INS320

RESTful Web Services

Outline

The REST Architectural Style
HTTP - REST in practice
RESTful web services

RESTful web services compared to other web services
and tools

Why REST?

e Already worked with a RESTful APl in the first
assignment, probably more in the second

o Platform literature: interfaces are a critical component of a

platform ecosystem. Interfaces are often Web APIs, and
often (claim to be) RESTful

e Group project with DHIS2 platform based on working
with a REST API

REpresentational State
Transfer

e REST is an architectural style
* An architectural style is a set of architectural constraints

e Simply put: architectural constraints can be thought of as
"rules"” for what is allowed within an architecture

REST and HTTP

e REST architectural constraints guided the development of
HTTP

e HTTP is a standard - REST is not!

HITP

* HyperText Transfer Protocol

e Application layer protocol - foundation for data
communication on the Web

Application

Transport

Internet

Ethernet Data link

HTTP Background

e Work on HTTP protocol started in 1989

e HTTP/1.1 first released in 1997 - updated since

e Protocol for the Web, which meant it needed:
e |Low entry-barrier to enable adoption => simple
 Preparedness for change over time => extensible
e Usability of hypermedia (links) => minimal network interactions

e Deployed on internet scale => built for unexpected load and network
changes

e Dissertation on REST first published in 2000

REST Architectural
constraints

replicated uniform interface

COERCHYCEPERCDOERE

simple
visible

reliable shared reusable

scalable ;

cacheable

Source: Fielding and Taylor (2002)

REST Architectural
constraints

Constraints Properties

visible
coid] [ol] o] [
EE oy T o 8 e Wy

Source: Fielding and Taylor (2002)

Style = null

e Starting point: No constraints
e Adding constraints that result in desirable properties

e (Goal: architecture with minimal latency and network
communication, and maximum scalability and
Independence of components

Style += Client-Server

e (Client-server architecture

e Separation of concerns - interface from data storage
+ Simplifies the server component

+ Components can evolve separately

+ Improves Ul portability

Client

- 5%

Figum 5-2. Client-Senver

Style += Stateless

Communication/interactions must be stateless:
e Each request must be self-descriptive

e Session state is kept by client

Improves visibility, reliability and scalability
Simplified server

Decrease network performance duet < o—__

L
S

Style += Cacheable

e Clients and intermediaries can cache response

e Data within a response must be labeled cacheable (or not)

+ Improves network performance and reduces interaction

- Can decrease reliability

Figum 54. Client-Cache-Stateless-Senper

Style += Layered system

e The architecture can consist of hierarchical levels
e Components only communicate with their "neighbours”
+ Reduce system complexity

+ Intermediaries can improve efficiency, e.g. provide

caching
(‘% @3

- Adds overhead and latency @\ > 08¢
(& g =

Clisut Swsuvactn, Y 3 ClimaCalwe, & > Server Coanector () SarveryCache: %

Frguwe 5-7. Mulfui-Leyaal Clivi-C a3 labeles-Smavna

Style += Uniform interface

e There is a uniform interface for interacting with resources
e Five interface constraints:
* Addressability - all resources are identified by one identifier mechanism

e Universal semantic - a small set of standard methods support all interactions and
apply to all resources

e Resource representations - resources are manipulated through their representations

» Self-describing messages - interactions happen through request and response
message that contain both data and metadata

* Hypermedia as engine of application state (HATEOAS) - resources include links to

related resources, enabling decentralised discovery. Application state is kept on
client, resource state on server.

Style += Uniform interface

+ Decouples implementations from services that are
provided

- Can decrease efficiency - information is transferred in a
standard format rather than optimised to the application

Client Connector: () Client+Cache: @1 0 Server Connector: (12 Serves+Cache: (3

Figue 5-6. Unifomro-Client-Cache-Stateless-Sener

Style += Code-on-demand

e (Clients can download and execute code to extend

functionality

+ Simplifies clients and improves extensibility

- Reduces visibility

Client Connector (0 Client+Cache: @) Server Connector: L Server+Cache: (g

Figum 5. REST

Note on REST definitions

e Often, only the Uniform interface constraint(s) are listed,
e.g. in Pautasso

o Uniform interface for Pautasso is the limited set of
methods for manipulation (GET, POST etc)

» Uniform interface for Fielding consists of five (four in
Fielding 2002) constraints above

REST Architectural
constraints

replicated uniform interface

on-demand : i simple
: visible

reliable shared reusable

cacheable scalable

Source: Fielding and Taylor (2002)

REST architectural
elements

e Data elements
e Components

e Connectors

REST data elements

conceptual target of reference, e.g.

