
IN5400 Machine learning for image classification

Summary - Learning goals

INF 5400
24.04.2019

02 - Linear models for regression and
classification
• Understand linear regression and the loss function
• Be able to compute by hand and implement the gradient descent updates
• Understand logistic regression and the loss function
• Be able to compute by hand and implement the logistic gradient descent

updates
• Understand softmax classification
• Cross-entropy loss will be derived in detail next week
• Implement softmax and gradient descents for cross-entropy loss

– This will come in handy for Mandatory 1
• Theory exercises relevant for exam

Page 2

INF 5400
24.04.2019

03 - Dense Neural Network Classifiers
• Detailed knowledge about the structure of a standard fully-connected

classification network
– Activation in an arbitrary node at an arbitrary layer
– Sigmoid and ReLU activation functions
– Softmax function with multiple classes
– Cross entropy loss function
– Stochastic gradient descent optimization method
– Backward propagation

• Justification and derivation of concepts, knowing why they are as they are
– Cross-entropy loss function
– Stochastic gradient descent method
– Backward propagation equations (with cross-entropy loss and softmax)

• Knowledge about making the implementation efficient
– Derivation of the various vectorized equations

Page 3

INF 5400
24.04.2019

04 - Pytorch
• Know what we mean with a deep learning framework.
• Pytorch

– Automatic differentiation

Page 4

INF 5400
24.04.2019

05 - Convolutional neural networks
• Understand why we use CNN on image data
• Know what a convolutional layer is, and its hyperparameters
• Understand the difference between the theoretical and the effective receptive

field
• Know how we can use dilated convolutions
• Know what a pooling layer is
• Understand why depthwise separable convolutions can be parameter efficient.
• Know the difference between using a dense layer and a convolutional layer as

the last layer in the network.

Page 5

INF 5400
24.04.2019

07 - Training and architectures
• Pro’s and con’s for different activation functions.
• How weights should be initialized and scaled given the activation function.
• How batch norm works at training and test time.
• How momentum SGD and ADAM works.
• Know how to optimize the hyperparameters, including scale and sensitivity.
• Know the most characteristic features of central architectures.

Page 6

INF 5400
24.04.2019

08 - Generalization
• You should be familiar with the learning problem.

– In-sample
– Out-of-sample
– Hypothesis set
– A hypothesis
– Final hypothesis
– Target hypothesis

• Model capacity/complexity
– VC dimention

• The Vapnik-Chervonenkis Inequality
• Learning from a small datasets

– Regularization L2
– Dropout
– Data augmentation
– Transfer learning
– Multitask learning

Page 7

INF 5400
24.04.2019

09 - Segmentation and Object Detection
• Performance evaluation metrics

– Sensitivity
– Specificity
– Precision
– Accuracy
– Balanced accuracy
– Jaccard index
– Mean average precision (familiarity)

• Object detection
– Label vector
– Multi-task loss function
– Network architectures (basic concepts)

• Image segmentation
– Spatial upsampling (unpooling) techniques
– Network architectures (basic concepts)
– Difference between semantic segmentation and instance segmentation

Page 8

INF 5400
24.04.2019

10 - Visualization and adversarial fooling
• Understand the need to be able to visualize the network
• Understand the limitations of visualizing the filters directly
• Understand heatmaps like class activation maps, saliency maps, and know

about layerwise relevance propagation
• Know the principles and goals of guided backprop
• Understand how adversarial images are created, and what adversarial training

is, and what models are suspect to being fooled.

Page 9

INF 5400
24.04.2019

11 - Recurrent neural network
• Know how to build a recurrent neural network
• Understand why recurrent neural network are susceptible to exploding and

vanishing gradients.
• Know why we use backpropagation through time
• Gated Recurrent Unit (GRU)
• Multi-layer Recurrent Neural Networks
• Bidirectional recurrent neural network

Page 10

INF 5400
24.04.2019

12 - Unsupervised Learning
• Background (clustering, PCA) is background, and assumed known (not

including derivations)
• SNE

– Motivation and idea
– High-dimensional neighbor probability distributions
– Low-dimensional neighbor probability distributions
– Probability distribution distance metric
– Optimization of the distance metric
– Benefits and drawbacks

• t-SNE
– Motivation and idea, in relation to SNE
– Changes from SNE
– Why it fixes some problems with SNE, and works better

Page 11

INF 5400
24.04.2019

12 - Unsupervised Learning
• Autoencoders

– Detailed knowledge (based on lecture and weekly exercise) about the
various variants (compression-, denoising-, and sparse-autoencoder)

• Variational autoencoders
– Purpose
– Problems it is trying to solve, and how it solves them
– Structure and key elements (related to the previous point)
– How it can be used to generate new images from the training distribution
– How it can be used to generate an interpolation between two existing

images

Page 12

INF 5400
24.04.2019

13 - Generative Adversarial Networks
• General concept

– Purpose and structure of the generator network
– Purpose and structure of the discriminator network
– Training process
– Advantages and challenges

