
IN5320
RESTful Web Services

Outline

• The REST Architectural Style

• HTTP - REST in practice

• RESTful web services

• RESTful web services compared to other web services
and tools

Why REST?

• Already worked with a RESTful API in the first
assignment, probably more in the second

• Platform literature: interfaces are a critical component of a
platform ecosystem. Interfaces are often Web APIs, and
often (claim to be) RESTful

• Group project with DHIS2 platform based on working
with a REST API

REpresentational State
Transfer

• REST is an architectural style

• An architectural style is a set of architectural constraints

• Simply put: architectural constraints can be thought of as
"rules" for what is allowed within an architecture

REST and HTTP

• REST architectural constraints guided the development of
HTTP

• HTTP is a standard - REST is not!

HTTP
• HyperText Transfer Protocol

• Application layer protocol - foundation for data
communication on the Web

IP

Ethernet

TCP

Data link

Internet

Transport

ApplicationHTTP

HTTP Background
• Work on HTTP protocol started in 1989

• HTTP/1.1 first released in 1997 - updated since

• Protocol for the Web, which meant it needed:

• Low entry-barrier to enable adoption => simple

• Preparedness for change over time => extensible

• Usability of hypermedia (links) => minimal network interactions

• Deployed on internet scale => built for unexpected load and network
changes

• Dissertation on REST first published in 2000

REST Architectural
constraints

120 • R. T. Fielding and R. N. Taylor

Fig. 1. REST derivation by style constraints.

ease the deployment of architectural elements in a partial, iterative fashion,
since it is not possible to force deployment in an orderly manner.

2.5 Evolving Requirements
Each of these project goals and information system characteristics fed into the
design of the Web’s architecture. As the Web has matured, additional goals have
been added to support greater collaboration and distributed authoring [Fielding
et al. 1998]. The introduction of each new goal presents us with a challenge:
how do we introduce a new set of functionality to an architecture that is already
widely deployed, and how do we ensure that its introduction does not adversely
impact, or even destroy, the architectural properties that have enabled the Web
to succeed? These questions motivated our development of the REST architec-
tural style.

3. DERIVING REST AS A HYBRID ARCHITECTURAL STYLE
The REST architectural style consists of a set of architectural constraints cho-
sen for the properties they induce on candidate architectures. Although each
of these constraints can be considered in isolation, describing them in terms
of their derivation from common architectural styles makes it easier to un-
derstand the rationale behind their selection. Figure 1 depicts the derivation
of REST’s constraints graphically in terms of the network-based architectural
styles examined in Fielding [2000]. The relevant base styles from which REST
was derived include replicated repository (RR), cache ($), client-server (CS), lay-
ered system (LS), stateless (S), virtual machine (VM), code on demand (COD),
and uniform interface (U).

The null style is simply an empty set of constraints. From an architectural
perspective, the null style describes a system in which there are no distin-
guished boundaries between components. It is the starting point for our de-
scription of REST.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Source: Fielding and Taylor (2002)

REST Architectural
constraints

120 • R. T. Fielding and R. N. Taylor

Fig. 1. REST derivation by style constraints.

ease the deployment of architectural elements in a partial, iterative fashion,
since it is not possible to force deployment in an orderly manner.

2.5 Evolving Requirements
Each of these project goals and information system characteristics fed into the
design of the Web’s architecture. As the Web has matured, additional goals have
been added to support greater collaboration and distributed authoring [Fielding
et al. 1998]. The introduction of each new goal presents us with a challenge:
how do we introduce a new set of functionality to an architecture that is already
widely deployed, and how do we ensure that its introduction does not adversely
impact, or even destroy, the architectural properties that have enabled the Web
to succeed? These questions motivated our development of the REST architec-
tural style.