resource ;
today’s weather

resource identifier URL

. HTML document, XML document,
representation

image file
representation metadata media type, last-modified
resource metadata source link, alternates

control data cache-control

Resources

Resources are the key information elements in REST

Any information that can be named can be a resource - image, service,
document

Resources refer to conceptual mappings, not particular entities or values
Abstract definition of resources enables:
e generality - information is not divided by type, implementation

e |ate binding to representation - representation (format) can be decided
based on request

e we can refer/link to (persistent) concepts rather than specific instances
of a concept

Resources - example

https://www.yr.no/sted/Norge/Oslo/Oslo/
Oslo (Blindern) malestasjon/varsel.xml

e "6-hour forecast for Oslo" is a resource

e \alues/content changes regularly, but we can refer to the
resource over time

https://www.yr.no/sted/Norge/Oslo/Oslo/Oslo_(Blindern)_m%C3%A5lestasjon/varsel.xml
https://www.yr.no/sted/Norge/Oslo/Oslo/Oslo_(Blindern)_m%C3%A5lestasjon/varsel.xml

Resource identifiers

e Each resource needs an unique identifier - URI

e |dentifier is defined by the "author” of the resource, not
centralised

e For the Web: URL

Representations

Resources are not transferred between components in the
architecture, but representations of resources

Representations consists of both data and metadata
describing the data

Resource metadata provide information about the
resource not specific to the representation

Control data provides information about the message,
such as for caching

Representations - example

JSON

GET /2.30/api/organisationUnits/ImspTQPwCqgd?fields=name,id HTTP/1.1
> Host: play.dhis2.org
> Accept: application/json

HTTP/1.1 200
< Content-Type: application/json;charset=UTF-8
{"name" :"Sierra Leone","1d":"ImspTQPwCqd"}

XML

GET /2.30/api/organisationUnits/ImspTQPwCqgd?fields=name,id HTTP/1.1
> Host: play.dhis2.org
> Accept: application/xml

HTTP/1.1 200

< Content-Type: application/xml;charset=UTF-8

<?xml version='1.0" encoding='UTF-8'?><organisationUnit xmlns="http://dhis2.org/
schema/dxf/2.0" name="Sierra Leone" 1id="ImspTQPwCqd"/>

REST components

Component Example

origin server apache, MS IS
gateway/reverse proxy squid, cgi, nginx
proxy

user agent Chrome, Firefox, curl

REST connectors

Connector Example

client libwww, libcurl

server libwww, Apache API
cache browser, cache networks
resolver bind

tunnel SOCKS

REST connectors

e Connectors handle communication for the components

e Because interactions are stateless and requests self-
descriptive:

e Connectors can handle requests independently and in
parallel

e |ntermediaries can understand requests in isolation

e Information relevant for caching is part of each request

REST In Practice - HTTP

e Anatomy of HTTP requests and responses
e HTTP methods
e Content negotiations

o Status codes

HITP requests

* HTTP requests consists of header and body
 Body - the data/payload
* Header - different types:

* General header that can apply to both request and response - Date,
Cache-Control

* Request header - Accept, User-Agent, Referer
* Response header - Age, Location, Server

* Entity header is metadata about the body (MIME, content length etc)

~>curl google.com -v Request header
* Rebuilt URL to: google.com/

Trying 216.58.209.142. ..
TCP_NODELAY set
Connected to google.com (216.58.209.142) port 80 (#0)
GET / HTTP/1.1
Host: google.com
User-Agent: curl/7.54.0
Accept: */*

HTTP/1.1 302 Found Response header

Cache-Control: private

Content-Type: text/html; charset=UTF-8

Referrer-Policy: no-referrer

Location: http://www.google.no/?gfe_rd=cr&dcr=0&ei=mEud4WbXAL41r8welo4a4Dg
Content-Length: 268

Date: Tue, 12 Sep 2017 21:03:20 GMT

* ¥ ¥

ANANANANANANANANYV V V VYV

<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">
<TITLE>302 Moved</TITLE></HEAD><BODY>
<H1>302 Moved</H1> _

The document has moved Response bOdy

here.
</BODY></HTML>

* Connection #0 to host google.com left intact

curl -X PATCH "https://play.dhis2.org/demo/api/dataElements/FTRrcoaog83" -u admin:district -H

"Content-type: application/json" -d '{"domainType": "BLABLA"}' -vv
Trying 52.30.174.183...