• Motivation and derivation of generator and discriminator cost functions
– Minimax-GAN
– Non-saturating GAN

Page 13

INF 5400
24.04.2019

14 - Reinforcement learning
• Be familiar with the RL environment: states, actions, rewards, return
• Value based RL:

– State-value function and action-value function
– Understand how we can use the bellman (expectation) equation to update

a value function.
– Q-learning
– Exploration vs Exploitation
– Experience replay

• Policy based RL:
– Policy Gradients
– Why policy Gradients suffers from high variance

Page 14

INF 5400
24.04.2019

15 – Not just AI/Deep learning
• Be able to reflect upon the challenges of applying deep learning in an

application
• Be confident about the current limitations of deep learning and seek to gain

insight into the black box.
• Know the need for evaluating the statistical significant for any deep learning

application.
• Know the need to get insight into when the system will fail.
• Know the pitfalls of bias in the model and the data
• Be able to reflect upon ethical challenges given an application.
• Know that you as a developer must follow GDPR and other national

regulations.

Page 15

INF 5400
24.04.2019

Dilated convolutions
• Larger receptive field, without

reducing spatial dimension or
increasing the parameters

Page 1

INF 5400
24.04.2019

Dilated convolutions
• Skipping values in the kernel

• Same as filling the kernel with every
other value as zero

• Still cover all inputs

• Larger kernel with no extra
parameters

Page 2

INF 5400
24.04.2019

A growing dilation factor can give
similar effect as stride

• With a constant dilation factor you get the similar effect as using a larger kernel

• With growing dilation factor you can get an even larger receptive field, while still
covering all inputs

Page 3

INF 5400
24.04.2019

Reinforcement learning

• History / trajectory :
– ௧ܪ ൌ ߬௧ ൌ ܴଵ, ଵܱ, ,ଵܣ ܴଶ, ܱଶ, ,ଶܣ … , ܴ௧, ܱ௧, ௧ܣ

• State:
– ܵ௧ ൌ ݂ሺܪ௧ሻ

• Full observatory:
– ܱ௧ ൌ 	ܵ௧௘ ൌ ܵ௧௔

Page 4

INF 5400
24.04.2019

Value based vs policy based RL
• Value function based methods (Q-learning)
• Policy based methods (policy gradients)

• The goal in both methods is to find a policy which maximizes the accumulated
reward.

௧ܩ ൌ ܴ௧ ൅ ௧ାଵܴߛ ൅ ⋯ ൌ	෍ߛ௞
ஶ

௞ୀ଴

ܴ௧ା௞

• In value based methods we try to estimate the goodness of a state (and an
action). We then selects actions greedily based on the values function.
Example: grid world

• Because estimating a value function can be difficult, policy gradients tries to
estimate the best policy directly.

Page 5

INF 5400
24.04.2019

State-value function and action-value
function

• Definition: a state-value function, గݒ ݏ , of an MDP is the expected return
starting from state, s, and then following the policy ߨ. In general, how good is it
to be in this state.
గݒ ݏ ൌ 	ॱగ 	௧ܩ	 	S୲ ൌ sሿ

• Definition: an action-value (q-value) function, గݍ ,ݏ ܽ , is the expected return
starting from state, s, taking action, a, and following policy, ߨ. In general, how
good it is to take this action.
గݍ ,ݏ ܽ ൌ 	ॱగ ௧ܣ	|	௧ܩ	 ൌ ܽ, ܵ௧ ൌ ݏ

Page 6

INF 5400
24.04.2019

Grid world – Bellman equation

Page 7

௞ାଵݒ ݏ 	ൌ ॱగ	 ܴ௧ ൅ ௞ݒߛ ௧ܵାଵ 	 		S୲ ൌ ሿݏ

௞ୀଵݒ ሾ1,1ሿݏ ൌ െ1 ൅ 0.25 ⋅ ሺݒ௞ୀ଴ ݏ 0,1
0

൅ ௞ୀ଴ݒ ݏ 2,1
0

൅ ௞ୀ଴ݒ ݏ 1,0
0

൅ ௞ୀ଴ݒ ݏ 1,2 ሻ ൌ െ1.0
0

௞ୀଶݒ ሾ1,1ሿݏ ൌ െ1 ൅ 0.25 ⋅ ሺݒ௞ୀଵ ݏ 0,1
െ1

൅ ௞ୀଵݒ ݏ 2,1
െ1

൅ ௞ୀଵݒ ݏ 1,0
െ1

൅ ௞ୀଵݒ ݏ 1,2 ሻ ൌ െ2.0
െ1

INF 5400
24.04.2019

Q-learning
• Goal: Find a Q-function satisfying the Bellman (optimality) equation.
• We parameterize our action-value function using a neural network.
• Since we get training data collected by the agent itself only, we want to balance

exploration and exploitation.
– ௜ܦ is your dataset with state action pairs ݏ௧, ,ܽ௧	௧ାଵ,ݏ ௧ݎ

