
1

IN5320 - Development in Platform Ecosystems
Lecture 2: HTML, CSS, JavaScript

27th of August 2018
Department of Informatics, University of Oslo
Magnus Li - magl@ifi.uio.no

Today’s lecture

1. Web, servers, clients, and programming
2. HTML and CSS basics
3. The Document Object Model (DOM)
4. JavaScript
5. jQuery

2

Seminar groups

3

Seminar groups

4

Mandatory individual assignment 1

5

https://www.uio.no/studier/emner/matnat/ifi/IN5320/h18/assignments/in5320-f18---individual-assignment-1.pdf
https://www.uio.no/studier/emner/matnat/ifi/IN5320/h18/assignments/in5320-f18---individual-assignment-1.pdf

Recommended readings

6

https://www.adlibris.com/no/sok?filter=author%3AJon%20Duckett
https://www.adlibris.com/no/sok?filter=author%3AJon%20Duckett

Recommended readings

7

https://www.codecademy.com
https://www.codecademy.com/catalog/language/html-css
https://www.codecademy.com/catalog/language/javascript
https://www.codecademy.com/learn/react-101
https://www.codecademy.com/learn/react-102

Web programming

8

● Involves several languages and frameworks for programming, scripting,
database queries, markups and styles

Client-side Server-side

Servers and clients

9

Request:
Asking for web page from server

Response:
Web page sent to client

Client-side languages

10

Request:
Asking for JS-file from server

Response:
JS-file sent to client

JS-file is executed on client
(browser)

● JavaScript (JS) is a client-side language.
● This means that it is executed on the client. (Often in the web-browser)

Server-side languages

11

Request:
Asking for PHP-file from server

Response:
HTML-result from PHP-execution is

sent to client

PHP-file is executed on server

● PHP is a server-side language.
● This means that it is executed on the server.
● The response contains the output from the execution in HTML

Databases

12

Request web-page

Response:
HTML-result from PHP

execution is sent to client

Web-server

● The web-server often communicate with a database
● A SQL query from PHP can be used to request data from the database
● It is then returned to the client in HTML-format

Database

Client-side, front-end, server-side, back-end

13

● The terms client-side and front-end, and server-side and back-end partly
overlaps

Client-side
Code that runs on the users
computer. Often in the
web-browser.

Front-end
All code/components/processes
that face the end-user. Are
generally client-side and hence
executed in the browser.

Server-side
Code that runs on the server,
rather than the client (the
user’s computer/browser).

Back-end
Underlying processes that do
the “crunching” of data to be
sent to the front-end. /
processes that the user are
“unaware” of. This often
happens on the server-side, but
not always.

In this course

14

● This course focuses on client-side and front-end programming.
● We will use HTML, CSS, JavaScript, and some frameworks such as react.js to

create web-based apps and prototypes.
● These will communicate with server-side and back-end systems through

Application Programming Interfaces (APIs).

Our app

Platforms or external
resourcesAPI

API

API

In this course

15

● We will use HTML for markup, CSS for styling and JavaScript for programming.
● We will also look at jQuery (JavaScript library) and React.js (JavaScript

framework).

Our app

HTML and CSS basics

16

Hypertext Markup Language (HTML)

● Standardized markup-language that allows us to structure documents to be
processed by the browser

● The standard contains a set of markups / tags that all browsers recognize.
● Elements are defined by an opening tag <p> and an closing tag </p>

17

<h1>This is a level 1 heading</h1>

<p>This is a paragraph of text</p>

Hypertext Markup Language (HTML)

18

<h1>This is a level 1 heading</h1>

<p>This is a paragraph of text</p>

Hypertext Markup Language (HTML)

● There are a large set of default elements
● To create lists, tables, images, and hyperlinks
● For semantics and structure: sections, menus, headers, etc.

