
IN5320
Free and Open Source Software

University of Oslo
Department of Informatics

Outline
• What is FOSS?

• FOSS as an approach to software development

• Business models for FOSS development

• Intellectual property rights - copyrights and patents

• Software licenses

• FOSS and Platform Ecosystems

– Wikipedia

[…] anyone is freely licensed to use, copy, study,
and change the software in any way, and the source

code is openly shared so that people are
encouraged to voluntarily improve the design of the

software.

Free and Open Source Software

Types of software
Software type Free (cost) Redistri-

butable
Unlimited use

and users
Source code

available
Source code
modifiable

Commercial -

Shareware X X

Freeware X X X

Royalty-free
libraries X X X X

Open source X X X X X

Historical context
• In the early days of programming, sharing of software among

programmers was the norm

• Hardware vendors started to dominate software distribution in the
1980s, releasing proprietary software in binary form

• FSF established in 1985 to re-establish free software norms -
defined 4 freedoms for software

• In the second half of the 1990s, the internet facilitated distributed
OSS development

• Open Source Initiative (OSI) founded in 1998 to promote OSS as a
solution for businesses - defined 10 criteria for OSS

1. Free redistribution

• No restriction on redistribution (free or paid) of the
software

• The software can be redistributed alone or as a
component of an aggregate software distribution

• The licensee can not require a royalty or fee for
redistribution

2. Source code

• The software must include the source code, or it must be
easily obtainable through well-published means

• The source code should not be deliberately obfuscated,
and intermediate forms (preprocessor/translator output)
are not allowed.

3. Derived works

• The license must allow modification and derived works

• Derived works must be allowed to be distributed under
the same terms as the original

4. Integrity of the author's
source code

• The license may only restrict source-code from being
distributed in modified form if it allows patch-files that can
modify it at build time

• The license might require derived works to use a different
name and/or version number

5. No discrimination against
persons or groups

• No discrimination against persons or groups

6. No discrimination against
fields of endeavour

• Restrictions in the use of the software in particular fields
of endeavour is not allowed

7. Distribution of license

• License for software must also apply to those it is
redistributed to

8. License must not be
specific to a product

• License for software must not depend on it being part of a
software distribution

• The same license must apply if the software is extracted
from a distribution and distributed separately

9. License must not restrict
other software

• The license must not place restrictions on other software
that is distributed alongside the licensed software

10. License must be
technology-neutral

• No provision of the license may be predicated on any
individual technology or style of interface

Four freedoms for software

0. The freedom to run the program, for any purpose.

1. The freedom to study how the program works, and
change it to make it do what you wish.

2. The freedom to redistribute copies so you can help your
neighbour.

3. The freedom to distribute copies of your modified
versions to others. By doing this you can give the whole
community a chance to benefit from your changes.

Source: https://www.gnu.org/philosophy/free-sw.en.html

Free vs Open

• Free software refers to freedom, not cost - "free speech",
not "free beer"

• Based on promoting social solidarity and sharing

• Free software meet the 10 criteria for open source

• Practical difference: free licenses (e.g. GPL) require
derivative work to be open source to ensure that software
remains free - more later

Models for production of
software

1. Managerial command systems - firms and organisations with
"lines of command"; centralised hierarchy in which tasks are
defined and distributed

2. Markets - transaction costs define the production; tasks are
tagged with a price to attract workers

3. Commons Based Peer Production

• FOSS can follow any of the models, but peer production is
the "typical" example

Commons Based Peer
Production

• A "[…] model of socioeconomic production in which large
numbers of people work cooperatively (usually over the
Internet)" (Wikipedia).