• ܳ∗ ,௧ݏ ܽ௧, ௜ߠ ൌ ॱ 	ܴ௧ ൅ maxߛ
௔೟శభ

ܳ∗ ,௧ାଵݏ ܽ௧ାଵ, ௜ିଵߠ ௧ܣ	| ൌ ܽ௧, ܵ௧ ൌ ௧ݏ

• Reference:
௜ݕ ൌ 	ॱ 	ܴ௧ ൅ maxߛ

௔೟శభ
ܳ ,௧ାଵݏ ܽ௧ାଵ, ௜ିଵߠ ௧ܣ	| ൌ ܽ௧, ܵ௧ ൌ ௧ݏ

• Loss:
௜ሻߠ௜ሺܮ ൌ ॱ௦೟,௦೟శభ,	௔೟,௥೟~஽೔ ௜ݕ െ ܳ ,௧ݏ ܽ௧, ௜ߠ

ଶ

Page 8

INF 5400
24.04.2019

Policy based methods
• Goal:

– The goal is to use experience/samples to try to make a policy better.
– Maximize the objective function: ࣤ ߠ ൌ ॱ	 ∑ ఏ௧ஹ଴ߨ|௧ݎ௧ߛ

• Idea:
– If a trajectory achieves a high reward, the actions were good
– If a trajectory achieves a low reward, the actions were bad
– We will use gradients to enforce more of the good actions and less of the

bad actions. Hence the method is called Policy Gradients.

• Reinforce algorithm: We can sample a trajectory to get an estimate of the
gradient.

ࣤ	ఏ׏	 ߠ ൎ ∑ ݎ ߬ log	ఏ׏	 ௧ሻ௧ஹ଴ݏ|ఏሺܽ௧ߨ

Page 9

INF 5400
24.04.2019

Policy gradients: High variance,
example game of Pong

• A challenge is that you don’t
know which action caused
the victory?

• In a winning series there may
be many non-optimal actions

• In a losing series there may
be good actions

• The true effect is found by
averaging out the noise, as
winnings series tend to have
more good action and visa
versa

Page 10

May 22, 2019

About the exam

∙ Inspera, only in English, but your can answer in Norwegian or English
∙ Around 20-25 questions about variouse topics in the course.
∙ Calculator allowed (and available in Inspera), but you should not really need it.
∙ Same exam for master and PhD, additional questions marked “PhD only” to be
answered only by PhD students

∙ Include partial results for computation to get some score even if the answer is
incorrect.

∙ Score from 0-10 on every subtask.
∙ Exam rounds around 1-1.5 hours after the start.
∙ If you lack information, assume something or state your assumption. Ask us if you
want.

∙ Please submit “FUI Kurskritikk” after the exam and give us feedback on how to
improve the course.

∙ Consider being a group teacher next spring.
1

Batch normalization algorithm - training

∙ For a given node and a given minibatch, compute the mean µk and σk .
∙ First, create zero mean, unit variance: ẑk = (zk − µk)/σk

∙ Experiments have shown that we should allow a scaling to avoid limiting what the
node can express:

z̃k = γẑk + β

∙ γ andβ are learned using backpropagation, and they are specific to the layer.
∙ Using this scaling normally speeds up the convergence by getting more effective
gradients.

∙ Batch normalization significantly speeds up gradient descent and even improves
performance, try it!

∙ Store γ and β.

2

Batch normalization - what to do at test time

∙ At test time: we need mean and standard deviation should we use to normalize.
∙ The best is to use the mean and standard deviation over the entire training data set.
∙ This can be efficiently computed using moving average estimates over the mini
batches, apply this during traning and store µk andσk .

3

Other types of normalization

∙ Normalization is important for efficient gradient flow
∙ Batch norm normalize across a batch, but we can also normalize across channels,
instances, or groups of channels.

∙ A good reference is https://arxiv.org/pdf/1803.08494.pdf

4

https://arxiv.org/pdf/1803.08494.pdf

gradient descent updates

Parameter-specific update schemes

∙ SGD and SGD with momentum updates all weight/parameters using the same
scheme

∙ Other methods scale the update by the size of the weights/parameters:
∙ We will look at ADAM, but other choices are AdaGrad or RMSprop.

∙ AdaGrad http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
∙ Accumulates weight gradients, these can build up and is not so often used.