19

 Bananas

 Apples

 Grapes

Hypertext Markup Language (HTML)

● Overall structure

20

<!DOCTYPE html>

<html>

<head>

 <title>My website</title>

</head>

<body>

 <h1>My website</h1>

 <p>This website contains blablabla</p>

</body>

</html>

Cascading Style Sheets (CSS)

● With CSS, we can define our own styles for how HTML-elements should be
displayed by the browser

● We do this by referring to an element, and define some rules for the browser
to follow.

21

<body>

 <h1>My website</h1>

 <p>This website contains blablabla</p>

</body>

h1 {

 color: red;

}

index.html

style.css

Cascading Style Sheets (CSS)

● CSS can be written internally in the HTML document, or externally in its own
.css file.

22

<head>

 <link rel="stylesheet" href="/html/styles.css">

</head>

<style>

 h1 {

 color: red;

 }

</style>

external

internal

Classes and identifiers

● By referring to the element type, such as <h1>, all elements of that type will
be affected.

● We can also add custom identifiers and classes to our HTML-elements to
style specific elements or groups of elements

● Identifiers should be unique for one element
● Classes can encompass several elements.

23

<p id=”example_one”> <p class=”example_class”>

<p class=”example_class”>

<p class=”example_class”>

<p id=”example_two”>

<p id=”example_three”>

Classes and identifiers

● We can refer to the elements in css by using # for identifiers and . for classes

24

<p id="intro_text">This website contains blablabla</p>

#intro_text {

 color: red;

}

Index.html style.css

<p class="text_snippet">This website contains blablabla</p>

.text_snippet {

 color: red;

}

Semantics

● Standard elements used to structure the document
● For the developer
● For robots and screen-readers

25

<header>

<nav>

<aside><section>

<footer>

Example: basic page with menu

● Live code example.

26

JavaScript

27

JavaScript

● “JavaScript is the programming language of HTML and the Web”
● Allows us to create dynamic functionality on our web pages.
● It is a high-level and interpreted programming language
● It is multi-paradigm: allows imperative and functional programming

28

JavaScript - basics

● The basic syntax of JavaScript is quite similar to languages you already know

29

//if

if (x < y) {

}

//loops

for (var i = 0; i < 10; i++) {

}

while (i < 10) {

}

//arrays

var list = [1, 2, 3, 4, 5];

var list = ["Hey", "whats", "up"];

JavaScript - variables

● Unlike C++ or Java, JavaScript is weakly typed
● This means that we do not have to define the data type of variables.
● JavaScript will automatically recognize the relevant type, and make the

appropriate adjustments.

30

var list = [1, 2, 3, 4, 5]; //array

var test = "hey"; //string

var test = 1; //int

var test = 1.22; //double

var test = true; //boolean

JavaScript - variables

● Unlike C++ or Java, JavaScript is weakly typed
● This means that we do not have to define data types for our variables.
● JavaScript will automatically recognize the relevant type, and make the

appropriate adjustments.

31

var x = 2;

var y = 2;

var z = "one";

console.log(x+y+z);

4one

var x = 2;

var y = 2;

var z = "1";

console.log(x+y+z);

41

var x = 2;

var y = 2;

var z = true;

console.log(x+y+z);

5

JavaScript - console

● We can use the console found in our web browser for debugging.
● In Chrome, it can be opened by pressing ctrl + shift + J
● Similar to System.out.println() in Java, we can use Console.log() to print to the

console in JavaScript.

32

console.log(“Hey console!”);

var x = 2;

var y = 2;

var z = true;

console.log(x+y+z);

JavaScript - console

● The console will also display errors and warnings
● This includes on which line it occurs

33

2 console.log(“Hey console!”);

3 var x = 2<

4 var y = 2;

5 var z = true;

6 console.log(x+y+z); Line

JavaScript - functions

● JavaScript supports both named and anonymous functions

34

function(){

 //some code

});

function example() {

 //some code

}

Named function

Anonymous function

JavaScript - passing functions as arguments

● JavaScripts allows passing functions as arguments to other functions
● Both anonymous and named functions.