• Coined by Benkler (2002), in a study of open source
software development

• No clear-cut distinction with crowdsourcing, but usually
involves a stronger sense of community

Conditions for CBPP
• Premise: existence of excess capacity, resulting from a great number

of potential contributors and a set of organisational structures

• CBPP model requires that work can be modularised

• Work is divided into modules which can be:

• independently and incrementally produced

• sufficiently fine-grained to allow the capture of small contributions

• quality-checked and integrated with the overall system through
reasonably low cost mechanisms

Examples of CBPP

• Free and Open Source Software was the inspiration for
the CBPP project

• Wikipedia - ± 30 000 active contributors with 5+ edits per
month

• OpenStreetMaps - ±50 000 active contributors per month

FOSS development
approach

• Decentralised geographically - internet key infrastructure

• Rapid evolution with frequent, incremental releases

• Real-world meetings are seldom, coordination happens in various
online tools

• Version control and source code repositories critical (GitHub,
sourceforge etc)

• Dominated by operating and networking system software,
development tools and infrastructural component, for example
linux, apache web server, python, V8 JS engine, react, angular etc.

FOSS 2.0
• Fitzgerald (2006): open source is transforming from its "free software" origins to a more

mainstream and commercially viable approach - FOSS 2.0

• Classic (early) example:

• One single or a small group of developers establishes a project and its direction

• Other developers submit patches to fix bugs or add functionality

• Examples: apache web server, fetchmail, emacs

• Increasingly (OSS 2.0):

• Companies establish OSS projects as part of a purposeful strategy

• Developers are paid to contribute

• Examples: React and Angular largely developed by Facebook and Google; Linux kernel
top 10 contributors include Intel, Red Hat, Samsung, IBM

FOSS participants
• Key stakeholders or participants in FOSS development:

• Individual developers - often perceived as "hobbyists", but in reality
often full-time developers

• Companies supporting development and distribution

• Users - experts and early adopters, often the same people who
contribute to open source projects

• Motivation for participation in FOSS projects:

• Technical and economic

• Socio-technical

Technical and economical
motivation

• OSS seen as having potential to address "Software crisis" -
software taking too long to develop, not working well when
delivered, and costing too much

• Speed - OSS characterised by short development cycles.
"Adding manpower to a late software project makes it
later" vs "given enough eye-balls, every bug looks
shallow".

• Quality - peer review of source code. Some argue OSS
devs are among the most talented and motivated.

• Cost - shared costs and shared risks of development.

Socio-technical motivation
• Motivation of individual developers often socio-technical

• Studies point to "rush" of being able to produce
something that get feedback and is used by others

• Meritocracy, where quality of code speaks for itself

• Arena for demonstrating skills for potential employers

• Different in OSS projects where developers are paid

Forks
• Often no written rules within open source projects -

customs and taboos must be learned by experience

• FOSS repositories are not open for anyone to commit to
without approval

• The right to fork is central to FOSS - defined as a new
independent line of development, by making a copy of
the source code which is then developed separately

• However, forking is often seen as bad practice

Forks
• Examples of well-known forks:

• OpenOffice => LibreOffice

• KHTML => WebKit => Blink

• Mambo => Joomla

• Debian => Ubunutu

• Android => Fire OS++

• Visualisation of linux forks

https://upload.wikimedia.org/wikipedia/commons/1/1b/Linux_Distribution_Timeline.svg

Business models

• Business model: how an organisation creates value

• Major organisations base their business on OSS - Red
Hat, SUSE, Canonical, Apache Foundation, Mozilla, eZ
System

• Other organisations use OSS without having it as a main
business - IBM, Google, Apple, Oracle

Cost Reduction
• OSS can help reduce cost

• Depends on TCO of OSS vs the alternatives

• Applicable when software sale is not the main revenue

• Example: Sun Microsystems buying the company behind
what would become OpenOffice, to reduce licensing cost
(and market share) of MS Office. LibreOffice was forked
from OpenOffice.org in 2010

http://OpenOffice.org

Cost Reduction

Figure 4.2. Open source proponents and proprietary companies disagree on the total cost of
ownership. Developed by the Northwest Regional Educational Laboratory, Portland, Oregon.