TCP_NODELAY set

Connected to play.dhis2.org (52.30.174.183) port 443 (#0)

TLS 1.2 connection using TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Server certificate: play.dhis2.org

Server certificate: RapidSSL SHAZ256 CA - G3

Server certificate: GeoTrust Global CA

Server auth using Basic with user 'admin'

PATCH /demo/api/dataElements/FTRrcoaog83 HTTP/1.1

Host: play.dhis2.org

Authorization: Basic YWRtaW46ZGlzdH]IpY3Q=

User-Agent: curl/7.54.0

Content-type: application/json Request header

Content-Length: 24

¥ X X X X ¥ ¥ ¥

*V V.V V V V VYV

upload completely sent off: 24 out of 24 bytes
HTTP/1.1 500 Internal Server Error

Server: nginx/1.4.6 (Ubuntu)

Date: Tue, 12 Sep 2017 21:15:09 GMT
Content-Type: application/json;charset=UTF-8
Content-Length: 408
Connection: keep-alive Response header

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

Set-Cookie: JSESSIONID=62886259EE13F8FOA3A9BFFAAASE8Q77; Path=/demo/; HttpOnly
Cache-Control: no-cache, private

A AN AN AAANAANANAANAAANA

*

Connection #0 to host play.dhisZ2.org left intact

{"httpStatus”:"Internal Server Error","httpStatusCode":500,"status":"ERROR","message" :"Can not
construct instance of org.hisp.dhis.dataelement.DataElementDomain from String value (\"BLABLA\"):
value not one of declared Enum instance names: [TRACKER, AGGREGATE]\n at [Source: {\"domainType\":

\"BLABLA\"}; 1line: 1, column: 16] (through reference chain:
org.hisp.dhis.dataelement.DataElement[\"domainType\"])"} Response body

HTTP methods

GET - request representation of a resource

POST - create an entity based on the payload (body)
PUT - update an entity based on the payload

PATCH - partially update an entity based on the payload
DELETE - delete the resource

HEAD, TRACE, OPTIONS, CONNECT

Details: https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

HTTP methods

GET - safe, idempotent, cacheable
POST

PUT - idempotent

PATCH - can be idempotent
DELETE - idempotent

ldempotent methods can be called multiple times without
changing the result/outcome

Content negotiation

e Content negotiation is the process of determining the
representation of the resource

e Clients specify desired representation through:
e HTTP header Accept field - Accept: application/json
* URL extension - http://localhost/api/cars.json

* |f the requested representation is not available the server should:
* Respond with status code 406 not acceptable

* |nclude a list of available representations

HTTP status codes

e HTTP status codes are divided into classes:
e 1XX - informational
e 2XX - success
e 3XX - redirection
e 4XX - client error

e 5XX - server error

HTTP status codes

Each class is extensible with additional codes

Clients do not need to understand all codes

Unknown codes default to the X00 code (100, 200 etc)

https://tools.ietf.org/html/rfc7231#section-6

https://tools.ietf.org/html/rfc7231%23section-6

REST and RESTful

e REST is an architectural style

e RESTful web services (or REST APIs) are used to describe
web services designed according to the REST
architecture style

REST Maturity Model

e Whether a web service is RESTful is not either or is not
binary

* Richardson’s maturity model define levels of adherence to
the REST architecture:

Level O - HTTP as a tunnel
Level 1 - Use of multiple identifiers and resources
Level 2 - Use of HT TP verbs

Level 3 - Use of hypermedia to model relationships

REST Maturity Model

HTML
(hypermedia)

Source: https://www.crummy.com/writing/speaking/2008-QCon/act3.html

https://www.crummy.com/writing/speaking/2008-QCon/act3.html

Level O

e Single resource/endpoint/URI

e Example: RPC-XML

Level 1

 Multiple endpoints/resources/URlIs -"modularisation”

e Limited HTTP methods, e.g. only using POST

Level 2

 Multiple endpoints/resources/URIs -"modularisation”

e Multiple HTTP methods, e.g. GET and POST

Level 3

HTML

(hypermedia)

HTTP

URI

* Resources include information about related resources, i.e.
links

 Relation between objects described dynamically by the
service rather than in separate documentation

Example - PayPal

"links": [{
"href": "https://api.paypal.com/vl/payments/sale/36C38912MN9658832",
"rel": "self",
"method": "GET"
Py A
"href": "https://api.paypal.com/v1l/payments/sale/36(C38912MN9658832/refund",
"rel": "refund",
"method": "POST"
Py d
"href": "https://api.paypal.com/v1l/payments/payment/PAY-5YK922393D847794YKER7MUI",
"rel": "parent_payment",

"method": "GET"
+]

https://developer.paypal.com/docs/api/overview/#hateoas-links

Level 3

HTML

(hypermedia)

HTTP

URI

* Resources include information about related resources, i.e.
links

 Relation between objects described dynamically by the
service rather than in separate documentation