35

someFunction(function(){

 //some code

 });

someFunction(example);

function example() {

 //some code

}

JavaScript - passing functions as arguments

● We typically use this when we want to define some event that will be
triggered by a click or some other interaction with elements on the web
page

36

button.addEventListener("click", function(){

 //some code

 });

button.addEventListener("click", example);

function example() {

 //some code

}

JavaScript - example: passing functions as arguments

● Here we have created a function that takes some list of something and a
function as argument.

● It will go through the list and apply the provided function on each element,
storing the returned value from the function in results.

37

function applyToElements(func, list) {

 var result = [];

 for (let i = 0; i < list.length; i++) {

 result.push(func(list[i]));

 }

 return result;

}

JavaScript - example: passing functions as arguments

● Here we have created a function that takes some list of something and a
function as argument.

● It will go through the list and apply the provided function on each element,
storing the returned value from the function in results.

38

var numbers = [1, 2, 3, 4, 5, 6];

applyToElements(function(elem) {

 return ++elem;

}, numbers);

function applyToElements(func, list) {

 var result = [];

 for (let i = 0; i < list.length; i++) {

 result.push(func(list[i]));

 }

 return result;

}

JavaScript - example: passing functions as arguments

● Here we have created a function that takes some list of something and a
function as argument.

● It will go through the list and apply the provided function on each element,
storing the returned value from the function in results.

39

var strings = ["Awk", "Ada", "Assembler", "Limbo", "C", "Caml", "Chill", "Cobol"];

var upperCase = applyToElements(function(elem) {

 return elem.toUpperCase();

}, strings);

console.log(upperCase);

JavaScript and DOM

40

Document Object Model (DOM)

● When the web-browser loads a html-file, a Document Object structure is
created.

● The DOM forms a tree structure of objects where every HTML-element is
stored in nodes

41

Document<html>

<head>

 <title>My website</title>

</head>

<body>

 <h1>My website</h1>

 <p>This website con</p>

</body>

</html>

<html>

<head> <body>

<title> <h1> <p>

Document Object Model

● Nodes with attributes and content is also a part of the tree
● For example, the inner content of the element is stored in a child node

42

Element: <body>

Element:<h1> Element:<p>

innerHTML: ”My website” innerHTML: ”This site con..”

JavaScript + DOM

● "The W3C Document Object Model (DOM) is a platform and
language-neutral interface that allows programs and scripts to dynamically
access and update the content, structure, and style of a document."

● JavaScript can easily access and modify all nodes.

43

Element:<h1>

innerHTML: ”My website”

<h1 id="main_heading">My website</h1>

var elem = document.getElementById("main_heading");

elem.innerHTML = “Hello”;

id: “main_heading”

JavaScript + DOM: example - input + output

44

JavaScript + DOM: example - input + output

45

<body>

 <h1>My website</h1>

 <input type="text" id="search" placeholder="Keyword">

 <button id="search_button">Search!</button>

 <p id="result">This website contains blablabla</p>

</body>

<script>

 var button = document.getElementById("search_button");

 button.addEventListener("click", function(){

 var resElem = document.getElementById("result");

 var searchString = document.getElementById("search").value;

 resElem.innerHTML = searchString;

 });

</script>

jQuery

● The most widely used JavaScript library
● Simplifies navigation and manipulation of the DOM and CSS.
● Other functionality such as animations and ajax.

46

var elem = document.getElementById("main_heading");

elem.innerHTML = “Hello”;

Pure JavaScript

var elem = $("#main_heading");

$(elem).html(“Hello”);

jQuery

jQuery

● Can be imported by referring to it in the head of the HTML-file.
● Either local .js-file or online

47

<head>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js" ></script>

<head>

Online from Google

<head>

<script src="scripts/jquery-3.3.1.min.js" ></script>

<head>

Local

