
1

IN5320 - Development in Platform Ecosystems
Lecture 13: Summary

19th of November 2018
Department of Informatics, University of Oslo
Magnus Li - magl@ifi.uio.no
Olav Poppe - olavpo@ifi.uio.no



Remember to fill out the course evaluation!

- The course is “new”
- What was good?
- What can be improved, and how?

https://goo.gl/vNTisZ

2

Course evaluation



3

Following weeks

Last week of development

Final presentations

Theory workshop?

Final exam

27th / 28th 29th or 30th 4thtoday

Final “push”

25th



Last week of development!

Important to prioritize fundamental functionality. 

If you have time: focus on additionals. 

Remember to send Andrei an email with the URL to your git + give access to the group 
teachers (info here)

Deployment to DHIS2 is mandatory (info here)

4

This week

https://piazza.com/class/jkw9o67orpmbp?cid=64
https://piazza.com/class/jkw9o67orpmbp?cid=66


- Final “push” on the 25th of November. 

- Give access to the group teachers (see post on piazza)

- Include a readme-file in the repository where you describe:

- Your app’s functionality

- How this is implemented (just a brief explanation)

- Any missing functionality/implementations, and things that do not work 
optimally. 

5

Final “push”

https://piazza.com/class/jkw9o67orpmbp?cid=64


- Presentation on 27th or 28th.
- All group members have to attend the presentation, but everyone do not have to 

speak. 
- 10 minutes to present (make sure you do not use more time than this)
- 5 minutes for questions and discussion

Main objective:

- Demonstrate your final product (the app)
- Reflect on decisions regarding design, functionality, implementation, and the 

overall process.
- See the evaluation criteria here.

6

Final group presentation

https://www.uio.no/studier/emner/matnat/ifi/IN5320/h18/project/in5320-project-evaluation-criteria.pdf


The presentation should include:

- Brief intro with your requirements for the selected case

- Demo of the app, covering all functionality

- Reflections on your implementation

- (Structure of code, use of APIs, using functionalities and data model of dhis2 
versus hard-coding in app)

- Some words about the development process. (e.g., how you have coordinated the 
implementation work, negotiated and decided on different aspects, etc.)

- What you could have done differently / things that do not work optimally or that 
you would have done if you had more time. 

7

Final group presentation



Theory workshop after project presentations?

Working with and discussing the theoretical assignments.

Thursday 29th or Friday 30th

https://goo.gl/GGGNie

8

Theory workshop?



Topic summary

9



- Information systems, complexity and architectures

- Platform ecosystems fundamental concepts

- Design & innovation

- Programming / implementation / licensing

About the theoretical exam

10

Topic summary



11

Learning outcome

https://www.uio.no/studier/emner/matnat/ifi/IN5320/


Information Systems

12

An information system is not the information 
technology alone, but the system that emerges 

from the mutually transformational interactions 
between the information technology and the 

organization. 

(Allen S. Lee, 2004)



Information Systems

13

Information system = technology <--> organization(s)



Complexity

Complicated systems

Linear behavior

Total is equal to the sum of its 
parts 

14

Complex systems

Non-linear behavior (change in input is 
not proportional to new output)

System can not be fully understood by 
investigating its parts.

“Complexity stems from the number and type of relationships between 
the systems’ components and between the system and its 
environment” (Hanseth & Lyytinen, 2010)



Why is it complex?

15

Our system

Other system

Other system

Other system

- Too many unknowns
- Too many interrelated factors



Standards

16

- Standards are fundamental in Information Systems

Our system

Other system

Other system



Standards

17

- Standards are fundamental in Information Systems

Platform core Interface
(API)

App

App

App

Standard



Standards

18
Braa & Sahay 2012

- Standardization is not a purely technical process. 



- Blueprints of previous, current, or future arrangement of components and their 
relations in an information system (purely technical, or socio-technical) 

- Architectures can act as constraining or enabling of desired aspects such as 

- Innovation

- Design

- Implementation

- Maintenance

- Scalability

- Customization

- Reusability

- A key aim is to reduce complexity
19

Software architectures



- System architecture tend to mirror the organization.

