
A guide to using git with SSH
IN5320

Introduction
Git is a version control system for tracking changes to source code. You work
with it by fetching, committing, and pushing changes to a repository. Depending
on how the repository is set-up, you might need to authenticate yourself when
performing some of these actions. By default, git will prompt you for a user-
name and password when this is the case. In the long run, this might become
quite a cumbersome task.

An alternativeway of authenticating yourself is to use an SSH-key. By setting
up the keys and configuring your local repository to use SSH, all authenticated
actions can be performed without needing to specify your username and pass-
word. Additionally, if no passphrase is supplied when generating the SSH-key,
then the authentication process can happen seemlessly in the background.

What is an SSH-key?
An SSH-key is actually a pair of keys: a public key; and a private key. They are
like a keyhole and its matching key. By handing someone your public key, you
will later be able to prove your identity to them—authenticate yourself—using
your private key. Note that you should never expose your private key to anyone.

How to generate an SSH-key
GitHub has a great guide on how to generate an SSH-key pair. In short, you run
a single command in the terminal1:

ssh-keygen -t rsa -b 4096 -C "your_email@example.com"

It will prompt you for a location to save the keys. Just press ENTER to accept
the default location. Next, you’ll be asked to enter a passphrase. This one is
strictly not required, and you can leave it empty2.

The program should generate two files for you: id_rsa.pub, the public key;
and id_rsa, the private key. They should both be located in the ~/.ssh directory,
if you didn’t change the location.

1Windows users will probably have to run the command in GitBash, which comes installed with
git for Windows.

2If you don’t leave it empty, git will prompt you for the passphrase on every authenticated action.
An SSH-key without a passphrase is still secure, as long as your private key remains a secret.

Page 1 of 3

https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://git-scm.com/download/win


A guide to using git with SSH INF5320

How to use your SSH-key
Since we’ll be working with the UiO version of GitHub, you’ll need to log in and
upload your public key there. Again, GitHub has a guide on how to add a new
SSH key to your GitHub account. You can follow the instructions exactly—just
make sure you carry them out on UiO GitHub instead.

Finally, you’ll have to configure your local repository to use SSH. The easiest
way to do this is just to clone the repository using an SSH link. On UiO GitHub,
you can find this link by clicking on the green Clone or download button on
a repository site, followed by the link Use SSH if it’s not already the selected
option.

Figure 1: Screenshots illustrating the steps for cloning a repository with SSH.

What if you already have an SSH-key for GitHub?
Great, then you can skip the generation process and reuse that key. Or if you
don’t want to reuse the same key3, it is also possible to configure your SSH
agent to use different keys for different hosts. You can do that by following
these steps:

1. Navigate inside the .ssh folder located in your home directory:

cd ~/.ssh

2. Create a file named config if it does not already exist:

touch config

3. Open the just created file in any text editor.

4. Add the following content:

Host github.com
IdentityFile ~/.ssh/github

Host github.uio.no
IdentityFile ~/.ssh/uio-github

3A possible security concern is that if someone gets a hold of your private key, then they will

Page 2 of 3

https://github.uio.no/
https://help.github.com/articles/adding-a-new-ssh-key-to-your-github-account/
https://help.github.com/articles/adding-a-new-ssh-key-to-your-github-account/


A guide to using git with SSH INF5320

5. Modify the IdentityFile paths to point to your own private keys.

6. Save the file and exit the text editor.

With the above configuration file, git should be able to automatically use the
correct SSH-key for both normal GitHub and UiO GitHub4.

have access to all of the accounts associated with that key.
4Actually, git just delegates the task to your SSH agent, which then figures out which key to use.

Page 3 of 3


	Introduction
	What is an SSH-key?
	How to generate an SSH-key
	How to use your SSH-key
	What if you already have an SSH-key for GitHub?