4.7 FOSS Business Models
Despite FOSS being available at little cost, and possible to copy at low cost, the FOSS
industry is a growing multi-billion Euro industry. The exact number is difficult to ver-
ify since many of the enterprises get their income from additional sources beyond FOSS.
Companies like Red Hat, SuSE (Novell), SugarCRM or Canonical, and associations, like
the Mozilla Foundation or the Apache Foundation, fill important shares of the market
for products in information technologies. Large enterprises, such as IBM, Google, Nokia,
Apple or Oracle use FOSS actively in their portfolio, but do not base their business mod-
els solely on FOSS. It is evident that commercial business models that are based on the
sale of licenses are not viable. For most enterprises, FOSS business models are based on
some kind of cross-subsidisation.

A business model describes the rationale of how an organisation creates, delivers, and
captures value in the form of economic, social, or other metrics.47 The process of de-
veloping a business model is part of a business strategy. Osterwalder (2004) presents an
ontology of business models. A large variety of business models has been developed over
time, such as razor and blades, bricks and clicks, collective, cutting out the middleman,
direct sales, franchise, fee in – free out, monopolistic, premium, and so on. Since general
business models are beyond the scope of this chapter, we refer to the survey by Zott et al.
(2010) for further reading.

Anderson (2009) points out that the costs for production and distribution of FOSS are
very low, and tend to converge towards zero. This is the starting point of what he calls
the bits economy where goods can be obtained for free. However, in order to create a
substantial industry, business models need to be in place. In the following, we present
business models relevant to FOSS.

47. See http://en.wikipedia.org/wiki/Business_model; accessed January 14, 2012.

72 INF5780 H2015: Open Source, Open Collaboration and Innovation

Source: Northwest Regional Educational Laboratory, Portland, Oregon

Services
• Offering services based on OSS: web hosting, file hosting,

infrastructure/platform/software as a service (IaaS/PaaS/SaaS)

• Often combined with the freemium model

It's obvious, if we don't support Linux, we'll be Windows
only and that's not practical.

Mark Russinovich, CTO of Microsoft Azure

• Example: Linode (or other VSP) who provide hosting of servers
running different versions of linux

Support and consulting

• Charging for consulting, support and maintenance of OSS

• Configuration of complex software, providing training etc

• Example: Canonical, who develops the Ubuntu linux
distribution and makes money from support and
consulting related to it.

Loss-leader
• Providing a product for free or low cost to increase the market and/

or attract sales of related products

• Often combined with dual-licensed software

• Examples:

• IBM open sourcing Eclipse IDE, in order to increase market for
related products.

• MySQL providing open source community edition to drive sales
of commercial edition

Other
• Freemium - providing a free basic tier to attract users

• Open core - open sourcing the core product, but with certain
parts under a proprietary license

• Hardware - using OSS in hardware products such as routers,
TVs etc

• Accessorising - selling accessories related to OSS

• Advertising and search - ads and search engines

• Donations

 Fitzgerald/Transformation of Open Source Software

 Table 1. Characterizing FOSS and OSS 2.0 I
 Process FOSS OSS 2.0

 Development Planning?"an itch worth scratching" Planning?purposive strategies by major
 Life Cycle Analysis?part of conventional agreed-upon players trying to gain competitive advantage

 knowledge in software development Analysis and design?more complex in spread
 Design?firmly based on principles of modularity to to vertical domains where business require
 accomplish separation of concerns ments not universally understood

 Implementation Implementation subphases as with FOSS, but
 o Code the overall development process becomes less
 o Review bazaar-like

 o Pre-commit test Increasingly, developers being paid to work on
 o Development release open source
 o Parallel Debugging
 o Production Release

 (often the planning, analysis, and design phases are
 done by one person/core group who serve as "a tail
 light to follow" in the bazaar)

 Product Horizontal infrastructure (operating systems, More visible IS applications in vertical domains
 Domains utilities, compilers, DBMS, web and print servers)
 Primary Value-added service-enabling Value-added service enabling
 Business Loss-leader/market-creating o Bootstrapping

