
INF 5400 Machine learning for image classification

Lecture 11: Recurrent neural networks

March 27 , 2019

Tollef Jahren

INF 5400

27.03.2019

Outline

• Overview (Feed forward and convolution neural networks)

• Vanilla Recurrent Neural Network (RNN)

• Input-output structure of RNN’s

• Training Recurrent Neural Networks

• Simple examples

• Advanced models

• Advanced examples

Page 2

INF 5400

27.03.2019

About today

Page 3

Goals:

• Understand how to build a recurrent neural network

• Understand why long range dependencies is a challenge for recurrent

neural networks

INF 5400

27.03.2019

Readings

• Video:

– cs231n: Lecture 10 | Recurrent Neural Networks

• Read:

– The Unreasonable Effectiveness of Recurrent Neural Networks

• Optional:

– Video: cs224d L8: Recurrent Neural Networks and Language Models

– Video: cs224d L9: Machine Translation and Advanced Recurrent LSTMs

and GRUs

Page 4

https://www.youtube.com/watch?v=6niqTuYFZLQ&list=PLzUTmXVwsnXod6WNdg57Yc3zFx_f-RYsq&index=10
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://www.youtube.com/watch?v=Keqep_PKrY8&list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6&index=8
https://www.youtube.com/watch?v=QuELiw8tbx8&index=9&list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6

INF 5400

27.03.2019

• Overview (Feed forward and convolution neural networks)

• Vanilla Recurrent Neural Network (RNN)

• Input-output structure of RNN’s

• Training Recurrent Neural Networks

• Simple examples

• Advanced models

• Advanced examples

Page 5

Progress

INF 5400

27.03.2019

Overview

• What have we learnt so far?

– Fully connected neural network

– Convolutional neural network

• What worked well with these?

– Fully connected neural network

works well when the input data is

structured

– Convolutional neural network works

well on images

• What does not work well?

– Processing data with unknown length

Page 6

INF 5400

27.03.2019

• Overview (Feed forward and convolution neural networks)

• Vanilla Recurrent Neural Network (RNN)

• Input-output structure of RNN’s

• Training Recurrent Neural Networks

• Simple examples

• Advanced models

• Advanced examples

Page 7

Progress

INF 5400

27.03.2019

Recurrent Neural Network (RNN)

• Takes a new input

• Manipulate the state

• Reuse weights

• Gives a new output

Page 8

𝑦𝑡

𝑥𝑡

INF 5400

27.03.2019

Recurrent Neural Network (RNN)

• Unrolled view

• 𝑥𝑡 : The input vector:

• ℎ𝑡: The hidden state of the RNN

• 𝑦𝑡 : The output vector:

Page 9

𝑦𝑡

𝑥𝑡

INF 5400

27.03.2019

Recurrent Neural Network (RNN)

• Recurrence formula:

– Input vector: 𝑥𝑡
– Hidden state vector: ℎ𝑡

Page 10

𝑦𝑡

𝑥𝑡

Note: We use the same function and parameters

for very “time” step

INF 5400

27.03.2019

(Vanilla) Recurrent Neural Network

• Input vector: 𝑥𝑡
• Hidden state vector: ℎ𝑡
• Output vector: 𝑦𝑡
• Weight matrices: 𝑊ℎℎ, 𝑊ℎ𝑥 ,𝑊ℎ𝑦

General form:

ℎ𝑡 = 𝑓𝑤 ℎ𝑡−1, 𝑥𝑡

Vanilla RNN:

ℎ𝑡 = tanh 𝑊ℎℎℎ𝑡−1 +𝑊ℎ𝑥𝑥𝑡 + 𝑏

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡

Page 11

𝑦𝑡

𝑥𝑡

INF 5400

27.03.2019

RNN: Computational Graph

Page 12

INF 5400

27.03.2019

RNN: Computational Graph

Page 13

INF 5400

27.03.2019

RNN: Computational Graph

Page 14

INF 5400

27.03.2019

RNN: Computational Graph

Page 15

INF 5400

27.03.2019

RNN: Computational Graph

Page 16

INF 5400

27.03.2019

RNN: Computational Graph

Page 17

INF 5400

27.03.2019

RNN: Computational Graph

Page 18

INF 5400

27.03.2019

Example: Language model

• Task: Predicting the next character

• Training sequence: “hello”

• Vocabulary:

– [h, e, l, o]

• Encoding: Onehot

Page 19

INF 5400

27.03.2019

RNN: Predicting the next character

• Task: Predicting the next character

• Training sequence: “hello”