3. DERIVING REST AS A HYBRID ARCHITECTURAL STYLE
The REST architectural style consists of a set of architectural constraints cho-
sen for the properties they induce on candidate architectures. Although each
of these constraints can be considered in isolation, describing them in terms
of their derivation from common architectural styles makes it easier to un-
derstand the rationale behind their selection. Figure 1 depicts the derivation
of REST’s constraints graphically in terms of the network-based architectural
styles examined in Fielding [2000]. The relevant base styles from which REST
was derived include replicated repository (RR), cache ($), client-server (CS), lay-
ered system (LS), stateless (S), virtual machine (VM), code on demand (COD),
and uniform interface (U).

The null style is simply an empty set of constraints. From an architectural
perspective, the null style describes a system in which there are no distin-
guished boundaries between components. It is the starting point for our de-
scription of REST.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Source: Fielding and Taylor (2002)

Constraints Properties

Style = null

• Starting point: No constraints

• Adding constraints that result in desirable properties

• Goal: architecture with minimal latency and network
communication, and maximum scalability and
independence of components

Style += Client-Server

• Client-server architecture

• Separation of concerns - interface from data storage

+ Simplifies the server component

+ Components can evolve separately

+ Improves UI portability

Style += Stateless
• Communication/interactions must be stateless:

• Each request must be self-descriptive

• Session state is kept by client

+ Improves visibility, reliability and scalability

+ Simplified server

- Decrease network performance due to repetitive data

Style += Cacheable

• Clients and intermediaries can cache response

• Data within a response must be labeled cacheable (or not)

+ Improves network performance and reduces interaction

- Can decrease reliability

Style += Layered system

• The architecture can consist of hierarchical levels

• Components only communicate with their "neighbours"

+ Reduce system complexity

+ Intermediaries can improve efficiency, e.g. provide
caching

- Adds overhead and latency

Style += Uniform interface
• There is a uniform interface for interacting with resources

• Five interface constraints:

• Addressability - all resources are identified by one identifier mechanism

• Universal semantic - a small set of standard methods support all interactions and
apply to all resources

• Resource representations - resources are manipulated through their representations

• Self-describing messages - interactions happen through request and response
message that contain both data and metadata

• Hypermedia as engine of application state (HATEOAS) - resources include links to
related resources, enabling decentralised discovery. Application state is kept on
client, resource state on server.

Style += Uniform interface

+ Decouples implementations from services that are
provided

- Can decrease efficiency - information is transferred in a
standard format rather than optimised to the application

Style += Code-on-demand

• Clients can download and execute code to extend
functionality

+ Simplifies clients and improves extensibility

- Reduces visibility

Note on REST definitions

• Often, only the Uniform interface constraint(s) are listed,
e.g. in Pautasso

• Uniform interface for Pautasso is the limited set of
methods for manipulation (GET, POST etc)

• Uniform interface for Fielding consists of five (four in
Fielding 2002) constraints above

REST Architectural
constraints

120 • R. T. Fielding and R. N. Taylor

Fig. 1. REST derivation by style constraints.

ease the deployment of architectural elements in a partial, iterative fashion,
since it is not possible to force deployment in an orderly manner.

2.5 Evolving Requirements
Each of these project goals and information system characteristics fed into the
design of the Web’s architecture. As the Web has matured, additional goals have
been added to support greater collaboration and distributed authoring [Fielding
et al. 1998]. The introduction of each new goal presents us with a challenge:
how do we introduce a new set of functionality to an architecture that is already
widely deployed, and how do we ensure that its introduction does not adversely
impact, or even destroy, the architectural properties that have enabled the Web
to succeed? These questions motivated our development of the REST architec-
tural style.

3. DERIVING REST AS A HYBRID ARCHITECTURAL STYLE
The REST architectural style consists of a set of architectural constraints cho-
sen for the properties they induce on candidate architectures. Although each
of these constraints can be considered in isolation, describing them in terms
of their derivation from common architectural styles makes it easier to un-
derstand the rationale behind their selection. Figure 1 depicts the derivation
of REST’s constraints graphically in terms of the network-based architectural
styles examined in Fielding [2000]. The relevant base styles from which REST
was derived include replicated repository (RR), cache ($), client-server (CS), lay-
ered system (LS), stateless (S), virtual machine (VM), code on demand (COD),
and uniform interface (U).

