

UiO * Department of Informatics University of Oslo

IN5400 Machine learning for image classification Summary - Learning goals

INF 5400

24.04.2019

02 - Linear models for regression and classification

- Understand linear regression and the loss function
- Be able to compute by hand and implement the gradient descent updates
- Understand logistic regression and the loss function
- Be able to compute by hand and implement the logistic gradient descent updates
- Understand softmax classification
- Cross-entropy loss will be derived in detail next week
- Implement softmax and gradient descents for cross-entropy loss
 - This will come in handy for Mandatory 1
- Theory exercises relevant for exam

03 - Dense Neural Network Classifiers

- Detailed knowledge about the structure of a standard fully-connected classification network
 - Activation in an arbitrary node at an arbitrary layer
 - Sigmoid and ReLU activation functions
 - Softmax function with multiple classes
 - Cross entropy loss function
 - Stochastic gradient descent optimization method
 - Backward propagation
- Justification and derivation of concepts, knowing why they are as they are
 - Cross-entropy loss function
 - Stochastic gradient descent method
 - Backward propagation equations (with cross-entropy loss and softmax)
- Knowledge about making the implementation efficient
 - Derivation of the various vectorized equations

04 - Pytorch

- Know what we mean with a deep learning framework.
- Pytorch
 - Automatic differentiation

05 - Convolutional neural networks

- Understand why we use CNN on image data
- Know what a convolutional layer is, and its hyperparameters
- Understand the difference between the theoretical and the effective receptive field
- Know how we can use dilated convolutions
- Know what a pooling layer is
- Understand why depthwise separable convolutions can be parameter efficient.
- Know the difference between using a dense layer and a convolutional layer as the last layer in the network.

07 - Training and architectures

- Pro's and con's for different activation functions.
- How weights should be initialized and scaled given the activation function.
- How batch norm works at training and test time.
- How momentum SGD and ADAM works.
- Know how to optimize the hyperparameters, including scale and sensitivity.
- Know the most characteristic features of central architectures.

08 - Generalization

- You should be familiar with the learning problem.
 - In-sample
 - Out-of-sample
 - Hypothesis set
 - A hypothesis
 - Final hypothesis
 - Target hypothesis
- Model capacity/complexity
 - VC dimention
- The Vapnik-Chervonenkis Inequality
- Learning from a small datasets
 - Regularization L2
 - Dropout
 - Data augmentation
 - Transfer learning
 - Multitask learning

09 - Segmentation and Object Detection

- Performance evaluation metrics
 - Sensitivity
 - Specificity
 - Precision
 - Accuracy
 - Balanced accuracy
 - Jaccard index
 - Mean average precision (familiarity)
- Object detection
 - Label vector
 - Multi-task loss function
 - Network architectures (basic concepts)
- Image segmentation
 - Spatial upsampling (unpooling) techniques
 - Network architectures (basic concepts)
 - Difference between semantic segmentation and instance segmentation

10 - Visualization and adversarial fooling

- Understand the need to be able to visualize the network
- Understand the limitations of visualizing the filters directly
- Understand heatmaps like class activation maps, saliency maps, and know about layerwise relevance propagation
- Know the principles and goals of guided backprop
- Understand how adversarial images are created, and what adversarial training is, and what models are suspect to being fooled.

11 - Recurrent neural network

- Know how to build a recurrent neural network
- Understand why recurrent neural network are susceptible to exploding and vanishing gradients.
- Know why we use backpropagation through time
- Gated Recurrent Unit (GRU)
- Multi-layer Recurrent Neural Networks
- Bidirectional recurrent neural network

12 - Unsupervised Learning

- Background (clustering, PCA) is background, and assumed known (not including derivations)
- SNE
 - Motivation and idea
 - High-dimensional neighbor probability distributions
 - Low-dimensional neighbor probability distributions
 - Probability distribution distance metric
 - Optimization of the distance metric
 - Benefits and drawbacks
- t-SNE
 - Motivation and idea, in relation to SNE
 - Changes from SNE
 - Why it fixes some problems with SNE, and works better

12 - Unsupervised Learning

- Autoencoders
 - Detailed knowledge (based on lecture and weekly exercise) about the various variants (compression-, denoising-, and sparse-autoencoder)
- Variational autoencoders
 - Purpose
 - Problems it is trying to solve, and how it solves them
 - Structure and key elements (related to the previous point)
 - How it can be used to generate new images from the training distribution
 - How it can be used to generate an interpolation between two existing images