• Vocabulary:

– [h, e, l, o]

• Encoding: Onehot

• Model:

ℎ𝑡 = tanh 𝑊ℎℎℎ𝑡−1 +𝑊ℎ𝑥𝑥𝑡

Page 20

INF 5400

27.03.2019

RNN: Predicting the next character

• Task: Predicting the next character

• Training sequence: “hello”

• Vocabulary:

– [h, e, l, o]

• Encoding: Onehot

• Model:

ℎ𝑡 = tanh 𝑊ℎℎℎ𝑡−1 +𝑊ℎ𝑥𝑥𝑡 + 𝑏

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡

Page 21

INF 5400

27.03.2019

RNN: Predicting the next character

• Vocabulary:

– [h, e, l, o]

• At test time, we can sample from the

model to synthesis new text.

Page 22

INF 5400

27.03.2019

RNN: Predicting the next character

• Vocabulary:

– [h, e, l, o]

• At test time, we can sample from the

model to synthesis new text.

Page 23

INF 5400

27.03.2019

RNN: Predicting the next character

• Vocabulary:

– [h, e, l, o]

• At test time, we can sample from the

model to synthesis new text.

Page 24

INF 5400

27.03.2019

RNN: Predicting the next character

• Vocabulary:

– [h, e, l, o]

• At test time, we can sample from the

model to synthesis new text.

Page 25

INF 5400

27.03.2019

• Overview (Feed forward and convolution neural networks)

• Vanilla Recurrent Neural Network (RNN)

• Input-output structure of RNN’s

• Training Recurrent Neural Networks

• Simple examples

• Advanced models

• Advanced examples

Page 26

Progress

INF 5400

27.03.2019

Input-output structure of RNN’s

• One-to-one

• one-to-many

• many-to-one

• Many-to-many

• many-to-many (encoder-decoder)

Page 27

INF 5400

27.03.2019

RNN: One-to-one

Normal feed forward neural network

Page 28

INF 5400

27.03.2019

RNN: One-to-many

Page 29

Task:

• Image Captioning

– (Image Sequence of words)

INF 5400

27.03.2019

RNN: Many-to-one

Page 30

Tasks:

• Sentiment classification

• Video classification

INF 5400

27.03.2019

RNN: Many-to-many

Page 31

Task:

• Video classification on frame level

INF 5400

27.03.2019

RNN: Many-to-many (encoder-

decoder)

Page 32

Task:

• Machine Translation

(English French)

INF 5400

27.03.2019

• Overview (Feed forward and convolution neural networks)

• Vanilla Recurrent Neural Network (RNN)

• Input-output structure of RNN’s

• Training Recurrent Neural Networks

• Simple examples

• Advanced models

• Advanced examples

Page 33

Progress

INF 5400

27.03.2019

Training Recurrent Neural Networks

• The challenge in training a recurrent neural network is to preserve long range

dependencies.

• Vanilla recurrent neural network

– ℎ𝑡 = 𝑓 𝑊ℎℎℎ𝑡−1 +𝑊ℎ𝑥𝑥𝑡 + 𝑏

– 𝑓 = 𝑟𝑒𝑙𝑢() can easily cause exploding values and/or gradients

– 𝑓 = tanh() can easily cause vanishing gradients, difficult to remember

more than ~7 steps.

• Finite memory available

Page 34

INF 5400

27.03.2019

Exploding or vanishing gradients

• tanh() solves the exploding value problem

• tanh() does NOT solve the exploding gradient problem, think of a scalar input

and a scalar hidden state.

ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊ℎℎℎ𝑡−1 +𝑊ℎ𝑥𝑥𝑡 + 𝑏

𝜕ℎ𝑡
𝜕ℎ𝑡−1

= 1 − tanh2(𝑊ℎℎℎ𝑡−1 +𝑊ℎ𝑥𝑥𝑡 + 𝑏) ⋅ 𝑊ℎℎ

The gradient can explode/vanish exponentially in time (steps)

• If |𝑊ℎℎ| < 1, vanishing gradients

• If |𝑊ℎℎ| > 1, exploding gradients

Page 35

INF 5400

27.03.2019

Exploding or vanishing gradients

• Conditions for vanishing and exploding gradients for the weight matrix, 𝑊ℎℎ:

– If largest singular value > 1: Exploding gradients

– If largest singular value < 1: Vanishing gradients

Page 36

“On the difficulty of training Recurrent Neural Networks, Pascanu et al. 2013

INF 5400

27.03.2019

Gradient clipping

• To avoid exploding gradients, a simple

trick is to set a threshold of the norm of

the gradient matrix,
𝜕ℎ𝑡

𝜕ℎ𝑡−1
.