The null style is simply an empty set of constraints. From an architectural
perspective, the null style describes a system in which there are no distin-
guished boundaries between components. It is the starting point for our de-
scription of REST.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Source: Fielding and Taylor (2002)

REST architectural
elements

• Data elements

• Components

• Connectors

REST data elements
Data element Example

resource conceptual target of reference, e.g.
today’s weather

resource identifier URL

representation HTML document, XML document,
image file

representation metadata media type, last-modified

resource metadata source link, alternates

control data cache-control

Resources
• Resources are the key information elements in REST

• Any information that can be named can be a resource - image, service,
document

• Resources refer to conceptual mappings, not particular entities or values

• Abstract definition of resources enables:

• generality - information is not divided by type, implementation

• late binding to representation - representation (format) can be decided
based on request

• we can refer/link to (persistent) concepts rather than specific instances
of a concept

Resources - example

https://www.yr.no/sted/Norge/Oslo/Oslo/
Oslo_(Blindern)_målestasjon/varsel.xml

• "6-hour forecast for Oslo" is a resource

• Values/content changes regularly, but we can refer to the
resource over time

https://www.yr.no/sted/Norge/Oslo/Oslo/Oslo_(Blindern)_m%C3%A5lestasjon/varsel.xml
https://www.yr.no/sted/Norge/Oslo/Oslo/Oslo_(Blindern)_m%C3%A5lestasjon/varsel.xml

Resource identifiers

• Each resource needs an unique identifier - URI

• Identifier is defined by the "author" of the resource, not
centralised

• For the Web: URL

Representations
• Resources are not transferred between components in the

architecture, but representations of resources

• Representations consists of both data and metadata
describing the data

• Resource metadata provide information about the
resource not specific to the representation

• Control data provides information about the message,
such as for caching

Representations - example
JSON

GET /2.30/api/organisationUnits/ImspTQPwCqd?fields=name,id HTTP/1.1
> Host: play.dhis2.org
> Accept: application/json

HTTP/1.1 200
< Content-Type: application/json;charset=UTF-8
{"name":"Sierra Leone","id":"ImspTQPwCqd"}

XML

GET /2.30/api/organisationUnits/ImspTQPwCqd?fields=name,id HTTP/1.1
> Host: play.dhis2.org
> Accept: application/xml

HTTP/1.1 200
< Content-Type: application/xml;charset=UTF-8
<?xml version='1.0' encoding='UTF-8'?><organisationUnit xmlns="http://dhis2.org/
schema/dxf/2.0" name="Sierra Leone" id="ImspTQPwCqd"/>

REST components
Component Example

origin server apache, MS IIS

gateway/reverse proxy squid, cgi, nginx

proxy

user agent Chrome, Firefox, curl

REST connectors
Connector Example

client libwww, libcurl

server libwww, Apache API

cache browser, cache networks

resolver bind

tunnel SOCKS

REST connectors
• Connectors handle communication for the components

• Because interactions are stateless and requests self-
descriptive:

• Connectors can handle requests independently and in
parallel

• Intermediaries can understand requests in isolation

• Information relevant for caching is part of each request

REST in Practice - HTTP

• Anatomy of HTTP requests and responses

• HTTP methods

• Content negotiations

• Status codes

HTTP requests
• HTTP requests consists of header and body

• Body - the data/payload

• Header - different types:

• General header that can apply to both request and response - Date,
Cache-Control

• Request header - Accept, User-Agent, Referer

• Response header - Age, Location, Server

• Entity header is metadata about the body (MIME, content length etc)