∙ RMSprop
∙ Introduce a cache of moving average of the gradients of each weight

∙ ADAM https://arxiv.org/abs/1412.6980
∙ Combines both momentum and a moving average of the gradients of each weight

6

ADAM - main idea without fix for the first iterations

ADAM update, all variables are vectors
1. Set ρ1 = 0.9, ρ2 = 0.999, ϵ = 1e− 8.
2. Update the mean (first order moment) µ∂w and the non-centered variance (second
order moment) var∂w of ∂w.

µ∂w = ρ1µ∂w + (1− ρ1)∂w

var∂w = ρ2var∂w + (1− ρ2)(∂w)
2

3. Take a scaled step:
w = w − λ

µ∂w

(
√
var∂w + ϵ)

7

ADAM - algorithm

ADAM update with bias correction for the first iterations:
∙ Set ρ1 = 0.9, ρ2 = 0.999, ϵ = 1e− 8.
∙ For t = 1 : maxiter

µ∂w = ρ1µ∂w + (1− ρ1)∂w

µt = µ∂w/(1− ρt1)

var∂w = ρ2var∂w + (1− ρ2)(∂w)
2

vt = var∂w/(1− ρt2)

w = w − λ
µt

(
√
vt + ϵ)

8

Recommendations for weigth updates

∙ SGD with momentum, try learning rate decay too.
∙ Also used weigth decay - covered in next lecture

∙ ADAM also works well
∙ If using weigth decay, be aware that this a currently a matter of discussion
https://www.fast.ai/2018/07/02/adam-weight-decay/

9

repetition lecture
IN5400 — Machine Learning for Image Analysis

Ole-Johan Skrede
22.05.2019

University of Oslo

General

∙ Many specific networks was briefly covered (segmentation, object detection,
adversarial domain adaptation, etc.). In those cases, no detailed knowledge beyond
what was lectured is required.

∙ Important results was derived “from scratch” to enhance understanding. If you want
detailed knowledge about a certain thing, you should know where it comes from and
why.

1

t-distributed Stochastic Neighbour Embedding (t-SNE)

∙ Transforms high-dimensional (hd) data points to low-dimensional (ld) data ponts
∙ Aims to preserve neighbourhood identity between data points
∙ imilar (close) hd points should also be similar (close) in the ld representation
∙ For each point i, we define two distributions:

∙ Pi(xj): Describes the probability that hd point j is the “neighbour” of hd point i, given its
location xi

∙ Qi(yj): Describes the probability that ld point j is the “neighbour” of ld point i, given its
location yi

∙ For hd points, we use symmetric gaussian distributions
∙ For ld points, we use symmetric student-t distributions
∙ The aim is to make the distributions similar
∙ We do this by minimizing the KL-divergence between the two
∙ The KL-divergence is minimized by adjusting the ld points y with gradient descent

2

Problems with autoencoders for signal generation

∙ An autoencoder works great if you want to reconstruct a
replica of the input

∙ Not well suited for generating new signal
∙ The reason for this is an “unintuitive” latent variable
space

∙ The latent space might be discontinuous
∙ Random sampling from an “unseen” region of the latent
space produces unpredictable results

∙ No reasonable way to interpolate between categories in
the latent space

3

Variational autoencoders

∙ A variational autoencoder is designed to have a
continuous latent space

∙ This makes them ideal for random sampling and
interpolation

∙ It achieve this by forcing the encoder g to generate
Gaussian representations, z ∼ N (µ, σ2)

∙ More precisely, for one input, the encoder generates a
mean µ and a variance σ2

∙ We then sample a zero-mean, unit-variance Gaussian
z̃ ∼ N (0, 1)

∙ Construct the input z to the decoder from this

z = µ+ z̃ · σ

∙ With this, z is sampled from q = N (µ, σ2)
4

Problem

∙ No restriction on µ or σ2

∙ Realisticly, clusters of different classes can be placed far apart
∙ Leaves “empty space” in between with unknown sampling features

5

Guiding the generative distribution

∙ We can guide the solutions by restricting the generative distribution q

∙ We do this by making it approximate some distribution p

∙ In that way, the latent vectors, even for different categories, will be relatively close
∙ The desired distribution used in variational autoencoders is the standard normal
p = N (0, 1)

∙ We use the familiar KL-divergence between the desired and the generated
distribution as a regularizer in the loss function

∙ With this, the total loss for an example xi is something like

L(xi) = ||x(i) − f(x(i))||+DKL(p||qµi,σi)

∙ That is, the sum of what we call the reconstruction loss and the latent loss
∙ The latent loss for a single input x(i) can be shown to be equal to

DKL(p||qµi,σi
) =

1

2
(µ2

i + σ2
i − logσ2

i − 1)

6

	inf5400_ summary_learninggoals
	in5400 - questions_tollef
	lecture6_repetition
	Gradient descent updates

	main_ole

