
introduction
INF5860 — Machine Learning for Image Analysis

Anne Solberg, Tollef Jahren, Ole-Johan Skrede
16.01.2019

University of Oslo

Plan for today

∙ Introduction about the course
∙ Motivation: what deep learning can do
∙ Short background on image classification
∙ Short introduction to image convolution
∙ Information about exercises and jupyter/python

1

introduction and about the course

Lecturers

Tollef Jahren Ole-Johan Skrede Anne Schistad Solberg
tollefsj@ifi.uio.no olejohas@ifi.uio.no anne@ifi.uio.no

3

Overview

Lectures
∙ Machine learning
∙ Deep learning and image analysis
∙ Getting deep learning to work in
practice

∙ Applications

Groups
∙ Jupyter notebooks, numpy and image
analysis

∙ Exercises on image classification, image
captioning, image segmentation

∙ Basic skills in Python
∙ Pytorch for more complex deep learning
∙ Students get time-limited access to
GPU-servers at USIT for selected
exercises (from March)

4

Schedule

Lectures
∙ Wednesdays 14.15-16, Lille Aud (Check
room on course web page)

Mandatory exercises
∙ 2 Mandatory exercises, one in basic
python and one in PyTorch

Groups
∙ Tuesday 10.15-12, Thursday 10.15-12
Room Modula

∙ 3 Group lecturers
Lucas Charpentier
(l.g.g.charpentier@fys.uio.no),
Samuel Korsan Knudsen
(s.k.knudsen@fys.uio.no),
Herman Netskar (herman.netskar at
gmail.com) (corrector only)

∙ Up to 4 hours weeks to complete labs,
you can attend both sessions if needed

∙ Access to GPU-servers given additonaly
for 1-2 hours a week (selected periods)

5

Course resources

∙ Course web page:
https://www.uio.no/studier/emner/matnat/ifi/IN5400/v19/index.html

∙ Curriculum: lecture notes, weekly exercises, mandatory exercises
∙ No book, but links to relevant literature/notes given
∙ Links to relevant online lectures given for each week
∙ Piazza for discussion https://piazza.com/class/jq82079l9sg5xy
∙ Devilry for submitting mandatory exercises
∙ Digital exam, focus on understanding the topics

6

https://www.uio.no/studier/emner/matnat/ifi/IN5400/v19/index.html
https://piazza.com/class/jq82079l9sg5xy

Who is this course for?

∙ Core focus: Master and PhD students working on image analysis problems using
deep learning

∙ Will be useful for others with a good background in Python and linear algebra
wanting to learn deep learning

∙ Demanding programming exercises: do all of them!
∙ Learning is about loss functions and derivation - you are expected to do calculations
and compute derivatives by hand

∙ Expertize wanted for many companies - good job prospects, but your motivation
must be high!

7

Prelimary schedule

∙ 16.1 Introduction
∙ 23.1 From regression to softmax classification
∙ 30.1 Feedforward nets and backpropagation
∙ 6.2 PyTorch
∙ 13.2 Convolutional nets
∙ 27.2 Guidelines for training and architectures
∙ 6.3 Generalization
∙ 13.3 Localization and segmentation
∙ 20.3 Adverserial fooling and interpretability
∙ 27.3 Recurrent nets
∙ 3.4 Unsupervised
∙ 10.4 GAn
∙ 24.4 Reinforcement learning
∙ 22.5 Repetition
∙ 31.5 Exam

8

Web page

∙ https://www.uio.no/studier/emner/matnat/ifi/IN5400/v19/index.html
∙ Lectures with links to lecture foils, curriculum, weekly exercises, and mandatory
exercises.

∙ Piazza
∙ Messages on the web page
∙ Urgent messages emailed to studenter.in5400@ifi.uio.no and
studenter.in9400@ifi.uio.no. Links to your official uio-email - read this!

9

https://www.uio.no/studier/emner/matnat/ifi/IN5400/v19/index.html

Group sessions

∙ Tuesday and thursdag 10.15-12
∙ Group teachers:
Lucas Charpentier (l.g.g.charpentier at fys.uio.no),
Samuel Korsan Knudsen (s.k.knudsen at fys.uio.no),
Herman Netskar (herman.netskar at gmail.com) (corrector only)

∙ 2x2 hours to give you time to solve programming errors with help
∙ Programming exercises mostly as jupyter notebooks
∙ Theory exercises

10

Mandatory exercises

∙ Required: use Python and PyTorch
∙ Exercise 1: implement vectorized backpropagation and layers in a feedforward and
convolutional net, available around February 1.