- What could be a challenge with this?

Conveys law: "organizations which design systems ... are constrained to produce designs 
which are copies of the communication structures of these organizations." 

Mealyís Law: «The eventual structure of the system reflects the structure of the organization 
that builds the system» 

20

Software architectures



Software architectures

21

Silo-systems

System 1

System 2 System 5

System 6 System 7System 3
System 4

System 8

New system

New system



Software architectures

22

A good architecture must exhibit four simple properties that it 
shares with the architecture of modern cities: simplicity, 

resilience, maintainability, and evolvability.

Tiwana 2012 p77



- Platform Architectures has become a common way of structuring systems to 
promote certain desired aspects. 

- A response to contextual factors  ( “Drivers” - Tiwana 2013)

- Also of conscious thought and design?

23

Software architectures



Drivers towards platform ecosystems (Tiwana 2013)

24

1. Deepening specialization

Technologies get increasingly complex and specialized → Require deeper expertise

2. Packetization 

Process of digitizing new phenomenons such as activities or processes. 

3. Software embedding

Business activities are put into software. 

4. Internet of things

It is increasingly easy to connect everyday objects to the web. 

5. Ubiquity 

Fast and cheap networks are available “everywhere” 



What is a platform?

“A software platform is a software-based product or service that serves as a foundation on 

which outside parties can build complementary products or services” - Tiwana 2013 p5

- Provides core functionality which is extendable
- Entails interfaces that allows third parties to develop apps that extend the functionality 

of the platform

25

Platform core Interface
(API)

Core functionality

App

App

App



Core characteristics and concepts (Tiwana 2013)

- Multisided

- Network effects (same-sided, cross-sided)

- Multihoming

- Tipping point

- Lock-in

- Competitive durability

- Envelopment

26



Boundary resources

“To successfully build platform ecosystems, the focus of the platform owner must shift from 
developing applications to providing resources that support third-party developers in their 
development work” - Ghazawneh & Henfridsson 2013 p 174

→ Boundary resources: resources enabling third party development through tools and 
regulations

27

Platform coreApp

Platform owner 
Third parties / app 
developers

Boundary 
reso

urce
s



Boundary resources

- To enable innovation, design and development of new functionality to the platform.
- To control the platform and its evolution in some desired direction.

Therefore: boundary resources has to be designed with the balance between these two in 
mind. 

28

Platform owner Third parties / app 
developers

Boundary re
sources

Use Design

-Proactive
-Reactive



Three levels of architecture

29
Tiwana 2013, p85



Design and innovation

30



Challenges in large-scale systems development

Two problems in large-scale / generic software development:

1. “Generic” usability

2. Working with local users in development

+ Local relevance, utility and innovation!

31



Challenges in large-scale systems development

Variety

32

Alt 1: Everyone uses their 
own systems

Alt 2: Everyone use the 
same system

Alt 3: Combination



Challenges in large-scale systems development

Variety

33

Alt 1: Everyone uses their 
own systems

- Complexity
- Problem of 

integration
- Inefficient?
- Halts innovation



Challenges in large-scale systems development

Variety

34

Alt 2: Everyone use the 
same system

- Usability
- Local relevance and 

utility
- Innovation



Challenges in large-scale systems development

Variety

35

Alt 3: Combination

- Platform architecture 
can support this

- Enable innovation
- Usability and local 

relevance and utility
- Scalability
- Adaptability

Generic 
core 

(Standard)

Apps
High design-flexibility



Platform design flexibility

36

Opening up the software architecture for the development of third-party apps could be one 
way of balancing variety and standards

Generic 
core

Apps
High design-flexibility

Tiwana 2013



Variety and standards: Ruter

37

Ruter 
platform 

core

Apps
High design-flexibility



Variety and standards: DHIS2

38

DHIS2 
core

Apps
High design-flexibility

Doctor's diary

Commodity 
dispensing

AMR system

Commodity 
management

League tables



Variety and standards: Case - AMR in India

39

- Old system was too generic (off-the-shelf software)

- Built their own tailored to their domain and needs

- Happy with this → works well with the users as it is designed specifically for 
the use-case. 