~>curl google.com -v
* Rebuilt URL to: google.com/
* Trying 216.58.209.142...
* TCP_NODELAY set
* Connected to google.com (216.58.209.142) port 80 (#0)
> GET / HTTP/1.1
> Host: google.com
> User-Agent: curl/7.54.0
> Accept: */*
>
< HTTP/1.1 302 Found
< Cache-Control: private
< Content-Type: text/html; charset=UTF-8
< Referrer-Policy: no-referrer
< Location: http://www.google.no/?gfe_rd=cr&dcr=0&ei=mEu4WbXAL4ir8we1o4a4Dg
< Content-Length: 268
< Date: Tue, 12 Sep 2017 21:03:20 GMT
<
<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">
<TITLE>302 Moved</TITLE></HEAD><BODY>
<H1>302 Moved</H1>
The document has moved
here.
</BODY></HTML>
* Connection #0 to host google.com left intact

Request header

Response header

Response body

curl -X PATCH "https://play.dhis2.org/demo/api/dataElements/FTRrcoaog83" -u admin:district -H
"Content-type: application/json" -d '{"domainType": "BLABLA"}' -vv
* Trying 52.30.174.183...
* TCP_NODELAY set
* Connected to play.dhis2.org (52.30.174.183) port 443 (#0)
* TLS 1.2 connection using TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
* Server certificate: play.dhis2.org
* Server certificate: RapidSSL SHA256 CA - G3
* Server certificate: GeoTrust Global CA
* Server auth using Basic with user 'admin'
> PATCH /demo/api/dataElements/FTRrcoaog83 HTTP/1.1
> Host: play.dhis2.org
> Authorization: Basic YWRtaW46ZGlzdHJpY3Q=
> User-Agent: curl/7.54.0
> Accept: */*
> Content-type: application/json
> Content-Length: 24
>
* upload completely sent off: 24 out of 24 bytes
< HTTP/1.1 500 Internal Server Error
< Server: nginx/1.4.6 (Ubuntu)
< Date: Tue, 12 Sep 2017 21:15:09 GMT
< Content-Type: application/json;charset=UTF-8
< Content-Length: 408
< Connection: keep-alive
< X-XSS-Protection: 1; mode=block
< X-Frame-Options: SAMEORIGIN
< X-Content-Type-Options: nosniff
< Set-Cookie: JSESSIONID=62886259EE13F8F9A3A9BFFAAA5E8077; Path=/demo/; HttpOnly
< Cache-Control: no-cache, private
<
* Connection #0 to host play.dhis2.org left intact
{"httpStatus":"Internal Server Error","httpStatusCode":500,"status":"ERROR","message":"Can not
construct instance of org.hisp.dhis.dataelement.DataElementDomain from String value (\"BLABLA\"):
value not one of declared Enum instance names: [TRACKER, AGGREGATE]\n at [Source: {\"domainType\":
\"BLABLA\"}; line: 1, column: 16] (through reference chain:
org.hisp.dhis.dataelement.DataElement[\"domainType\"])"}

Request header

Response header

Response body

HTTP methods
• GET - request representation of a resource

• POST - create an entity based on the payload (body)

• PUT - update an entity based on the payload

• PATCH - partially update an entity based on the payload

• DELETE - delete the resource

• HEAD, TRACE, OPTIONS, CONNECT

Details: https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

HTTP methods
• GET - safe, idempotent, cacheable

• POST

• PUT - idempotent

• PATCH - can be idempotent

• DELETE - idempotent

• Idempotent methods can be called multiple times without
changing the result/outcome

Content negotiation
• Content negotiation is the process of determining the

representation of the resource

• Clients specify desired representation through:

• HTTP header Accept field - Accept: application/json

• URL extension - http://localhost/api/cars.json

• If the requested representation is not available the server should:

• Respond with status code 406 not acceptable

• Include a list of available representations

HTTP status codes
• HTTP status codes are divided into classes:

• 1XX - informational

• 2XX - success

• 3XX - redirection

• 4XX - client error

• 5XX - server error

HTTP status codes

• Each class is extensible with additional codes

• Clients do not need to understand all codes

• Unknown codes default to the X00 code (100, 200 etc)

