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02 - Linear models for regression and
classification

* Understand linear regression and the loss function
 Be able to compute by hand and implement the gradient descent updates
» Understand logistic regression and the loss function

 Be able to compute by hand and implement the logistic gradient descent
updates

* Understand softmax classification

» Cross-entropy loss will be derived in detail next week

* Implement softmax and gradient descents for cross-entropy loss
— This will come in handy for Mandatory 1

» Theory exercises relevant for exam
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03 - Dense Neural Network Classifiers

 Detailed knowledge about the structure of a standard fully-connected
classification network

— Activation in an arbitrary node at an arbitrary layer

— Sigmoid and ReLU activation functions

— Softmax function with multiple classes

— Cross entropy loss function

— Stochastic gradient descent optimization method

— Backward propagation
o Justification and derivation of concepts, knowing why they are as they are

— Cross-entropy loss function

— Stochastic gradient descent method

— Backward propagation equations (with cross-entropy loss and softmax)
 Knowledge about making the implementation efficient

— Derivation of the various vectorized equations
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04 - Pytorch

 Know what we mean with a deep learning framework.
 Pytorch
— Automatic differentiation
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05 - Convolutional neural networks

 Understand why we use CNN on image data
 Know what a convolutional layer is, and its hyperparameters

 Understand the difference between the theoretical and the effective receptive
field

 Know how we can use dilated convolutions
 Know what a pooling layer is
« Understand why depthwise separable convolutions can be parameter efficient.

 Know the difference between using a dense layer and a convolutional layer as
the last layer in the network.
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07 - Training and architectures

 Pro’s and con'’s for different activation functions.

 How weights should be initialized and scaled given the activation function.
 How batch norm works at training and test time.

e How momentum SGD and ADAM works.

 Know how to optimize the hyperparameters, including scale and sensitivity.
 Know the most characteristic features of central architectures.
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08 - Generalization

You should be familiar with the learning problem.

In-sample
Out-of-sample
Hypothesis set

A hypothesis
Final hypothesis
Target hypothesis

Model capacity/complexity

VC dimention

The Vapnik-Chervonenkis Inequality
Learning from a small datasets

Regularization L2
Dropout

Data augmentation
Transfer learning
Multitask learning
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09 - Segmentation and Object Detection

» Performance evaluation metrics
— Sensitivity
— Specificity
— Precision
— Accuracy
— Balanced accuracy
— Jaccard index
— Mean average precision (familiarity)
e Object detection
— Label vector
— Multi-task loss function
— Network architectures (basic concepts)
* Image segmentation
— Spatial upsampling (unpooling) techniques
— Network architectures (basic concepts)
— Difference between semantic segmentation and instance segmentation
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10 - Visualization and adversarial fooling

* Understand the need to be able to visualize the network
* Understand the limitations of visualizing the filters directly

« Understand heatmaps like class activation maps, saliency maps, and know
about layerwise relevance propagation

 Know the principles and goals of guided backprop

* Understand how adversarial images are created, and what adversarial training
Is, and what models are suspect to being fooled.
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11 - Recurrent neural network

e Know how to build a recurrent neural network

* Understand why recurrent neural network are susceptible to exploding and
vanishing gradients.

 Know why we use backpropagation through time
o Gated Recurrent Unit (GRU)

* Multi-layer Recurrent Neural Networks

» Bidirectional recurrent neural network
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12 -

Unsupervised Learning

« Background (clustering, PCA) is background, and assumed known (not
including derivations)

« SNE

Motivation and idea

High-dimensional neighbor probability distributions
Low-dimensional neighbor probability distributions
Probability distribution distance metric
Optimization of the distance metric

Benefits and drawbacks

e t-SNE

Motivation and idea, in relation to SNE
Changes from SNE
Why it fixes some problems with SNE, and works better
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12 - Unsupervised Learning

e Autoencoders

— Detailed knowledge (based on lecture and weekly exercise) about the
various variants (compression-, denoising-, and sparse-autoencoder)

« Variational autoencoders
— Purpose
— Problems it is trying to solve, and how it solves them
— Structure and key elements (related to the previous point)
— How it can be used to generate new images from the training distribution

— How it can be used to generate an interpolation between two existing
Images
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13 - Generative Adversarial Networks

 General concept
— Purpose and structure of the generator network
— Purpose and structure of the discriminator network
— Training process
— Advantages and challenges
* Motivation and derivation of generator and discriminator cost functions
— Minimax-GAN
— Non-saturating GAN
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14 - Reinforcement learning

 Be familiar with the RL environment: states, actions, rewards, return
e Value based RL:
— State-value function and action-value function

— Understand how we can use the bellman (expectation) equation to update
a value function.

