

IN5320 - Development in Platform Ecosystems

Lecture 1: Introduction

20th of August 2018 Department of Informatics, University of Oslo Magnus Li - magl@ifi.uio.no Olav Poppe - olavpo@ifi.uio.no

Today's lecture

- 1. Theoretical introduction
- 2. Practical introduction
- 3. Lectures
- 4. Assignments
- 5. Group work
- 6. Final Exam

Lecturers

Olav PoppeDoctoral Research Fellow

olavpo@ifi.uio.no

Magnus LiDoctoral Research Fellow magl@ifi.uio.no

Group teachers

Tin Anh Nguyen

Master student PSE research group

Magnus Boing Nordin

Master student IS research group

Andrei Eismont

Master student N/A research group

Ole Marius Haanæs

Master student DESIGN research group

Kristoffer Aune

Master student DESIGN research group

Course page

IN5320 - Development in Platform Ecosystems

Semester page for IN5320 - Autumn 2018

Examination: Time and > place

New message

Edit

Messages

First lecture on Monday 20.08!

Hi!

Note that the first lecture will be held already on Monday 20.08 at 14:15!

We're looking forward to seeing you all there!

Contact

Department of Informatics

Teachers

- Magnus Li
- Olav Poppe

Group Teachers

- Andrei Eismont
- Ole Marius Haanæs
- Tin Anh Nguyen
- Magnus B. Nordin
- Kristoffer Solheim

Course materials

Course overview (draft)

Platform Ecosystems

"A raised level surface on which people or things can stand, usually a discrete **structure intended for a particular activity or operation**"

Oxford english dictionary

"A raised level surface on which people or things can stand, usually a discrete structure intended for a particular activity or operation"

Baldwin and Woodard (2008): Platform **architectures** refer to systems that are partitioned into:

- 1) A set of stable components
- 2) A set of complementary components that vary

Between these are interfaces that enable interaction. These are part of the platform and should be stable over time.

"The low-variety components constitute the platform. They are the long-lived elements of the system and thus imply or explicitly establish the system's interfaces, the rules governing the interactions of the different parts" (Baldwin and Woodard, 2008, p 19)

Baldwin and Woodard (2008): Platform **architectures** refer to systems that are partitioned into:

- 1) A set of stable components
- 2) A set of complementary components that vary

"A software platform is a software-based product or service that serves as a foundation on which outside parties can build complementary products or services" - Tiwana 2013 p5

- Provides core functionality which is extendable
- Entails interfaces that allows third parties to develop *apps* that extend the functionality of the platform

API

 Application programming interfaces (APIs) allows us to access, update, create and delete resources in the platform core.

CRUD operations:

- Create
- Retrieve
- Update
- Delete

- Someone controls the platform core, often referred to as the platform owner.
- This can be one or several firms, and may be proprietary for-profit, or open source.
- The apps are often developed by third parties, that is, other firms or actors.

What is a platform ecosystem?

- A platform ecosystem refer to the platform core and the apps that interoperate with it.

Platform ecosystems

Tiwana 2013 p6

What is a platform ecosystem?

Development in Platform Ecosystems

Development in Platform Ecosystems

- Software *development* involves a variety of activities. In this course we will focus on three aspects related to development in platform ecosystems:
- Innovation
- Design
- Programming

Development in Platform Ecosystems - Innovation

- When we develop new applications, this often involves *innovation*.
- Innovation with digital components and artifacts, called *digital innovation* are easier and more available than traditional innovation.
- "Everyone" can now create novel solutions, and distribute them over the internet.
- Different system architectures might however have an enabling or constraining effect on innovation.
- Platform architectures and governance models have some characteristics that may promote innovation.

Development in Platform Ecosystems - Design

- When we develop new applications, this often involves design.
- Design can mean a lot of things, and also involves several activities such as
 - Requirements gathering
 - User participation / engagement
 - Graphic design
 - Usability testing
 - User evaluations
 - And so forth.
- Designers often want interfaces and functionality to be based on the user's needs, and be locally relevant to them.
- A problem however emerges when large-scale systems are used by a wide audience, maybe throughout several user groups, domains, departments, organizations, and geographical locations.

Development in Platform Ecosystems - Design

- By providing flexibility for variation, platforms may address issues related to heterogeneity and scale.
- We will look at how platforms may handle diversity both on the local and global level.

- When we develop new applications, this involves *programming*.
- Different architectures and governance models will impact our way of implementation.
- Throughout the course, we will practice front-end web development of platform applications.
 - Mandatory individual assignments (basic web programming + APIs)
 - Group project (App development for the DHIS2 platform)

Behavioral: JavaScript

Presentational: CSS

Structural: HTML

- JavaScript frameworks are used to make web development faster and easier.
- They provide built-in functionality for common aspects of development so that we do not have to built everything from scratch.
- The most commonly used frameworks are React, Angular and Vue.