 Strategies Market-creating
 o Loss-leader
 ? Dual product/licensing
 o Cost reduction
 o Accessorizing
 Leveraging community development
 Leveraging the open source brand

 Product Fairly haphazard?much reliance on e-mail Customers willing to pay for a professional,
 Support lists/bulletin boards, or on support provided by whole-product approach

 specialized software firms

 Licensing GPL, LGPL, Artistic License, BSD, and emergence Plethora of licenses (85 to date validated by
 of commercially oriented MPL OSI or FSF)
 Viral term used in relation to licenses Reciprocal term used in relation to licenses

 system configurations ensures bugs are found and fixed
 quickly.

 Production release: a relatively stable, debugged produc
 tion version of the system is released

 The management of this process varies a great deal. Different
 projects have varying degrees of formalism as to how deci
 sions are made, but the principle of "having a tail-light to
 follow" (Bezroukov 1999) captures the spirit well. Often, the
 initial project founder or small core group make the key
 decisions in accordance with the process outlined in the life
 cycle above.

 FOSS Product Domains

 Due to the globally distributed nature of the development
 community (most members never meet face-to-face), FOSS
 products have tended to be infrastructural systems in hori
 zontal domains. Their requirements are part of the general
 taken-for-granted wisdom of the software development com

 munity. Thus, the most successful FOSS products?the
 Linux operating system, the Apache web server, the Mozilla
 browser, the GNU C compiler, the Perl scripting language,
 and MySQL database management system?are all examples
 of horizontal infrastructure software.

 MIS Quarterly Vol. 30 No. 3/September 2006 589

This content downloaded from 193.157.236.90 on Wed, 26 Jul 2017 12:54:51 UTC
All use subject to http://about.jstor.org/terms

Fitzgerald 2006

Intellectual Property
• Tangible assets:

• properties, currencies, equipment…

• Intangible assets:

• knowledge, experience, (social) networks, brand
loyalty…

• more formalised: copyrights, patents, trademarks…

• Intellectual Property Rights are rights to intangible assets

Intellectual Property
• Intellectual property:

• "Non-physical property that is the product of original thought".
Stanford Encyclopaedia of Philosophy

• "[IP] refers to creations of the intellect for which a monopoly is
assigned to designated owners by law".

Wikipedia

• Intellectual property rights do not address the abstract idea, but
the physical manifestation or expression of ideas

• Covered by international treaties (e.g. Bern convention from
1886) and national law in most of the world, but laws differ

Why IPR?

• Three (philosophical) arguments for IPR:

• Intellectual property is an expressions of ones
personality, thus it should be possible to protect

• People have the rights to the results of their labour, also
for intellectual property rights

• Granting rights of ownership necessary to incentivise
creation of intellectual works

IPR protection

• Protection of IPR is mainly through:

• Copyrights

• Patents

• Trade secrets

• Trademarks

Disclaimer

• Intellectual property rights, copyright, patents, licensing is
complicated and food for lawyers

• If doing this for real it can be a good idea to involve
lawyers to understand all the details

• The goal of this lecture is to give an understanding of the
domain and some of the challenges

Copyrights and Patents

• Patents and copyrights are the main instruments of IPR
law

• History and purpose are different:

• Patents are issued by authorities to regulate use of
inventions and ideas for commercial uses

• Copyrights applies to the expression of works like
printed material, sound recordings, software - not ideas

Copyright
• Protection of original works of authorship "fixed in any

medium of expression"

• Can be applied to literature, music, photography,
architecture, maps, software etc

• Must be original, produced by the author

• Must be "non-utilitarian" and "non-functional"

• Do not cover abstract ideas themselves

Copyright
• Copyright laws address use of material - not a means to

control access

• Use of content includes:

• distribution of unaltered content

• distribution of content in a collection

• distribution of adaptions and derivate work

• performing and distributing produced work

Rights of copyright holders

• Copyright owners can:

• reproduce the work

• adapt or derive other works from the original work

• distribute copies of the work

• display the work publicly

• perform the work publicly

Copyright limitations
• Copyright is time bound - normally a number of years (70)

after death of author

• Two general limitations:

• Fair use - limited use of copyrighted work is allowed,
for commenting, news reporting, research, teaching etc

• First sale - copyright holders who have sold copies of a
work cannot interfere with subsequent sales of those
copies

Patents
• Concrete solution to a practical problem - processes, products,

medicines, applications

• Must be applied for to national patent authorities, and specifics varies by
country/legislation

• Types of patents include inventions and design

• Requirements

• Useful

• Novel

• Non-obvious

Patent holder rights
• Patent holders can:

• make the patented item

• use the patented item

• sell the patented item

• authorise others to sell the patented item

• No-one can patent or market the same process or item while the
patent is valid, even if it was invented independently

• Patents are time bound - normally 20 years

Software patents

• Patentability of software is disputed, and varies across
the world:

• Europe: "programs for computers" are excluded

• US: software is patentable

• In general: limitations on software patents are common

• Many are critical of software patents and its growth

https://www.eff.org/issues/stupid-patent-month

Balancing IPR
protecting rights of
author/inventor to

incentivise creation 

making works and
inventions available
to the benefit of the

public

• IPR law aims to strike balance between incentivising
creators and making sure society benefits from creations

• IP protection has expanded over time

• First copyright law: 14 years from work was created -
current (US) law: up to 120 years

Public Domain

• Works for which IPR have expired or been waived are in
the public domain

• Works in the public domain are free of any restrictions and
can be used by anybody in any way

Licensing

• IPR grant rights to authors of their work - including
authors of software

• Providing content without license information is legal, but
can create confusion

• To use intellectual property written by someone else a
license is required - including for software

Software Licenses
• Software is created by an author and is subject to

copyright

• A license is needed for software to be used by others

ProprietaryFree and Open Source

Permissive Restrictive

Software licenses

Restrictive vs Permissive

• Permissive licenses allow distribution of source code, but
only require attribution - "minimal restrictions on future
behaviour" (FreeBSD)

• Restrictive (copyleft) licenses require source code to be
distributed along with binary code - aim to keep software
free in the future

Software licenses

Source: Mark Webbink

– Richard Stallman

GNU is not in the public domain. Everyone will be
permitted to modify and redistribute GNU, but no

distributor will be allowed to restrict its further
redistribution. That is to say, proprietary

modifications will not be allowed. I want to make
sure that all versions of GNU remain free.

Copyleft - all rights reversed

• Restrictive vs permissive goes back to philosophical
differences between free and open

Restrictive licenses
• Weak restrictive/copyleft license:

• If software with weak copyleft is used that module/
library’s source code must be distributed/made
available

• Strong restrictive/copyleft license:

• If software with strong copyleft is used the entire
software’s source code must be distributed/made
available

Viral licenses
• Strong copyleft is viral

• When used they force the entire application to be released
under strong copyleft license

OSS can be viral

Example: MIT

• Example of permissive license

• Grants linsence permission to use the software in any
way, with only one condition: 
 
The above copyright notice and this permission notice
shall be included in all copies or substantial portions of
the Software.

Example: GNU GPL

• General Public License - primary example of copyleft

• Several versions:

• GPL (currently v3)

• Lesser GPL - weak copyleft license

• Affero General Public License (AGPL)

https://www.gnu.org/licenses/gpl-3.0.en.html

Example: Affero GPL

• Designed to address perceived loophole in the GPL, in
cases where GPL-licensed software is used to provide
cloud services

• Based on GPL, but with an added provision that address
use of software over a network

• Requires source code to be made available to users that
access the software over a network

License compatibility
• Not all licenses are compatible

• Compatible here means that source code under one
license can be part of software distributed under another
license

Source and object code

• Distinction relevant for licensing:

• source code - human/programmer-readable and
editable software

• object code - compiled, binary software

• Some languages are never distributed in compiled form

Distributing OSS

• Requirement to distribute source code in open source
licenses is linked to distribution of object/binary code