— Q-learning
— Exploration vs Exploitation
— Experience replay
 Policy based RL:
— Policy Gradients
— Why policy Gradients suffers from high variance
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15 — Not just Al/Deep learning

 Be able to reflect upon the challenges of applying deep learning in an
application

 Be confident about the current limitations of deep learning and seek to gain
insight into the black box.

 Know the need for evaluating the statistical significant for any deep learning
application.

 Know the need to get insight into when the system will fail.
 Know the pitfalls of bias in the model and the data
 Be able to reflect upon ethical challenges given an application.

 Know that you as a developer must follow GDPR and other national
regulations.
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Dilated convolutions

» Larger receptive field, without
reducing spatial dimension or
increasing the parameters
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Dilated convolutions

« Skipping values in the kernel

« Same as filling the kernel with every
other value as zero

« Still cover all inputs

« Larger kernel with no extra
parameters
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A growing dilation factor can give
similar effect as stride

« With a constant dilation factor you get the similar effect as using a larger kernel

» With growing dilation factor you can get an even larger receptive field, while still
covering all inputs

ot @ 0 9 0009000 9 0000C0COCGCOGCOGOO

Fisher Yu, Vladlen Koltun (2016) Multi-scale Context Aggregation by Dilated Convolutions
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Reinforcement learning

 History /trajectory :
- Ht =T = er 01,141, Rz, 02,A2, ey Rtl OtiAt

« State:
- S = f(H)
 Full observatory:
- Oy =S =5

v
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Value based vs policy based RL

» Value function based methods (Q-learning)
» Policy based methods (policy gradients)

 The goal in both methods is to find a policy which maximizes the accumulated
reward.

Gt =Rt +yRipq + - = Z Y* Revk
k=0

* In value based methods we try to estimate the goodness of a state (and an
action). We then selects actions greedily based on the values function.
Example: grid world

* Because estimating a value function can be difficult, policy gradients tries to
estimate the best policy directly.
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State-value function and action-value
function

» Definition: a state-value function, v,(s), of an MDP is the expected return
starting from state, s, and then following the policy =. In general, how good is it
to be in this state.

U (s) = Ep[ G | St = 5]

« Definition: an action-value (g-value) function, g, (s, a), is the expected return
starting from state, s, taking action, a, and following policy, . In general, how
good it is to take this action.

qz(s,a) = E [ G | A = a,S¢ = 5]
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Grid world — Bellman equation

U}, for the Greedy Policy
Random Policy wrt Up
0.0/ 0.0[ 00| 0.0 >|¢ ? 0.0|-2.4]-2.9/-3.0 N A !
k=0 0.0/ 0.0| 0.0| 0.0 =3 2.4|-2.9(-3.0]-2 Hd 91
- 0.0/ 0.0/ 0.0[ 00 o 2.9[-3.0[-2.9]-2. BN
0.0/ 0.0|00[0.0 -3.0[-2.9(-2.4| 0.0 L - -
0.0{-1.0]-1.0|-1.0 0.0[-6.1[-8.4[-9.0 N
t
k=1 10101 1.0 1.0 k=10 -6.1|-7.7)-8.4|-8.4 i |,
-1.0|-1.0[-1.0{-1.0 ¢ > - [
| -8.4|-8.4[-7.7]-6.1 i}
-1.0}-1.0/-1.0{ 0.0 - 90|-8.4[-6.1] 0.0 L - -
00]-1.7]-2.0/-2.0 ol 0.0[-14.|-20.|-22. — = 9
o -1.7-2.0[-2.0]-2.0 < bl 141812012 tld
k=2 : k= 14.|-18.[-20.]-20. |1
20[-2.0[-20]|-1.7 | | = 20201814 tl L | .
-20|-2.0]-1.7[ 0.0 N e 22.-20-14] 0.0 L - -

Vi+1(8) = Eg [Re + yvi(Ser1) | Se= 5]
V=1(S[1,1]) = =14 0.25 - (V= (s[0,1]) + v (s[2,1]) + V= (s[1,0]) + vx=o(s[1,2])) = 1.0
0 0 0 0

V=2 (S[1,1]) = =1 4+ 0.25 - (v4=1(s[0,1]) + v=1(s[2,1]) + vx=1(s[1,0]) + vy=1(s[1,2])) = —2.0
-1 —1 -1 —1
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 Goal: Find a Q-function satisfying the Bellman (optimality) equation.
 We parameterize our action-value function using a neural network.