• https://tools.ietf.org/html/rfc7231#section-6

https://tools.ietf.org/html/rfc7231%23section-6

REST and RESTful

• REST is an architectural style

• RESTful web services (or REST APIs) are used to describe
web services designed according to the REST
architecture style

REST Maturity Model
• Whether a web service is RESTful is not either or is not

binary

• Richardson’s maturity model define levels of adherence to
the REST architecture:

Level 0 - HTTP as a tunnel

Level 1 - Use of multiple identifiers and resources

Level 2 - Use of HTTP verbs

Level 3 - Use of hypermedia to model relationships

REST Maturity Model

URI

HTTP

HTML
(hypermedia)

Source: https://www.crummy.com/writing/speaking/2008-QCon/act3.html

https://www.crummy.com/writing/speaking/2008-QCon/act3.html

Level 0

• Single resource/endpoint/URI

• Example: RPC-XML

URI
HTTP
HTML

Level 1

• Multiple endpoints/resources/URIs -"modularisation"

• Limited HTTP methods, e.g. only using POST

URI

HTTP
HTML

Level 2

URI

HTTP

HTML

• Multiple endpoints/resources/URIs -"modularisation"

• Multiple HTTP methods, e.g. GET and POST

Level 3

• Resources include information about related resources, i.e.
links

• Relation between objects described dynamically by the
service rather than in separate documentation

URI

HTTP

HTML
(hypermedia)

Example - PayPal
{
 "links": [{
 "href": "https://api.paypal.com/v1/payments/sale/36C38912MN9658832",
 "rel": "self",
 "method": "GET"
 }, {
 "href": "https://api.paypal.com/v1/payments/sale/36C38912MN9658832/refund",
 "rel": "refund",
 "method": "POST"
 }, {
 "href": "https://api.paypal.com/v1/payments/payment/PAY-5YK922393D847794YKER7MUI",
 "rel": "parent_payment",
 "method": "GET"
 }]
}

https://developer.paypal.com/docs/api/overview/#hateoas-links

Level 3

• Resources include information about related resources, i.e.
links

• Relation between objects described dynamically by the
service rather than in separate documentation

URI

HTTP

HTML
(hypermedia)

REST Maturity Model

Level 0 - HTTP as a tunnel

Level 1 - Use of multiple identifiers and resources

Level 2 - Use of HTTP verbs

Level 3 - Use of hypermedia to model relationships

RESTful vs other WS
• RESTful web services make full use of the HTTP protocol

• "Traditional" web services (XML-RPC etc) use HTTP
primarily for transport

• GraphQL is gaining popularity as alternative/supplement
to REST

"Traditional" web services

• Typically RPC (Remote Procedure Call)-type protocols

• A number of standards, such as:

• XML-RPC, which evolved into SOAP (Simple Object
Access Protocol) - messaging standard

• WSDL (Web Services Description Language) - XML
format for describing/defining the web service

• Various WS-* standards built on SOAP messaging

"Traditional" web services

• Based on interacting with services e.g. through remote
procedure calls (RPCs)

• All operations are typically POSTed to one/few endpoint(s)

• Operations to be performed is based on content of SOAP
(or similar) message rather than an HTTP verb

• Extensions to SOAP for specific functionality - WS-
Security, WS-Policy, WS-Addressing etc

SOAP example
POST http://somedomain.com/service
<?xml version="1.0" encoding="utf-8" ?>
<soap:="http://www.w3.org/2003/05/soap-envelope/">
 <soap:Body>
 <FindCustomerByNum xmlns="urn:OrderSvc:OrderInfo">
 <CustomerNumber>3</CustomerNumber>
 </FindCustomerByNum>
 </soap:Body>
</soap:Envelope>
<?xml version="1.0" encoding="UTF-8" ?>
<soap:http://www.w3.org/2003/05/soap-envelope/>
 <soap:Body>
 <FindCustomerByNumResponse xmlns="urn:OrderSvc:OrderInfo">
 <CustomerName>Hoops</CustomerName>
 </FindCustomerByNumResponse>
 </soap:Body>
</soap:Envelope>

GET http://somedomain.com/api/customers/3
{
 id: 3,
 name: Hoops
}

Rest equivalent

http://somedomain.com/service
http://somedomain.com/api/customers/3

RESTful vs other WS
36 C. Pautasso

Fig. 2.1 Design space: RESTful web services versus WS-* web services

HTTP resources but may be used to access the same service through alternative
communication mechanisms.