13 - Generative Adversarial Networks

- General concept
 - Purpose and structure of the generator network
 - Purpose and structure of the discriminator network
 - Training process
 - Advantages and challenges
- Motivation and derivation of generator and discriminator cost functions
 - Minimax-GAN
 - Non-saturating GAN

14 - Reinforcement learning

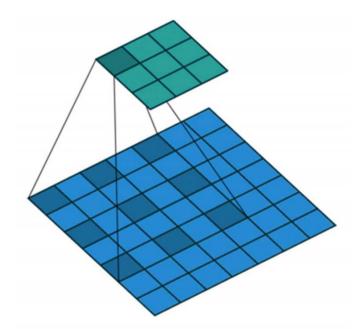
- Be familiar with the RL environment: states, actions, rewards, return
- Value based RL:
 - State-value function and action-value function
 - Understand how we can use the bellman (expectation) equation to update a value function.
 - Q-learning
 - Exploration vs Exploitation
 - Experience replay
- Policy based RL:
 - Policy Gradients
 - Why policy Gradients suffers from high variance

15 - Not just Al/Deep learning

- Be able to reflect upon the challenges of applying deep learning in an application
- Be confident about the current limitations of deep learning and seek to gain insight into the black box.
- Know the need for evaluating the statistical significant for any deep learning application.
- Know the need to get insight into when the system will fail.
- Know the pitfalls of bias in the model and the data
- Be able to reflect upon ethical challenges given an application.
- Know that you as a developer must follow GDPR and other national regulations.

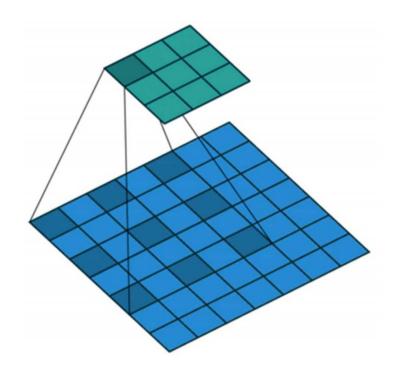
Dilated convolutions

 Larger receptive field, without reducing spatial dimension or increasing the parameters



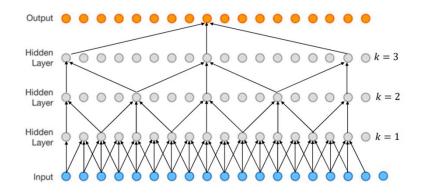
Dilated convolutions

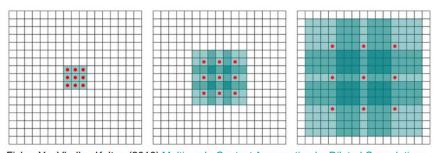
- Skipping values in the kernel
- Same as filling the kernel with every other value as zero
- Still cover all inputs
- Larger kernel with no extra parameters



A growing dilation factor can give similar effect as stride

- With a constant dilation factor you get the similar effect as using a larger kernel
- With growing dilation factor you can get an even larger receptive field, while still covering all inputs





Fisher Yu, Vladlen Koltun (2016) Multi-scale Context Aggregation by Dilated Convolutions

Reinforcement learning

History / trajectory :

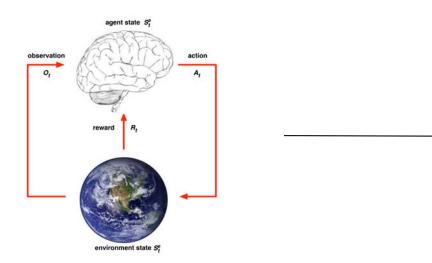
-
$$H_t = \tau_t = R_1, O_1, A_1, R_2, O_2, A_2, \dots, R_t, O_t, A_t$$

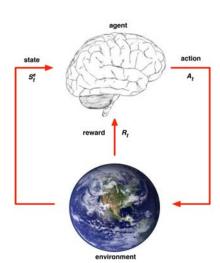
• State:

$$- S_t = f(H_t)$$

• Full observatory:

$$- O_t = S_t^e = S_t^a$$





Value based vs policy based RL

- Value function based methods (Q-learning)
- Policy based methods (policy gradients)
- The goal in both methods is to find a policy which maximizes the accumulated reward.

$$G_t = R_t + \gamma R_{t+1} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k}$$

- In value based methods we try to estimate the goodness of a state (and an action). We then selects actions greedily based on the values function.
 Example: grid world
- Because estimating a value function can be difficult, policy gradients tries to estimate the best policy directly.