∙ Exercise 2: Image captioning in PyTorch

11

Groups first week

∙ First group tomorrow, thursday 17.1 10.15-12
∙ Notebook on math operations in python
∙ Notebook on indexing
∙ Notebook on image convolution
∙ Download zip-file with exercises

12

Using Jupyter notebooks

∙ Use the linux computer in modula (/opt/ifi/anaconda3/bin/jupyter-notebook)
∙ Download anaconda/python3 to your own computer
∙ Later in the course: access GPUs on servers

13

Curriculum

∙ Lecture notes, weekly exercises, and mandatory exercises define the curriculum
∙ The field is so new and rapidly changing that no good book exists
∙ Links to useful notes and online lectures will be given.

14

Required background

∙ Good knowledge in Python programming
∙ Experience in image analysis desired
∙ Good knowledge in mathematics (as a tool)

∙ Linear algebra: vectors, matrix operations, dot products
∙ Derivation of loss functions
∙ Simple optimization

15

motivation

Many tasks require information from images

17

Why deep learning in image analysis?

∙ The human visual system is so
good in recognizing objects

∙ It is almost impossible to
specify all variations of objects
that can occurr

∙ Writing new code for each
variation is a lot of work

18

Classical machine learning

19

Good features are essential

∙ Features = Data representation
∙ Good features capture posterior belief
about explanatory causes and
underlying factors of variation

∙ Multitude of hand-designed and fixed
features currently in use

20

Architectures: image recognition systems

Tradional: Handcrafted features + supervised classifier

Mainstream approach until recently for image (and speech) recognition:

Deep learning: Train multiple stages end-to-end

21

How does a fully connected net see the world?

Unwrap 2D image a 1D vector. One input node per pixel

22

Fully connected neural network on images

∙ Most image applications are absolute position
invariant

∙ A fully connected network will have too many
parameters and not be able to scale to normal
size images and generalize

23

Convolutional networks enforce similar response to neighboring pixels

24

What do the layers learn?

25

How does deep networks create invariance?

26

general image analysis applications

Object detection

28

Instance segmentation

29

Variational autoencoders - which face is fake?

30

Combining recurrent and convolutional networks for image captioning

31

Reinforcement learning for games

32

challenges with deep learning

Training a machine learning system

∙ Training data: data with known objects used to find the weights in the net
∙ Validation data: data with known objects used to select architectures and
hyperparameters

∙ Test data: data with known objects used once to estimate the error rate of the system

34

The danger of overfitting to training data

35

Working with skewed data

∙ Challenge: mostly data from “normal”
classes, few samples from other classes
(e.g. cancer, pollution etc.)

∙ Problem: How can we avoid that the
networks fits the normal class and
ignores the small but important class.

36

Working with skewed data - cont.

∙ Challenge: mostly data from “normal”
classes, few samples from other classes
(e.g. cancer, pollution etc.)

∙ Problem: How can we avoid that the
networks fits the normal class and
ignores the small but important class.

37

Domain shift

Ohen ghoor!

38

https://youtu.be/sgJLpuprQp8

Explaining the results

39

With power comes responsibility!

∙ Models with millions of parameters can fit to almost anything!
∙ Seeing inside the black box: why did the computer decide the given class?
∙ How do we evaluate the results?
∙ What is the significance of the results depening on the data?
∙ How well can we expect the model to generalize?
∙ What are the ethical sides of the problem and the desicions?
∙ Know what we have not learned yet.

40

Limitations of deep learning

∙ Complex tasks can be difficult to learn, particularly memory-intensive tasks
∙ Sometimes easy to fool the network
∙ Som tasks are untrainable
∙ You have only learnt your training data Deep learning requires good knowledge of
technical details, and how to train efficiently

41

introduction to image classification

Reading material

∙ Link to note on introduction to classification of images: here
∙ Convolution: (in Norwegian):Links to two lectures from INF 2310 Image Processing

∙ Lecture1
∙ Lecture2

43

http://cs231n.github.io/classification
https://www.uio.no/studier/emner/matnat/ifi/INF2310/v18/undervisningsmateriale/inf2310-2018-06-filtrering-i.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF2310/v18/undervisningsmateriale/inf2310-2018-07-filtrering-ii.pdf

Supervised Image classification - introduction

Task: use the entire image to classify the image into one of a set of known classes.
Which object does the image contain

44

Challenges: Illumination

45

Challenges: Occlusion

46

Challenges: Deformation

47

Challenges: Background clutter

48

Challenges: Intraclass variation

49

The CIFAR-10 image dataset

10 classes
50 000 training images of size 32× 32
10 000 test images

https://www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf

50

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Measuring similarity between two images

∙ Image F (k, i, j), pixel (i, j) in band k.
∙ L1-distance:

d1(i, j) =
∑
k

∑
i

∑
j

|F1(k, i, j)− F2(k, i, j)|

∙ L2-distance:
d2(i, j) =

∑
k

∑
i

∑
j

√
(F1(k, i, j)2 − F2(k, i, j))2

L2 is called Euclidean distance

51

K-Nearest-Neighbor classification

∙ Given a set of images m training images F (i) with true class labels y(i), i ∈ {1,m}
∙ Classification of a new sample F (new) is done as follows:

∙ Out of the m training images, find the k images with smallest distance (measured by L1 or
L2)

∙ Out of these k samples, identify the most frequent class labels
∙ Assign the class label the sample as the most frequent class labels among the k labels.
Denote the predicted class as ŷ(i).