* Since we get training data collected by the agent itself only, we want to balance
exploration and exploitation.

- D; is your dataset with state action pairs s, s;41, a;, 1¢

o Q.(st,a.,6;) =E [Rt + vy max Q,(S¢+1,Ar41,0i-1) | A = ar, S¢ = St]

At41

» Reference:
yi = E [Rt +ymax Q(S¢41, A1, 0i-1) | Ar = A, Sp = St]

at4q

e Loss:
Li(ei) = ]ESt,St+1, ag,1e~Di [()’i - Q(St' At Hi))z]
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Policy based methods

« Goal:
— The goal is to use experience/samples to try to make a policy better.

— Maximize the objective function: J(0) = E [X o ¥ i7e|ms]

e ldea:
— If a trajectory achieves a high reward, the actions were good

— If a trajectory achieves a low reward, the actions were bad

— We will use gradients to enforce more of the good actions and less of the
bad actions. Hence the method is called Policy Gradients.

* Reinforce algorithm: We can sample a trajectory to get an estimate of the
gradient.

Vo J(0) = X507 (7) Vg logmg(as|s,)
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Policy gradients: High variance,
example game of Pong

A challenge is that you don’t
know which action caused
the victory?

e In a winning series there may
be many non-optimal actions

* In alosing series there may
be good actions

upP UpP

DOWN

upP DOWN UP

« The true effect is found by 0o "0 S0 e 00 WIN
averaging out the noise, as et Vet e . LOSE
winnings series tend to have P .o U . g 20N g DOWN oDOWN g DOWN g UP LOSE
more good action and visa DO o LP UP g DOWN o UP g UP WIN
versa I } 1
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ABOUT THE EXAM

- Inspera, only in English, but your can answer in Norwegian or English

- Around 20-25 questions about variouse topics in the course.

- Calculator allowed (and available in Inspera), but you should not really need it.

- Same exam for master and PhD, additional questions marked “PhD only” to be
answered only by PhD students

- Include partial results for computation to get some score even if the answer is
incorrect.

- Score from 0-10 on every subtask.

- Exam rounds around 1-1.5 hours after the start.

- If you lack information, assume something or state your assumption. Ask us if you
want.

- Please submit “FUI Kurskritikk” after the exam and give us feedback on how to
improve the course.

- Consider being a group teacher next spring.



BATCH NORMALIZATION ALGORITHM - TRAINING

- For a given node and a given minibatch, compute the mean u; and oy.
- First, create zero mean, unit variance: 2; = (zr — ) /0%
- Experiments have shown that we should allow a scaling to avoid limiting what the
node can express:
Zk =7+ 8
- v andgp are learned using backpropagation, and they are specific to the layer.

- Using this scaling normally speeds up the convergence by getting more effective
gradients.

- Batch normalization significantly speeds up gradient descent and even improves
performance, try it!
- Store v and g.



BATCH NORMALIZATION - WHAT TO DO AT TEST TIME

- At test time: we need mean and standard deviation should we use to normalize.
- The best is to use the mean and standard deviation over the entire training data set.

- This can be efficiently computed using moving average estimates over the mini
batches, apply this during traning and store p andoy,.
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- Normalization is important for efficient gradient flow

ize across channels,

l
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- Batch norm normalize across a batch

instances, or groups of channels.

- A good reference is https://arxiv.org/pdf/1803.08494.pdf


https://arxiv.org/pdf/1803.08494.pdf

GRADIENT DESCENT UPDATES




PARAMETER-SPECIFIC UPDATE SCHEMES

- SGD and SGD with momentum updates all weight/parameters using the same
scheme
- Other methods scale the update by the size of the weights/parameters:
- We will look at ADAM, but other choices are AdaGrad or RMSprop.
- AdaGrad http://www.jmlr.org/papers/volumel2/duchitia/duchitia.pdf
- Accumulates weight gradients, these can build up and is not so often used.
- RMSprop
- Introduce a cache of moving average of the gradients of each weight

- ADAM https://arxiv.org/abs/1412.6980
- Combines both momentum and a moving average of the gradients of each weight



ADAM - MAIN IDEA WITHOUT FIX FOR THE FIRST ITERATIONS

ADAM update, all variables are vectors

1. Set p;1 =0.9, p2 =0.999, ¢ = le — 8.
2. Update the mean (first order moment) pa,, and the non-centered variance (second

order moment) varg,, of dw.
How = P1low + (1 - pl)aw
Vargw = pavargy + (1 — p2)(0w)?