State-value function and action-value function

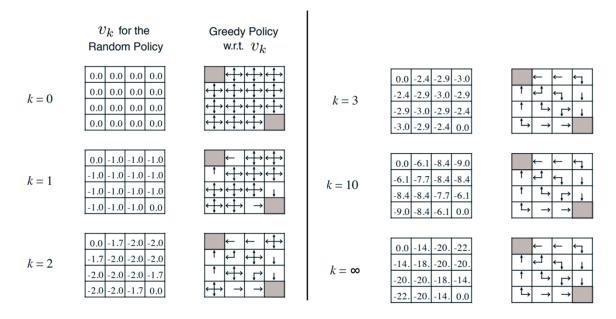
• Definition: a **state-value function**, $v_{\pi}(s)$, of an MDP is the expected return starting from state, s, and then following the policy π . In general, how good is it to be in this state.

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

• Definition: an *action-value* (*q-value*) *function*, $q_{\pi}(s,a)$, is the expected return starting from state, s, taking action, a, and following policy, π . In general, how good it is to take this action.

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid A_t = a, S_t = s]$$

Grid world – Bellman equation



$$\begin{aligned} v_{k+1}(s) &= \mathbb{E}_{\pi} \left[R_t + \gamma v_k(S_{t+1}) \mid S_t = s \right] \\ v_{k=1}(s[1,1]) &= -1 + 0.25 \cdot (\underbrace{v_{k=0}(s[0,1])}_{0} + \underbrace{v_{k=0}(s[2,1])}_{0} + \underbrace{v_{k=0}(s[1,0])}_{0} + \underbrace{v_{k=0}(s[1,2])}_{0}) = -1.0 \\ v_{k=2}(s[1,1]) &= -1 + 0.25 \cdot (\underbrace{v_{k=1}(s[0,1])}_{-1} + \underbrace{v_{k=1}(s[2,1])}_{-1} + \underbrace{v_{k=1}(s[1,0])}_{-1} + \underbrace{v_{k=1}(s[1,2])}_{-1}) = -2.0 \end{aligned}$$

Q-learning

- Goal: Find a Q-function satisfying the Bellman (optimality) equation.
- We parameterize our action-value function using a neural network.
- Since we get training data collected by the agent itself only, we want to balance exploration and exploitation.
 - D_i is your dataset with state action pairs s_t , s_{t+1} , a_t , r_t

•
$$Q_*(s_t, a_t, \theta_i) = \mathbb{E}\left[R_t + \gamma \max_{a_{t+1}} Q_*(s_{t+1}, a_{t+1}, \theta_{i-1}) \mid A_t = a_t, S_t = s_t\right]$$

• Reference:

$$y_i = \mathbb{E}\left[R_t + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}, \theta_{i-1}) \mid A_t = a_t, S_t = s_t\right]$$

Loss:

$$L_i(\theta_i) = \mathbb{E}_{s_t, s_{t+1, a_t, r_t \sim D_i}} \left[\left(y_i - Q(s_t, a_t, \theta_i) \right)^2 \right]$$

Policy based methods

Goal:

- The goal is to use experience/samples to try to make a policy better.
- Maximize the objective function: $\mathcal{J}(\theta) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | \pi_{\theta}\right]$

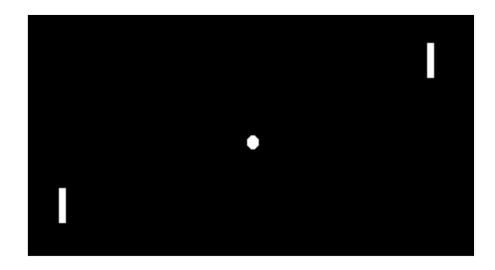
Idea:

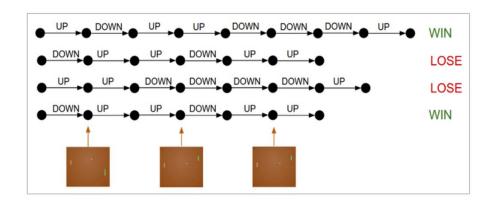
- If a trajectory achieves a high reward, the actions were good
- If a trajectory achieves a low reward, the actions were bad
- We will use gradients to enforce more of the good actions and less of the bad actions. Hence the method is called Policy Gradients.
- Reinforce algorithm: We can sample a trajectory to get an estimate of the gradient.