Course structure

Development in Platform Ecosystems

Platform ecosystems fundamental concepts

Development in Platform Ecosystems

Innovation

Design

Programming

Development in Platform Ecosystems

Week	Topic
34	Introduction
35	HTML, CSS, JavaScript
36	Ajax and APIs
37	Web services: history and REST principles
38	React.js
39	Information systems and socio-technical complexity
40	Platforms and ecosystems - fundamental concepts
41	Design, requirements and user participation within platforms
42	Design, requirements and user participation within platforms
43	Developing web applications for DHIS2
44	Developing web applications for DHIS2
45	Platforms and innovation
46	Open source history, philosophy, methodology
47	Cases from HISP and other projects
48	Course summary

Syllabus

Syllabus

Syllabus/achievement requirements

Course topic overview

Information systems and complexity

- I. Sommerville et al., (2012) <u>Large-scale complex IT systems</u>
- K. Rolland, E. Monteiro (2002) <u>Balancing the Local and the</u> <u>Global in Infrastructural Information Systems</u>

Platform ecosystems fundamental concepts

- C. Baldwin & C. Woodard (2008) <u>The architecture of platforms:</u> <u>A unified view</u>
- A. Tiwana (2013) <u>Platform Ecosystems</u>, <u>chapter 1 The Rise of</u>
 Platform Ecosystems
- A. Tiwana (2013) <u>Platform Ecosystems</u>, chapter 2 <u>Core</u>
 <u>Concepts and Principles</u>
- A. Tiwana (2013) Platform Ecosystems, chapter 5 Platform

Platform Ecosystems: DHIS2

DHIS2 as Platform

- District Health Information Software 2 (DHIS2) will be used as an example of a platform ecosystem in this course.
- The software (platform core) is developed at the Department of Informatics (Information systems research group)
- Supports collection, storage, analysis and presentation of health-related information.
- Used in over 60 countries world-wide.

Third-party apps Bundled apps App Data Entry App DHIS2 App platform core App Maps Data Visualizer

Third-party apps Bundled apps App Data Entry App DHIS2 App platform core App Maps Data Visualizer Other systems and platforms **Open LMIS** LAB system

Open EMRS

DHIS2 as Platform - API

- The DHIS2 API allows internal and third-party developers to communicate with the core resources.

Example: https://play.dhis2.org/2.29/api/resources

Group project

Development in Platform Ecosystems

Week	Topic
34	Introduction
35	HTML, CSS, JavaScript
36	Ajax and APIs
37	Web services: history and REST principles
38	React.js
39	Information systems and socio-technical complexity
40	Platforms and ecosystems - fundamental concepts
41	Design, requirements and user participation within platforms
42	Design, requirements and user participation within platforms
43	Developing web applications for DHIS2
44	Developing web applications for DHIS2
45	Platforms and innovation
46	Open source history, philosophy, methodology
47	Cases from HISP and other projects
48	Course summary

Group project

- Develop web-app for the DHIS2 platform.
- Teams of 4 students.
- 2 4 different cases will be provided, and the teams are free to select one case to "solve".
- The case will provide a background with information about the users, use, and context, and a problem to be solved.
- Based on the selected case, your group shall define requirements for your solution.
- Your web-app shall attempt to provide a solution to the problem, while clearly taking into account the context and users of your case.

Group project - presentations

Throughout the project, your team will give three mandatory presentations of your work:

- 1. Requirements and low-fi prototypes (sketches, wireframes, etc.).
- 2. First attempt at high-fidelity prototype (web-app).
- 3. Final project presentation (Graded A-F. Counts 40% of your course grade)

Presentation 1 and 2 will be held in the group sessions. Fellow students, group teachers, and course lecturers will be present. Each presentation (est. 5 min), will be followed by a discussion.

Presentation 3 will be held in front of a panel of DHIS2 core developers and the course lecturers, which together decide the project grade.

Group project

Individual assignments

Mandatory individual assignments

- To get hands-on experience with development in platform ecosystems.
- Prepare you for the group assignment.
- Focus on front-end basics such as HTML, CSS, JavaScript, and AJAX.
- Also, a lecture and workshop on React as a JavaScript framework will be held.

Oblig 1: A collection of minor assignments.

Oblig 2: Mini-project

Seminar groups

Seminar groups

Seminar groups

Group sessions

- > Gruppe 1 Fri 10:15-12:00
- > Gruppe 2 Tue 12:15-14:00
- > Gruppe 3 Fri 12:15-14:00
- Gruppe 4 Wed 10:15-12:00
- > Gruppe 5 Thu 08:15-10:00

Final exam

Final exam

- December 4th of December
- Individual
- Four hours
- No help resources
- Digital (Silurveien)
- Collection of questions requiring short and long answers.
- Mostly theoretical, some practical.
- <u>Theoretical weekly assignments</u> provide an indicator.
 - Some of these may be used in the final exam.

Exam from 2017 (When the course name was Open Source Development)