time discrete equation as a stationary
PDE at each time level, to be solved by the finite element
method in space

Important details can be found in Chapter 7 in the manuscript of
Textbook 2.



Solving nonlinear ODE and PDE problems
This is the last topic taught in this course, so the students are
expected to have a rather fresh memory of the important contents.

Nonlinear ODE (system) or time-dependent nonlinear PDE
Explicit time integration – one way of linearization
Implicit time integration applied to nonlinear ODE (system) –
a (system of) nonlinear algebraic equation(s) per time step
Implicit time integration applied to time-dependent nonlinear
PDE – a stationary nonlinear PDE per time step

To solve a stationary nonlinear PDE
FDM or FEM for spatial discretization – giving rise to a system
of nonlinear algebraic equations
Another approach: linearization at the differential equation
level

Newton’s method is the most general approach to solving
nonlinear algebraic equations
Picard iterations are in some cases easier to apply

Important details can be found in Chapter 10 in the manuscript of
Textbook 2.