$$\nabla_{\theta} \mathcal{J}(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Policy gradients: High variance, example game of Pong

- A challenge is that you don't know which action caused the victory?
- In a winning series there may be many non-optimal actions
- In a losing series there may be good actions
- The true effect is found by averaging out the noise, as winnings series tend to have more good action and visa versa





May 22, 2019

ABOUT THE EXAM

- · Inspera, only in English, but your can answer in Norwegian or English
- · Around 20-25 questions about variouse topics in the course.
- · Calculator allowed (and available in Inspera), but you should not really need it.
- · Same exam for master and PhD, additional questions marked "PhD only" to be answered only by PhD students
- · Include partial results for computation to get some score even if the answer is incorrect.
- · Score from 0-10 on every subtask.
- · Exam rounds around 1-1.5 hours after the start.
- · If you lack information, assume something or state your assumption. Ask us if you want.
- · Please submit "FUI Kurskritikk" after the exam and give us feedback on how to improve the course.
- · Consider being a group teacher next spring.

BATCH NORMALIZATION ALGORITHM - TRAINING

- · For a given node and a given minibatch, compute the mean μ_k and σ_k .
- · First, create zero mean, unit variance: $\hat{z}_k = (z_k \mu_k)/\sigma_k$
- Experiments have shown that we should allow a scaling to avoid limiting what the node can express:

$$\tilde{z_k} = \gamma \hat{z}_k + \beta$$

- \cdot γ and β are learned using backpropagation, and they are specific to the layer.
- · Using this scaling normally speeds up the convergence by getting more effective gradients.
- Batch normalization significantly speeds up gradient descent and even improves performance, try it!
- · Store γ and β .

2

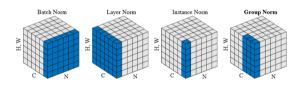
BATCH NORMALIZATION - WHAT TO DO AT TEST TIME

- · At test time: we need mean and standard deviation should we use to normalize.
- · The best is to use the mean and standard deviation over the entire training data set.
- · This can be efficiently computed using moving average estimates over the mini batches, apply this during training and store μ_k and σ_k .

3

OTHER TYPES OF NORMALIZATION

- · Normalization is important for efficient gradient flow
- · Batch norm normalize across a batch, but we can also normalize across channels, instances, or groups of channels.



· A good reference is https://arxiv.org/pdf/1803.08494.pdf

ŀ

PARAMETER-SPECIFIC UPDATE SCHEMES

- · SGD and SGD with momentum updates all weight/parameters using the same scheme
- · Other methods scale the update by the size of the weights/parameters:
- · We will look at ADAM, but other choices are AdaGrad or RMSprop.
 - · AdaGrad http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
 - · Accumulates weight gradients, these can build up and is not so often used.
 - · RMSprop
 - · Introduce a cache of moving average of the gradients of each weight
 - · ADAM https://arxiv.org/abs/1412.6980
 - · Combines both momentum and a moving average of the gradients of each weight

ADAM - MAIN IDEA WITHOUT FIX FOR THE FIRST ITERATIONS

ADAM update, all variables are vectors

- 1. Set $\rho_1 = 0.9$, $\rho_2 = 0.999$, $\epsilon = 1e 8$.
- 2. Update the mean (first order moment) $\mu_{\partial w}$ and the non-centered variance (second order moment) $var_{\partial w}$ of ∂w .

$$\mu_{\partial w} = \rho_1 \mu_{\partial w} + (1 - \rho_1) \partial w$$
$$var_{\partial w} = \rho_2 var_{\partial w} + (1 - \rho_2) (\partial w)^2$$

3. Take a scaled step:

$$w = w - \lambda \frac{\mu_{\partial w}}{(\sqrt{var_{\partial w}} + \epsilon)}$$

7

ADAM - ALGORITHM

ADAM update with bias correction for the first iterations:

· Set
$$\rho_1 = 0.9$$
, $\rho_2 = 0.999$, $\epsilon = 1e - 8$.