• Error surface of a single hidden unit RNN

• High curvature walls

• Solid lines: Standard gradient descent

trajectories

• Dashed lines gradient rescaled to fixes

size

Page 37

“On the difficulty of training Recurrent Neural Networks, Pascanu et al. 2013

INF 5400

27.03.2019

Vanishing gradients - “less of a

problem”

• In contrast to feed-forward networks, RNNs will not stop learning in spite of

vanishing gradients.

• The network gets “fresh” inputs each step, so the weights will be updated.

• The challenge is to learning long range dependencies. This can be improved

using more advanced architectures.

• Output at time step t is mostly effected by the states with to time t.

Page 38

INF 5400

27.03.2019

Initialization of the weights

• Potential initialization schemes for the transition matrices, 𝑊ℎℎ:

– Activation (tanh): 𝑉𝑎𝑟[𝑊𝑙] =
2

𝑛𝑙 + 𝑛𝑙+1

– Activation (tanh): 𝑉𝑎𝑟[𝑊𝑙] =
1

𝑛𝑙

– Activation (relu): Orthogonal matrix

– Activation (relu): Identity matrix

• Initial state, ℎ0:

– Initialize to zeros or random

– Note: We can learn the initial state by backpropagate into it.

Page 39

INF 5400

27.03.2019

Some initialization schemes can help

RNNs

• Identity initialization of state

transition matrix, 𝑊ℎℎ:

– Initially no state change can

be a good start

– Avoid exploding/vanishing

gradients

– May be able to use ReLu

– The output should be the

sum of the two values which

have “mask” value of 1.

Page 40

A Simple Way to Initialize Recurrent Networks of Rectified Linear Units

https://arxiv.org/abs/1504.00941

INF 5400

27.03.2019

Backpropagation through time (BPTT)

• Training of a recurrent neural network is done using backpropagation and

gradient descent algorithms

– To calculate gradients you have to keep your inputs in memory until you

get the backpropagating gradient

– Then what if you are reading a book of 100 million characters?

Page 41

INF 5400

27.03.2019

Truncated Backpropagation thought

time

• The solution is that you stop at some point and update the weight as if you

were done.

Page 42

INF 5400

27.03.2019

Truncated Backpropagation thought

time

• The solution is that you stop at some point and update the weight as if you

were done.

Page 43

INF 5400

27.03.2019

Truncated Backpropagation thought

time

• The solution is that you stop at some point and update the weight as if you

were done.

Page 44

INF 5400

27.03.2019

Truncated Backpropagation thought

time

• Advantages:

– Reducing the memory requirement

– Faster parameter updates

• Disadvantage:

– Not able to capture longer dependencies then the truncated length.

Page 45

INF 5400

27.03.2019

What effect do you get from stopping

the gradients?
• You are not guarantied to remember interactions longer than the number of

steps.

• Say a text call a person Anna then much later refer to her as “she”

• A model with a lot of steps could directly learn to remember Anna.

• RNNs can in test time remember longer than the number of steps:

– You may have learned from earlier cases where “name” and “he/she” were

much closer

– The model knows that it should save gender of the name

Page 46

INF 5400

27.03.2019

A fun fix! Synthetic gradients

• Train a network to predict the gradients

you would get if all steps were connected

• You can learn that if you see Anna in the

state, you should expect gradients “asking

for Anna” later

• This is of course not perfect since you

don’t have all the coming information

Page 47

Decoupled Neural Interfaces using Synthetic Gradients

https://arxiv.org/abs/1608.05343

INF 5400

27.03.2019

• Overview (Feed forward and convolution neural networks)

• Vanilla Recurrent Neural Network (RNN)

• Input-output structure of RNN’s

• Training Recurrent Neural Networks

• Simple examples

• Advanced models

• Advanced examples

Page 48

Progress

INF 5400

27.03.2019

Inputting Shakespeare

• Input a lot of text

• Try to predict the next character

• Learning spelling, quotes and

punctuation.