- Problem with scalability

- Communication with other systems

- Takes lots of time to create data presentation tools (graphs, maps, etc.)

- Move to DHIS2?



Variety and standards: Case - AMR in India

40

DHIS2 
core

Apps
High design-flexibility

Pivot tables
Graphs
Maps
Reports
+++

Entry app (UI)

Maintenance app (UI)

Data th
rough 

API 

The specific
- Domain language
- Work practices
- Legacy designs
- User’s mental models

The generic
- Data storage
- Scalability
- Integration
- Data presentation



Programming / implementation / 
licensing

41



Programming / implementation / licensing

● Relevant languages and frameworks in front-end web development

● AJAX and APIs

● REST architectural style

● Licensing: free and open source software

42



Front-end programming

43



REST architectural style

● REST is an architectural style - a set of architectural constraints, that can (a bit 
simplified) be thought of as "rules" for what is allowed within an architecture

44



REST architectural style

● “Uniform interface” constraint for interacting with resources the most 
immediately relevant for creating/interacting with a RESTful API/web service:

○ Addressability - all resources are identified by one identifier mechanism

○ Universal semantic - a small set of standard methods support all interactions and 
apply to all resources

○ Resource representations - resources are manipulated through their 
representations

○ Self-describing messages - interactions happen through request and response 
message that contain both data and metadata

○ Hypermedia as engine of application state (HATEOAS) - resources include links to 
related resources, enabling decentralised discovery. Application state is kept on 
client, resource state on server.

45



REST architectural style

● A maturity model for REST defines how “RESTful” a web service is, according 
to how fully it makes use of the affordances of the HTTP protocol

● “Traditional” web services (XML-RPC) use HTTP primarily for transport

46



Free and Open Source Software

● Differentiate between FS and OSS, which has different origins and purposes

○ FS  focus on the freedoms of users to do what they want with the software

○ OSS focus on improving software development - faster, cheaper, better quality 
through sharing, re-useability, peer reviews etc

● FOSS enables a range of different business models

● Authors of software is given copyright to their work, and software licenses 
govern how others can use the work

● FOSS licenses can be permissive or restrictive – related to FS vs OSS. A “free 
software” viewpoint implies licenses that are restrictive and viral so that 
software remains FOSS. 47

NAV sine applikasjoner er finansiert av skattebetalerne, og skal derfor i utgangspunktet være åpne for innsyn slik at 
skattebetalerne kan ha tillit til at det vi leverer er juridisk og teknologisk tilfredsstillende. Som stor samfunnsaktør er 
det viktig at vi bidrar til Open source-miljøet, spesielt når vi nyter godt av deres arbeid selv. NAV IT



FOSS and platform ecosystems

● Platform openness can encourage growth of the platform ecosystem

● Platform forking is the creation of a new competing platform from an 
existing platform’s resource base - strategic rather than just technical

● Boundary resources, including (open source) licenses, are important both to 
enable platform growth and for control/governance

48



Final exam

49



Final exam

50

- 4th of December

- Individual

- Four hours 

- No help resources

- Digital (Silurveien)



Final exam

Questions are based on what we have talked about in the lectures and the 
mandatory readings. 

● 8 - 10 short answer questions (2 - 4 % each)

○ Answer the question brief with a few sentences. 

● 3 - 5 long answer questions (8 - 12 % each)

○ Discussion. Try to use all relevant concepts from the course readings.

 Theoretical weekly assignments provide an indicator.

- Some of these may be used in the final exam.

51

https://www.uio.no/studier/emner/matnat/ifi/IN5320/h18/assignments/in5320-f18---theoretical-assignments.pdf


Remember to fill out the course evaluation!

- The course is “new”
- What was good?
- What can be improved, and how?

https://goo.gl/vNTisZ

52

Course evaluation