∙ k should be odd, and must be selected a priori (try different values of k and choose
the one with the lowest classification error using crossvalidation)

∙ Classification error can be measured by counting the number of samples where the
predicted class is equal to the true class ŷ(i) = y(i)

52

Selecting K using crossvalidation

For each value of k:
∙ Cross-validation: split the training data into d subset/folds
∙ Train on data from d-1 folds ,
∙ Estimate the accuracy/compute the number of correctly classified images on the last
fold , store the accuracy.

∙ Repeat this nfold times and compute for the average of the accuracies.
∙ Repeat with different values of k, select the value that got the highest accuary.
∙ Using the best value of K, classify the test data set ONCE to get the accuracy of the
classifier.

53

Crossvalidation example

∙ Example: 10000 training images, 5000 test images.
∙ Split training images into 10 folds of 1000 images.
∙ Train on 9 folds (9000 images), compute accuracy on the last 1000 images during
cross-valiation.

∙ After finding k: train on all 10000, and estimate the reported accuracy on the 5000
test images.

54

About KNN-classification

∙ If k = 1 (1NN-classification), each sample is assigned to the same class as the closest
sample in the training data set.

∙ If k is very large, this is theoretically a very good classifier.
∙ This classifier involves no ”training time”, but the time needed to classify one pattern
xi will depend on the number of training samples, as the distance to all points in the
training set must be computed.

∙ ”Practical” values for k: 3 ≤ k ≤ 9

∙ Classification performance should always be computed on the test data set.
∙ For image classification using the original pixel values as feature values, the results
is not invariant to object position, scale, contrast!

55

image convolution

Image convolution

∙ Common operation in image analysis
∙ Apply pre-defined filters to enhance or highlight certain features in an image
∙ Examples:

∙ Image smoothing using e.g. an averaging filter or a Gaussian filter
∙ Edge detection by computing the first derivatives
∙ Point detection and edge locatization using second derivatives

∙ Classical filters are predefined, but convolutional networks will estimate filters to
locate various shapes in the image

57

2D image convolution

∙ Given a 2D filter w(i, j) of size h× h, h = 2h1 + 1.
∙ Given an image F (b, x, y), where b is band number and x and y spatial coordinates.
∙ To compute the result for one pixel in band b of the new image G(b, x, y), compute

G(b, x, y) =

h1∑
j=−h1

h1∑
k=−h1

w(j, k)F (b, x− j, y − k)

∙ The result is a weighted sum of the input pixels surrounding pixel (x, y).
∙ The value of the next pixel if G is found by moving the filter one position and
computing again.

∙ To compute for an entire image with b bands, a straigthforward implementation will
use 5 for-loops!

58

Convolution example

In this example, we compute the result for every location where the filter has some
overlap with the image. Another choice could be to compute the result for every location
where the entire filter fits inside the image.

Filter

Image
59

Example continued

∙ Rotate the filter 180 degrees (due to the minus in the equation)
∙ Overlay on a the first pixel and multiply filter weights with image pixel values, then
sum up over filter kernel

60

Example continued

∙ Move the filter to the next location and repeat
∙ Note: in this example we compute the result for all pixels where the filter kernel
overlaps the image. Since the result is assigned to the origin, this corresponds to
zero-padding the input image with a frame of size h1 + 1 on each side

∙ We can also chooose to only compute the results where the origin of the filter fits
inside the image, or where the filter fits entirely inside the image. This will affect the
size of the output image

61

Example of filter: average filter of size 5× 5

Compute the average value in the neighborhood, normalize by dividing by the number of
filter elements

62

Digital gradient operators

63

2D gradient operators

∙ Use the horisontal and vertical Sobel filters:

∙ Let Gx(b, x, y) = Hx ∗ F (b, x, y), where ∗ is the convolution operator
∙ Let Gy(b, x, y) = Hy ∗ F (b, x, y),
∙ Compute the gradient magnitude as√

(Gx(b, x, y)2 +Gy(b, x, y)2)

∙ Compute the gradient direction as

θ = tan−1

(
Gy(b, x, y)

Gx(b, x, y)

)

64

Questions?

65

	Introduction and about the course
	Motivation
	General image analysis applications
	Challenges with deep learning
	Introduction to image classification
	 Image convolution

