
Developing Web Applications for DHIS2
An introduction to the web API and how to 

create applications for it

IN5320 – Development in Platform Ecosystems
Kjetil Svalestuen

~$



About me
• Works as a consultant at Bekk

• Currently stationed at NAV

• Previously student at IFI
• Took this course in 2016
• Master thesis on DHIS2

• Reappropriation of Generic Information Systems

• Previously part-time developer at DHIS2
• Worked mainly on the Maintenance and Scheduler apps

Development in Platform Ecosystems



Outline
Development in Platform Ecosystems

• About DHIS2 and its data structure
• Communicating with the web API
• Building an app and making it talk with DHIS2
• Installing an app in DHIS2



DHIS2 as a platform

Generic core

Bundled apps

Custom apps
Web API

Development in Platform Ecosystems



The flexible data structure

Define problem

Identify required data

Model in DHIS2

Gather data!

Development in Platform Ecosystems

• DHIS has a flexible data structure
• Adaptable to different contexts
• Should be able to change the metadata model in a GUI
• Key principle since the beginning



Metadata vs. collected data
Development in Platform Ecosystems

• Important distinction between
• Metadata

• Description of data
• Abstraction of the real world
• Configured by implementers

• Collected data
• Entered by data clerks, doctors etc.
• Using data entry apps (Tracker/Event Capture, Data Entry)



Three data dimensions

DataValue 

DataElement 

Source 

(OrganisationUnit) 

Period 

N

N

N

1

1

1

What

Where

When

Development in Platform Ecosystems

The “what”, the “where” and the “when” of collected data values

Where: Organisation unit
• Where a health event took place, or a data value was collected
• Typically a health clinic, hospital etc.

When: Time period
• When the data value was collected (period or timestamp)
• Typically grouped by data presentation apps

• (weekly, monthly, annually etc.)

What: Data element
• What are we measuring?
• Mostly primitive types, e.g. number, string, boolean, date

• Example: Number of new measles cases, Age in years



Organisation unit hierarchy
Development in Platform Ecosystems

• Organisation units are structured in a tree-like hierarchy

• Organisation Units
• Either a specific, geographical position (i.e. coordinates)

• Health clinics, hospitals etc.
• Or a geographical area (list of coordinates/polygon)

• E.g. a country, region, city etc.

• Each unit has an organisation unit level
• E.g. ”national”, “district”, “chiefdom” or “facility”
• These are also user-defined

Sierra Leone

District level

National level

Chiefdom level

Facility level
(coordinates)



Some common metadata

organisationUnit 

organisationUnit
Group

organisationUnit
GroupSet

organisationUnit
Level

dataElement 

dataElement
Group

dataElement
GroupSet

categoryOption category 

categoryCombo 

categoryOption
GroupSet

categoryOption
Group

indicator 

indicatorType 

indicator
GroupSet

validationRule 

validationRule
Group indicatorGroup 

predictor categoryOption
Combos

Malaria

Malaria outbreak

Per cent

ANC LLITN
coverage

Malaria

Diseases Facility ownership

Public facilities

Ngelehun CHC

Facility

Diagnosis

Measles

Measles new

sex, ageGroup

sex male, female

Norad

Donor

Development in Platform Ecosystems



“Aggregate” and Tracker
Development in Platform Ecosystems

• Two conceptual ways of collecting data

• Aggregation
• Great for collecting routine data sets
• Example: Monthly reporting of a data set from health clinics

• Tracker
• Great for capturing processes for a certain entity
• The tracked entity can be a person, a health commodity, lab sample etc.
• Either a chain of different stages or one, repeatable stage
• Each stage has a number of data elements to collect

• Example: Tracking a child through their vaccination program
• Stage: Tubercolosis vaccination

• Data element: BCG Dose



The Web API



DHIS2’s Java core
Development in Platform Ecosystems

• An enormous Java monolith application (280k java lines across 2946 files)
• All available on github: https://github.com/dhis2/dhis2-core

• Supplies the interface between the database and applications
• Contains logic for the system components

• Exposes the web API
• Based on the REST architecture



Accessing the API
Development in Platform Ecosystems

• In a browser, using a log-in session
1. Navigate to the URL (https://<dhis2-url>/api)
2. Log in with your credentials

• With an “Authorization” header
• Basic <Base 64-encoded string>
• Encoded string: btoa(username:password)
• Example for admin:district; Basic YWRtaW46ZGlzdHJpY3Q=



Navigating the API
Development in Platform Ecosystems

• Can be viewed in any web browser
• With ordinary GET-requests
• Returns xml by default, json with a .json suffix

• /api/resources
• Contains a list of all metadata endpoints

• /api/<resource[s]>
• List all metadata items of a certain type
• Available parameters:



Exploring resources with Schemas
Development in Platform Ecosystems

• /api/schemas
• Show key attributes for all available resources

• /api/schemas/<resource>
• Show all attributes for one specific resource



Modifying data
Development in Platform Ecosystems

• API supports the following other methods:
• POST

• Creates a new entry
• See resource schema on /api/schemas/<resource> for required fields

• DELETE
• Delete an entry
• Might have dependencies!

• PUT
• Replace the whole item
• Requires app to download whole object

• PATCH
• Change specific attributes
• Might not work on all endpoints – try!

Prototype with Postman, Curl or a similar tool!



Let’s build an <App />!



Agenda for this session
Development in Platform Ecosystems

1. Create a basic React application
2. Fill it with some data
3. Post new data
4. Delete existing data
5. Installing your app in DHIS2



Installing the app in DHIS2



The manifest file
manifest.webapp

• Place at root level in your bundled application

• Tells DHIS2 about important properties of your app

• Can be generated using the d2-manifest NPM package

activities.dhis.href: * 
• Converted to URL of DHIS2 instance
• Read manifest file in production to get the URL

• Use webpack with NODE_ENV

Development in Platform Ecosystems



Some words of advice
1. Let the backend do the hard work

• Use the filter and fields parameters for what they’re worth

2. If you’re suddenly facing a wall of errors, you might be logged out
• Refresh your login token by visiting the login-page

3. Use your browser and other tools like Postman or Curl
• Might be easier than debugging the API through your app

4. Consider hosting your own DHIS2 instance
• Chore to configure, but comes with a few benefits

1. Nobody will mess up your data (except for yourself)
2. Access to server logs and error stacks

Development in Platform Ecosystems