The third axis is not directly reflected in the maturity model but is also important
for understanding the difference between the two technology stacks, one having a
foundation in the SOAP protocol and the XML format, while the other leaves open
the choice of which message format should be used (shown on the representations
axis) so that clients and services can negotiate the most suitable format to achieve
interoperability.

2.3 Example

As inspiration for this example we use the Doodle REST API, which gives program-
matic access to the Doodle poll Web service available at (http://www.doodle.ch).
Doodle is a very popular service, which allows to minimize the number of emails
exchanged in order to find an agreement among a set of people. The service allows to
initiate polls by configuring a set of options (which can be a set of dates for scheduling
a meeting, but can also be a set of arbitrary strings). The link to the poll is then mailed
out to the participants, who are invited to answer the poll by selecting the preferred
options. The current state of the poll can be polled at any time by the initiator, who
will typically inform the participants of the outcome with a second email message.

The Simple Doodle REST API (Fig. 2.2) publishes two kinds of resources: polls
(a set of options once can choose from) and votes (choices of people within a
given poll). There is a natural containment relationship between the two kinds
of resources, which fits naturally into the convention to use / as a path separa-
tor in URIs. Thus the service publishes a /poll root resource, which contains a
set of /poll/{id} poll instances, which include the corresponding set of votes
/poll/{id}/vote/{id}.

GraphQL
• API query language, Open Sourced in 2015 by Facebook

• Language specifications and runtime backend

• Also supports writing and subscribing to changes

• Clients define data structure of data being requested, in
order to:

• Reduce number of requests

• Reduce "unneeded" data

GraphQL

Source: http://graphql.github.io/learn/queries/

GraphQL vs REST

• Network usage

• Evolvability

• One vs multiple requests

• RESTful APIs can emulate some GraphQL functionality

Literature
• Curriculum:

• Fielding and Taylor. 2002.

• Pautasso. 2014.

• Fowler. 2010.

• More on REST:

• Erenkrantz et al 2007. Section 2 gives more concise definition of REST.

• Fielding et al 2017. Sections 1-2 discusses different definitions of REST over the years.

• More on "Big" web services vs RESTful web services: http://www2008.org/papers/pdf/p805-
pautassoA.pdf

• More on GraphQL: https://graphql.org/learn/

http://fowler.com/articles/richardsonMaturityModel.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwi9h9XJ5K7dAhVH3aQKHVppDoAQFjAAegQIBBAB&url=https://dl.acm.org/ft_gateway.cfm?ftid=460467&id=1287660&usg=AOvVaw1BWzXk_oa7h273DjNWusGd
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwiS1tTH467dAhVCCewKHbS3DNgQFjABegQICRAC&url=https://research.google.com/pubs/archive/46310.pdf&usg=AOvVaw1ZIvpqqPEl4LpmahExmzPv
http://www2008.org/papers/pdf/p805-pautassoA.pdf
http://www2008.org/papers/pdf/p805-pautassoA.pdf
https://graphql.org/learn/

Other sources

• Roy Fielding presentations:

• https://www.slideshare.net/royfielding/a-little-rest-and-
relaxation

• https://www.slideshare.net/royfielding/rest-in-aem?
next_slideshow=1

https://www.slideshare.net/royfielding/a-little-rest-and-relaxation
https://www.slideshare.net/royfielding/a-little-rest-and-relaxation
https://www.slideshare.net/royfielding/rest-in-aem?next_slideshow=1
https://www.slideshare.net/royfielding/rest-in-aem?next_slideshow=1