• Internal modification and use of OSS software does not
usually trigger requirement to publish modified code

• Businesses may (should) have a list of accepted OSS
licenses and used OSS modules - example

https://www.apache.org/legal/resolved.html

Distributing OSS

• Choice of license is important for the open source project
- affects economic and growth potential

• https://choosealicense.com

• Topic of research, e.g. Hoffman et al (2013) - correlate
choice of license with growth of project

https://choosealicense.com
https://link.springer.com/chapter/10.1007/978-3-642-38928-3_18

Distributing OSS

Source: https://github.com/blog/1964-open-source-license-usage-on-github-com

Distributing OSS

Source: https://github.com/blog/1964-open-source-license-usage-on-github-com

Rank License % of projects
1 MIT 45 %
2 Other 16 %
3 GPLv2 13 %
4 Apache 11 %
5 GPLv3 9 %
6 BSD 3-clause 5 %
7 Unlicense 2 %
8 BSD 2-clause 2 %
9 LGPLv3 1 %
10 AGPLv3 1 %

Distributing software

Source: https://github.com/blog/1964-open-source-license-usage-on-github-com

License violations
• Automated tools can be used for detecting licensing

issues

• Review of source code (including licenses) would typically
be part of "due diligence" in the sale of a company

• With violations of open source (copyleft) licenses, you
could be taken to court and forced to release the source
code

• Topic of research, e.g. We et al (2017) on inconsistencies
of licensing within OSS projects

https://link.springer.com/article/10.1007/s10664-016-9487-8

Case: React

• Initially developed and used internally at Facebook

• Open Sourced in 2013 under a permissive BSD license,
but with a patent clause (BSD+patents)

• Source code is released under permissive BSD license

• Licensees are granted right to any Facebook patents in
the software

Case: React

The catch:

“The license granted hereunder will terminate,
automatically and without notice, if you […] initiate
directly or indirectly, or take a direct financial interest in,
any Patent Assertion: (i) against Facebook or any of its
subsidiaries[…]"

Case: React
• Increasing concern about the implications of the patent

clause

• ASF put the BSD+patents license on their Category X
list

• Automattic (wordpress developer) decided to drop
React

• Perception was that companies relying on React would
be at Facebook's "mercy"

Case: React

• React 16 released with MIT license and no patent clause

• Facebook still argues the BSD+patent license is a good
solution that can reduce the amount of software patent
lawsuits in general

Case: DHIS2 app

• DHIS2 app developed by/for WHO

• Development started before decision was made on
license to use for the app

• DHIS2 uses Highcarts - DHIS2 dev team has license -but
does not extend to 3rd party developers on the platform

• Highcharts was still used for practical reasons, without
considering in detail the license implications

Case: DHIS2 app

• App had to be released under GPL 3 - strong copyleft

• Result: App had to be re-written (replacing highchairs
with chart.js) before it could be released

FOSS and platforms
• Is FOSS relevant in platforms ecosystems?

• Platform openness can be used to encourage
development of complements and grow the platform
ecosystem

• Balance between opening up to encourage growth, and
being too open and not having enough governance
mechanisms - risk of exploitation

Source: Karhu et al. (2018)

Boundary resources

• Resources enabling third party development through tools
and regulations

• Platform owners must develop boundary resources that:

• enable innovation, design and development of new
functionality to the platform

• control the platform and its evolution in some desired
direction

Platform Forking

• Platform forking: creating a new competing platform from
an existing platforms resource base.