REST Maturity Model

Level O - HTTP as a tunnel

Level 1 - Use of multiple identifiers and resources
Level 2 - Use of HTTP verbs

Level 3 - Use of hypermedia to model relationships

RESTful vs other WS

RESTful web services make full use of the HTTP protocol

"Traditional” web services (XML-RPC etc) use HTTP
primarily for transport

GraphQL is gaining popularity as alternative/supplement
to REST

® Representational s... ® SOAP GraphQL
‘rgtoxcll Emne

Merk

"Traditional"” web services

e Typically RPC (Remote Procedure Call)-type protocols
e A number of standards, such as:

e XML-RPC, which evolved into SOAP (Simple Object
Access Protocol) - messaging standard

e WSDL (Web Services Description Language) - XML
format for describing/defining the web service

e Various WS-* standards built on SOAP messaging

"Traditional"” web services

 Based on interacting with services e.g. through remote
procedure calls (RPCs)

e All operations are typically POSTed to one/few endpoint(s)

e Operations to be performed is based on content of SOAP
(or similar) message rather than an HTTP verb

e Extensions to SOAP for specific functionality - WS-
Security, WS-Policy, WS-Addressing etc

SOAP example

<?xml version="1.0" encoding="UTF-8" 7>
<soap:http://www.w3.0rg/2003/05/soap-envelope/>
<soap :Body>
<FindCustomerByNumResponse xmlns="urn:0OrderSvc:0OrderInfo">
<CustomerName>Hoops</CustomerName>
</FindCustomerByNumResponse>
</soap :Body>
</soap:Envelope>

GET http://somedomain.com/api/customers/3

{

id: 3, Rest equivalent
name: Hoops

http://somedomain.com/service
http://somedomain.com/api/customers/3

RESTful vs other WS

® s+ Representations

® REST

Many Message Formats
(XML, JSON, ATOM, HTML, CSV, ...)

% 1 Message Format (SOAP)
1 Communication

“Endpoint”

4 HTTP Verbs

Many URIs (GET, PUT, POST, DEL

Many Operations (WSDL) Interface
Resources

GraphQL

APl query language, Open Sourced in 2015 by Facebook
Language specifications and runtime backend
Also supports writing and subscribing to changes

Clients define data structure of data being requested, in
order to:

e Reduce number of requests

e Reduce "unneeded" data

GraphQL

{ {
hero { "data": {
name "hero": {
“name”: "R2-D2",
friends { "friends": |
name {
} 'name” : "Luke Skywalker"
} '
} {
'name” : "Han Solo'
ks
{ {
human(id: "1680") { "data": {
name "human”: {
height "name”: "Luke Skywalker"”,
} "height": 1.72
} h
}
}

Source: http://graphdgl.github.io/learn/queries/

GraphQL vs REST

e Network usage
e Evolvability
e One vs multiple requests

e RESTful APls can emulate some GraphQL functionality

Literature

e Curriculum:
* Fielding and Taylor. 2002.
e Pautasso. 2014.

e Fowler. 2010.

e More on REST:
* Erenkrantz et al 2007. Section 2 gives more concise definition of REST.

* Fielding et al 2017. Sections 1-2 discusses different definitions of REST over the years.

 More on "Big" web services vs RESTful web services: http:// www2008.org/papers/pdf/p805-
pautassoA.pdf

e More on GraphQL.: https://graphgl.org/learn/

http://fowler.com/articles/richardsonMaturityModel.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwi9h9XJ5K7dAhVH3aQKHVppDoAQFjAAegQIBBAB&url=https://dl.acm.org/ft_gateway.cfm?ftid=460467&id=1287660&usg=AOvVaw1BWzXk_oa7h273DjNWusGd
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwiS1tTH467dAhVCCewKHbS3DNgQFjABegQICRAC&url=https://research.google.com/pubs/archive/46310.pdf&usg=AOvVaw1ZIvpqqPEl4LpmahExmzPv
http://www2008.org/papers/pdf/p805-pautassoA.pdf
http://www2008.org/papers/pdf/p805-pautassoA.pdf
https://graphql.org/learn/

Other sources

 Roy Fielding presentations:

e https://www.slideshare.net/royfielding/a-little-rest-and-
relaxation

e https:.//www.slideshare.net/royfielding/rest-in-aem?
next slideshow=1

https://www.slideshare.net/royfielding/a-little-rest-and-relaxation
https://www.slideshare.net/royfielding/a-little-rest-and-relaxation
https://www.slideshare.net/royfielding/rest-in-aem?next_slideshow=1
https://www.slideshare.net/royfielding/rest-in-aem?next_slideshow=1