For t = 1 : maxiter

$$\mu_{\partial w} = \rho_1 \mu_{\partial w} + (1 - \rho_1) \partial w$$

$$\mu_t = \mu_{\partial w} / (1 - \rho_1^t)$$

$$var_{\partial w} = \rho_2 var_{\partial w} + (1 - \rho_2) (\partial w)^2$$

$$v_t = var_{\partial w} / (1 - \rho_2^t)$$

$$w = w - \lambda \frac{\mu_t}{(\sqrt{v_t} + \epsilon)}$$

8

RECOMMENDATIONS FOR WEIGTH UPDATES

- · SGD with momentum, try learning rate decay too.
 - · Also used weigth decay covered in next lecture
- · ADAM also works well
 - · If using weigth decay, be aware that this a currently a matter of discussion https://www.fast.ai/2018/07/02/adam-weight-decay/

REPETITION LECTURE

IN5400 — Machine Learning for Image Analysis

Ole-Johan Skrede

22.05.2019

University of Oslo

GENERAL

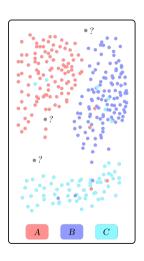
- · Many specific networks was briefly covered (segmentation, object detection, adversarial domain adaptation, etc.). In those cases, no detailed knowledge beyond what was lectured is required.
- · Important results was derived "from scratch" to enhance understanding. If you want detailed knowledge about a certain thing, you should know where it comes from and why.

T-DISTRIBUTED STOCHASTIC NEIGHBOUR EMBEDDING (T-SNE)

- · Transforms high-dimensional (hd) data points to low-dimensional (ld) data ponts
- · Aims to preserve neighbourhood identity between data points
- · imilar (close) hd points should also be similar (close) in the ld representation
- \cdot For each point i, we define two distributions:
 - $P_i(x_j)$: Describes the probability that hd point j is the "neighbour" of hd point i, given its location x_i
 - $Q_i(y_j)$: Describes the probability that ld point j is the "neighbour" of ld point i, given its location y_i
- · For hd points, we use symmetric gaussian distributions
- · For ld points, we use symmetric student-t distributions
- · The aim is to make the distributions similar
- · We do this by minimizing the KL-divergence between the two
- \cdot The KL-divergence is minimized by adjusting the ld points y with gradient descent

PROBLEMS WITH AUTOENCODERS FOR SIGNAL GENERATION

- · An autoencoder works great if you want to reconstruct a *replica* of the input
- · Not well suited for generating new signal
- The reason for this is an "unintuitive" latent variable space
- · The latent space might be discontinuous
- · Random sampling from an "unseen" region of the latent space produces unpredictable results
- · No reasonable way to interpolate between categories in the latent space

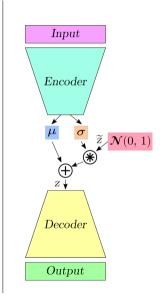


VARIATIONAL AUTOENCODERS

- A variational autoencoder is designed to have a continuous latent space
- This makes them ideal for random sampling and interpolation
- · It achieve this by forcing the encoder g to generate Gaussian representations, $z \sim \mathcal{N}(\mu, \sigma^2)$
- . More precisely, for one input, the encoder generates a mean μ and a variance σ^2
- . We then sample a zero-mean, unit-variance Gaussian $\tilde{z} \sim \mathcal{N}(0,1)$
- · Construct the input z to the decoder from this

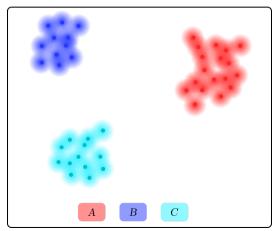
$$z = \mu + \tilde{z} \cdot \sigma$$

· With this, z is sampled from $q = \mathcal{N}(\mu, \sigma^2)$



PROBLEM

- · No restriction on μ or σ^2
- · Realisticly, clusters of different classes can be placed far apart
- · Leaves "empty space" in between with unknown sampling features



5

GUIDING THE GENERATIVE DISTRIBUTION

- \cdot We can guide the solutions by restricting the generative distribution q
- \cdot We do this by making it approximate some distribution p
- · In that way, the latent vectors, even for different categories, will be relatively close
- · The desired distribution used in variational autoencoders is the standard normal $p=\mathcal{N}(0,1)$
- · We use the familiar KL-divergence between the desired and the generated distribution as a regularizer in the loss function
- · With this, the total loss for an example x_i is something like

$$L(x_i) = ||x^{(i)} - f(x^{(i)})|| + D_{KL}(p||q_{\mu_i,\sigma_i})$$

- · That is, the sum of what we call the reconstruction loss and the latent loss
- \cdot The latent loss for a single input $x^{(i)}$ can be shown to be equal to

$$D_{KL}(p||q_{\mu_i,\sigma_i}) = \frac{1}{2}(\mu_i^2 + \sigma_i^2 - \log \sigma_i^2 - 1)$$

6