
Finite difference simulation of 2D waves

Obligatory project No. 1 in IN5270/IN9270

Note: The original project text from August 29, 2020 had a couple of minor
errors. These are now corrected, marked in color red.

1 General information
• Collaboration/discussion among students is encouraged, but each stu-
dent should submit a set of files, including a project report, which are
programmed/written by her/himself.

• Please organize the your submission as a directory named wave_project
to hold all your files of this project. Make suitable subdirectories. Include
a README file with a short overview of the different files. (Info about
when, where and how to make the submission will be given at the semester
webpage.)

• Write a short report summarizing the main results. LATEX is probably the
preferred format, but there are several other options1 too. Regardless of
format, the report must be in an easy-to-read format like PDF or HTML
(or Jupyter notebook).

Background material

Main source of information.
The various building blocks needed in this project can be found in Chapter
2 of the OpenAccess textbook Finite Difference Computing with PDEs.

Depending on your familiarity with finite difference methods before this
course, it might be useful to consult Chapter 1 of the same textbook, which
describes the fundamentals of the time discretization needed in the present
project.

1http://hplgit.github.io/teamods/writing_reports/index.html

http://hplgit.github.io/teamods/writing_reports/index.html
https://link.springer.com/book/10.1007%2F978-3-319-55456-3


2 The core parts of the project
2.1 Mathematical problem
The project addresses the two-dimensional, standard, linear wave equation, with
damping,
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in a rectangular spatial domain Ω = [0, Lx]× [0, Ly]. The associated boundary
condition is the homogeneous Neumann condition
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∂n
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The initial conditions are

u(x, y, 0) = I(x, y), (3)
ut(x, y, 0) = V (x, y) . (4)

2.2 Discretization
Derive the discrete set of equations to be implemented in a program:

• the general scheme for computing un+1
i,j at interior spatial mesh points,

• the modified scheme for the first step,

• the modified scheme at boundary points (first step and subsequent steps),
unless you use the interior scheme also at the boundary with extra ghost
cells.

2.3 Implementation
Implement the numerical method for the PDE problem in a program. You may
use wave2D_u0.py2 as a starting point (this program solves the 2D wave equation
with constant wave velocity and u = 0 on the boundary and is explained in the
textbook). It is optional to also include a vectorized version of the implemention,
in addition to a scalar (pointwise) version.

3 Verification
3.1 Constant solution

1. Construct a test case with constant solution u(x, y, t) = U , where U is a
non-zero constant. (Hint: Fit the parameters f , b, I, and V such that

2http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0.py
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u(x, y, t) = U fulfills the PDE problem. For simplicity, you can choose
q(x, y) = 1.)

2. Show that the constant solution is also an exact solution of the discrete
equations.

3. Make a test function to verify your code for this special case.

4. Inject at least two types of possible bugs in the implementation of the
mathematical formulas. See how many of them that lead to a wrong
non-constant solution.

3.2 Standing, undamped waves
The goal here is to compute the error and see how it approaches zero as
∆t,∆x,∆y → 0, with the help of an exact analytical solution of the PDE.
(Please read about “Method of manufactured solution” in the textbook.)

With no damping (b = 0) and constant wave velocity (q(x, y) being a
constant), our wave equation problem without any source term (f(x, y, t) = 0)
admits a standing wave solution:

ue(x, y, t) = A cos(kxx) cos(kyy) cos(ωt), kx = mxπ

Lx
, ky = myπ

Ly
, (5)

for arbitrary amplitude A, arbitrary integers mx and my, and a suitable choice
of ω. This solution can be used to test the convergence rate of the numerical
method.

Compute the true error en
i,j = ue(xi, yj , tn)−un

i,j on a series of refined meshes.
The physical parameters (A, mx, my) can be kept at some chosen values. A
suitable error norm can be
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Introduce a common discretization parameter h such that ∆t, ∆x, and ∆y are
proportional to h. This leads to an error model E = Ĉhr for constant Ĉ and
r. Theoretical analysis (e.g., via truncation errors) leads to the convergence
rate r = 2. Compute a sequence of r values by comparing two consecutive
experiments (as shown in the course material) and see if r approaches 2.

3.3 Waves with damping and variable wave velocity
Choose a non-constant q(x, y) and find f(x, y, t), along with suitable choices of
A, B, ω and d, such that the following formula

ue(x, y, t) = (A cos(ωt) +B sin(ωt)) e−dt cos(kxx) cos(kyy), kx = mxπ

Lx
, ky = myπ

Ly

(6)
is a solution to the general 2D wave equation problem with damping and variable
wave velocity. Find corresponding I(x, y) and V (x, y), and make a convergence
test that recovers the expected convergence rate.
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Hint. You may want to explore sympy for automating the analytical work.
The following is an example of how to use sympy:

>>> from sympy import *
>>> x = Symbol(’x’)
>>> q=x**2
>>> u=sin(x)
>>> r = diff(q*diff(u, x), x) # Derivative: (q*u_x)_x
>>> simplify(r)
x*(-x*sin(x) + 2*cos(x))

4 Investigate a physical problem
The purpose of this part is to explore what happens to a wave (non-damping, zero
source term) that enters a medium with different wave velocities. A particular
physical interpretation can be wave propagation of a tsunami over a subsea
hill. The unknown u(x, y, t) is then the elevation of the ocean surface, and the
boundary condition ∂u/∂n = 0 means that the waves are perfectly reflected,
because of a steep hill at the shore, or the condition expresses symmetry in
the solution. The square of the wave velocity is in this case given by q(x, y) =
gH(x, y), where g is the acceleration of gravity and H(x, y) is the stillwater
depth.

Hint: It can be wise to take a look at Problem 2.24 in the textbook first,
because that 1D program, which corresponds to the present 2D problem, allows
for much faster experimentation with parameters and effects.

The initial surface (which is symmetric in the y direction) is taken as a
smooth Gaussian function

I(x; I0, Ia, Im, Is) = I0 + Ia exp
(
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)2
)
, (7)

with x = Im reflecting the location of the peak of I(x) and Is being a measure
of the width of the function I(x) (Is is

√
2 times the standard deviation of

the familiar normal distribution curve). The second initial condition adopts
V (x, y) = 0.

Three different bottom shapes can be investigated (such that H(x, y) =
H0 −B(x, y)). A 2D Gaussian hill can be modeled by

B(x, y;B0, Ba, Bmx, Bmy, Bs, b) = B0+Ba exp
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,

(8)
where b is a scaling parameter: b = 1 gives a circular Gaussian function with
circular contour lines, while b 6= 1 gives an elliptic shape with elliptic contour
lines.

A less smooth hill is modeled by the "cosine hat" function
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B(x, y;B0, Ba, Bmx, Bmy, Bs) = B0 +Ba cos
(
π
x−Bmx
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)
cos
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,

(9)
when 0 ≤

√
(x−Bmx)2 + (y −Bmy)2 ≤ Bs and B = B0 outside this circle.

A more dramatic hill shape is a box:

B(x, y;B0, Ba, Bm, Bs, b) = B0 +Ba (10)

for x and y inside a rectangle

Bmx −Bs ≤ x ≤ Bmx +Bs, Bmy − bBs ≤ y ≤ Bmy + bBs,

and B = B0 outside this rectangle. The b parameter controls the rectangular
shape of the cross section of the box.

Investigate how different hill shapes, different sizes of the water gap above
the hill, and different resolutions ∆x = ∆y = h and ∆t influence the numerical
quality of the solution. One anticipates that the less smooth hill shapes will
introduce more numerical noise. Presenting the results as movies (or series of
plots) of the surface elevation is effective.
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