3. Take a scaled step:
How

=w— A\
w=w (\/varay + €)



ADAM - ALGORITHM

ADAM update with bias correction for the first iterations:
- Set p1 = 0.9, po =0.999, ¢ = le — 8.

- Fort =1 : maxiter

fow = priow + (1 — p1)0w

= pow/(1 — Ptl)

Vargy = Pavarsy + (1 — p2)(Ow)?
vy = vargw /(1 — ph)

w=w— A\ttt

(Vv +€)



RECOMMENDATIONS FOR WEIGTH UPDATES

- SGD with momentum, try learning rate decay too.
- Also used weigth decay - covered in next lecture
- ADAM also works well

- If using weigth decay, be aware that this a currently a matter of discussion
https://www.fast.ai/2018/07/02/adam-weight-decay/
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GENERAL

- Many specific networks was briefly covered (segmentation, object detection,
adversarial domain adaptation, etc.). In those cases, no detailed knowledge beyond
what was lectured is required.

- Important results was derived “from scratch” to enhance understanding. If you want
detailed knowledge about a certain thing, you should know where it comes from and
why.



T-DISTRIBUTED STOCHASTIC NEIGHBOUR EMBEDDING (T-SNE)

- Transforms high-dimensional (hd) data points to low-dimensional (ld) data ponts
- Aims to preserve neighbourhood identity between data points
- imilar (close) hd points should also be similar (close) in the ld representation
- For each point ¢, we define two distributions:
- Pi(z;): Describes the probability that hd point j is the “neighbour” of hd point 4, given its
location z;

- Qi(y;): Describes the probability that ld point j is the “neighbour” of ld point ¢, given its
location y;

- For hd points, we use symmetric gaussian distributions

- For ld points, we use symmetric student-t distributions

- The aim is to make the distributions similar

- We do this by minimizing the KL-divergence between the two

- The KL-divergence is minimized by adjusting the ld points y with gradient descent



PROBLEMS WITH AUTOENCODERS FOR SIGNAL GENERATION

o7

- An autoencoder works great if you want to reconstruct a
replica of the input

- Not well suited for generating new signal

- The reason for this is an “unintuitive” latent variable
space o?

- The latent space might be discontinuous

o7

- Random sampling from an “unseen” region of the latent
space produces unpredictable results

- No reasonable way to interpolate between categories in
the latent space




VARIATIONAL AUTOENCODERS

- Avariational autoencoder is designed to have a

continuous latent space | Input |

- This makes them ideal for random sampling and
interpolation

- It achieve this by forcing the encoder g to generate
Gaussian representations, z ~ N (p, 0?)

: . Iz
- More precisely, for one input, the encoder generates a \
mean p and a variance o2

- We then sample a zero-mean, unit-variance Gaussian
Z~ N(0,1)
- Construct the input z to the decoder from this Decoder

z=p+z-0

N
<«

Output

- With this, z is sampled from ¢ = N'(u, 0?)



PROBLEM

- No restriction on p or o2
- Realisticly, clusters of different classes can be placed far apart
- Leaves “empty space” in between with unknown sampling features




GUIDING THE GENERATIVE DISTRIBUTION

- We can guide the solutions by restricting the generative distribution ¢

- We do this by making it approximate some distribution p

- In that way, the latent vectors, even for different categories, will be relatively close

- The desired distribution used in variational autoencoders is the standard normal
p=N(0,1)

- We use the familiar KL-divergence between the desired and the generated
distribution as a regularizer in the loss function

- With this, the total loss for an example z; is something like

L(z;) = |29 = f @) + Drer (0l dyus o)

- That is, the sum of what we call the reconstruction loss and the latent loss
- The latent loss for a single input z(* can be shown to be equal to

1
Dicp(plluie.) = 5 (7 + 07 —logoy — 1)
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