• Forking not only the core code base, but also "forking"
compatibility with the complements - strategic rather than
just technical

• Enabled by sharing of the platform core IPR (i.e. open
sourcing)

Source: Karhu et al. (2018)

Case: Android forks
• Karhu et al (2018) study how the Android platform has been

forked, and how Google as the platform owner has tried to
defend itself against forking

• Define two types of openness of platforms - access and resource

Openness Boundary
resources

Actor who
shares

Shared
resources Type of sharing Platform

owner’s rational

Access API, app store
Complementors

(e.g. app
developers)

Complement, e.g.
apps

Shared for
distribution

Generate network
effects; extract

value from
complementaries

Resource Open-source
license Platform owner Platform core,

e.g. AOSP Shared IPR

Strategic
forfeiture of IPR
while recovering
costs elsewhere

Timeline
Cea

se
-a

nd
-d

ec
isi

st

(le
ga

l a
cti

on
)

Forks

Host

Boundary
resource

And
ro

id
Mar

ke
t h

ac
ke

d

by
 C

ya
no

ge
nM

OD

co
mmun

ity
App store

Key
 A

nd
ro

id
ap

ps

be
co

me p
ro

pr
iet

ar
y

Open-source
license

Boundary
resource

Xiao
mi M

IU
I p

lat
fo

rm

lau
nc

he
d

Open-source
license

Fir
e O

S pl
atf

or
m

lau
nc

he
d

Open-source
license

App store

And
ro

id
mar

ke
t

be
co

mes
 G

oo
gle

 P
lay

App store

Fir
e O

S a
dd

s c
lon

ed

Map
s A

PI

API

Goo
gle

 P
lay

 Ser
vic

es
 -

APIs
ex

tra
cte

d f
ro

m

co
re

 O
S

API
Client library

"A
maz

on
 A

pp
 fo

r

And
ro

id
Pho

ne
s"

lau
nc

he
d

App store
SDK license

Dev
elo

pe
r d

ist
rib

ut
ion

ag
re

em
en

t c
ha

ng
ed

Distribution
agreement

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms

490 Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, © 2018 The Author(s)

Figure 2. How Amazon Built Its Fire Platform by Forking Android

+ERNEL

+ERNEL

3YSTEM�SERVICES��RUNTIMES��AND�LIBRARIES

3YSTEM
APPS

(ARDWARE

,AUNCHER�5)

!PP�FRAMEWORK�AND�LIBRARIES

5SER�APPS

!PP�AND�CONTENT�STORE

'OOGLE
0LAY�SERVICES

'OOGLE�APPS

'OOGLE�NOW

'OOGLE�0LAY

!0)'OOGLE�!0)

+ERNEL

3YSTEM�SERVICES��RUNTIMES��AND�LIBRARIES
FORKED�FROM�!/30

!/30�SYSTEM
APPS

(ARDWARE

!PP�FRAMEWORK�AND
LIBRARIES�FORKED�FROM

!/30

!MAZON�!NDROID�APP�STORE

(ERE�MAP�SERVICE

!MAZON�S
OWN�APPS

!MAZON�S�OWN�LAUNCHER�5)

!MAZON�!0)

'OOGLE�ANDROID

,INUX�KERNEL�OPENSOURCE
PROJECT�

!MAZON�&IRE

3UBSTITUTING

&ORKING

#LONING

3UBSTITUTING

!0)

$EVELOPERS�FORK��AND�MULTIHOME	

-ODULAR�OPERATOR

0ORTING

0UBLISHED�AS�OPENSOURCE

0ROPRIETARY!/30�&ORKED�MODULES

'-3�3UBSTITUTED�MODULES

#OLOR�LEGEND� "ORDER�LEGEND�

�RD�PARTY

5SER�APPS

it needs to substitute other modules that are propri-
etary, further forking the layered modular architecture
at the platform level. It also invites ODP host comple-
mentors to fork their modules in the complement lay-
ers. As a complete example of the forking of a platform,
Figure 2 illustrates how Amazon configured the Ama-
zon Fire OS platform by substituting and exploiting
Android’s platform resources. In an orchestrated effort,
Amazon forked the AOSP, substituted Google’s propri-
etary modules, and ensured that developer-facing APIs
are an exact clone so that developers can multi-home
their apps on Amazon’s Fire OS platform.

From a strategic perspective, platform forking results
in a separate forked platform stack, competing with the
ODP host’s entire platform business. Platform forking
can be viewed as an opportunistic strategy for rapid
market entry that permits leapfrogging, avoids heavy
up-front investments, and curtails technical and eco-
nomic risks. Furthermore, platform forking creates a
favorable situation in which complementors can multi-
home their complements on the fork. By doing this,
platform forking helps the forker solve the difficult
chicken-and-egg dilemma faced during platform igni-
tion. Orchestrating apps on your own from scratch is
not easy, as illustrated by the failed Windows Phone
platform backed up by Microsoft and its vast resources.

Platform forking can also be partial. Among the plat-
form forks, Jolla is an unusual case: It did not exploit
the platform core; instead, it exploited complements
on app and device layers. Android relies on Java tech-
nology, which isolates apps from the underlying plat-
form core. As a result, the apps can be run on any
platform, such as Jolla Sailfish, provided that the plat-
form shares a compatible runtime environment. By
replacing the genuine Android Runtime Environment
(ART) with a substitute obtained from the company
Myriad, Jolla enabled the use of Android apps on its
Sailfish platform. Similar to the idea of cloning APIs,
Jolla has also cloned and ported Android’s device inter-
faces (HAL) using available open-source libraries (lib-
hybris and bionic), which provide HAL compatibility
for generic Linux distributions (such as Mer). Using
this approach, any Android manufacturer can use its
existing device design to produce a Sailfish phone, as
Sony has recently done. Jolla exemplifies an alternative
strategy of not forking the platform core but, rather,
of exploiting not just one but multiple complementor
sides of the Android platform.

Defending Against Platform Forking Using
Boundary Resources
The host can actively use boundary resources to de-
fend against platform forks. We identify six ways in

Source: Karhu et al 2018

Some key points from
Karhu et al

• Platform forking can be seen as a competitive platform
strategy that diminishes the host’s competitive advantage

• Platform forking is a result of too loose platform
governance (example: allowing apps to be distributed to
any app store)

• Boundary resources are key to extracting value (rents)

• Boundary resources can be leveraged to "combat the
competitive actions of forkers", e.g. withdrawing from
openness, contractual arrangements, software designs

Sources
• Feller and Fitzgerald, 2000. A framework analysis of the open source software development paradigm.

• Fitzgerald, 2006. The transformation of open source software.

• Stallman, 2009. Viewpoint: Why “open source” misses the Point of Free software.

• Leister and Christophersen (eds), 2015. Open Source, Open Collaboration and Innovation. Mainly chapter 4.

• Karhu, et al, 2018. Exploiting and Defending Open Digital Platforms with Boundary Resources: Android’s Five Platform Forks.

• https://plato.stanford.edu/entries/intellectual-property/

• https://www.patentstyret.no/tjenester/patent/hva-kan-du-soke-patent-pa/

• http://publications.nr.no/1439981439/Compendium_INF5780H15.pdf

• https://github.com/blog/1964-open-source-license-usage-on-github-com

• https://medium.freecodecamp.org/facebook-just-changed-the-license-on-react-heres-a-2-minute-explanation-why-5878478913b2

• https://openedreader.org

• Wikipedia (FOSS)

• https://en.wikipedia.org/wiki/Intellectual_property

• https://en.wikipedia.org/wiki/Permissive_software_licence

• https://en.wikipedia.org/wiki/Affero_General_Public_License

https://plato.stanford.edu/entries/intellectual-property/
https://www.patentstyret.no/tjenester/patent/hva-kan-du-soke-patent-pa/
http://publications.nr.no/1439981439/Compendium_INF5780H15.pdf
https://github.com/blog/1964-open-source-license-usage-on-github-com
https://medium.freecodecamp.org/facebook-just-changed-the-license-on-react-heres-a-2-minute-explanation-why-5878478913b2
https://openedreader.org
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Intellectual_property
https://en.wikipedia.org/wiki/Permissive_software_licence
https://en.wikipedia.org/wiki/Affero_General_Public_License