Page 49

https://gist.github.com/karpathy/d4dee566867f8291f086

https://gist.github.com/karpathy/d4dee566867f8291f086

INF 5400

27.03.2019

Inputting Shakespeare

Page 50

https://gist.github.com/karpathy/d4dee566867f8291f086

https://gist.github.com/karpathy/d4dee566867f8291f086

INF 5400

27.03.2019

Inputting latex

Page 51

INF 5400

27.03.2019

Inputting C code (linux kernel)

Page 52

INF 5400

27.03.2019

Interpreting cell activations

• Semantic meaning of the hidden state vector

Page 53

Visualizing and Understanding Recurrent Networks

https://arxiv.org/abs/1506.02078

INF 5400

27.03.2019

Interpreting cell activations

Page 54

Visualizing and Understanding Recurrent Networks

https://arxiv.org/abs/1506.02078

INF 5400

27.03.2019

Interpreting cell activations

Page 55

Visualizing and Understanding Recurrent Networks

https://arxiv.org/abs/1506.02078

INF 5400

27.03.2019

Interpreting cell activations

Page 56

Visualizing and Understanding Recurrent Networks

https://arxiv.org/abs/1506.02078

INF 5400

27.03.2019

Interpreting cell activations

Page 57

Visualizing and Understanding Recurrent Networks

https://arxiv.org/abs/1506.02078

INF 5400

27.03.2019

• Overview (Feed forward and convolution neural networks)

• Vanilla Recurrent Neural Network (RNN)

• Input-output structure of RNN’s

• Training Recurrent Neural Networks

• Simple examples

• Advanced models

• Advanced examples

Page 58

Progress

INF 5400

27.03.2019

Gated Recurrent Unit (GRU)

• A more advanced recurrent unit

• Uses gates to control information flow

• Used to improve long term dependencies

Page 59

INF 5400

27.03.2019

Gated Recurrent Unit (GRU)

Page 60

Vanilla RNN

• Cell state ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏)

GRU

• Update gate Γ𝑢 = 𝜎(𝑊𝑢𝑥𝑡 + 𝑈𝑢ℎ𝑡−1 + 𝑏𝑢)

• Reset gate Γ𝑟 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)

• Candidate cell state ෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑥𝑡 + 𝑈(Γ𝑟∘ ℎ𝑡−1 + 𝑏)

• Final cell state ℎ𝑡 = Γ𝑢 ∘ ℎ𝑡−1 + 1 − Γ𝑢 ∘ ෨ℎ𝑡

GRU has the ability to adding and removing to the state, not “transforming the

state” only.

With Γ𝑟 as ones and Γ𝑢 as zeros, GRU ՜ Vanilla RNN

INF 5400

27.03.2019

Gated Recurrent Unit (GRU)

• Update gate Γ𝑢 = 𝜎(𝑊𝑢𝑥𝑡 + 𝑈𝑢ℎ𝑡−1 + 𝑏𝑢)

• Reset gate Γ𝑟 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)

• Candidate cell state ෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑥𝑡 + 𝑈(Γ𝑟∘ ℎ𝑡−1 + 𝑏)

• Final cell state ℎ𝑡 = Γ𝑢 ∘ ℎ𝑡−1 + 1 − Γ𝑢 ∘ ෨ℎ𝑡

Page 61

Summary:

• The update gate , Γ𝑢, can easily be close to 1 due to the sigmoid activation

function. Copying the previous hidden state will prevent vanishing gradients.

• With Γ𝑢 = 0 and Γ𝑟 = 0 the GRU unit can forget the past.

• In a standard RNN, we are transforming the hidden state regardless of how

useful the input is.

INF 5400

27.03.2019

Long Short Term Memory (LSTM)

(for reference only)

Page 62

GRU LSTM

Update gate Γ𝑢 = 𝜎(𝑊𝑢𝑥𝑡 + 𝑈𝑢ℎ𝑡−1 + 𝑏𝑢) Forget gate Γ𝑓 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓 ℎ𝑡−1 + 𝑏𝑓)

Reset gate Γ𝑟 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) Input gate Γ𝑖 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖 ℎ𝑡−1 + 𝑏𝑖)

Output gate Γ𝑜 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)

Candidate cell

state

෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑥𝑡 + 𝑈(Γ𝑟∘ ℎ𝑡−1 + 𝑏) Potential cell memory ǁ𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐 ℎ𝑡−1 + 𝑏𝑐)

Final cell state ℎ𝑡 = Γ𝑢 ∘ ℎ𝑡−1 + 1 − Γ𝑢 ∘ ෨ℎ𝑡 Final cell memory 𝑐𝑡 = Γ𝑓 ∘ 𝑐𝑡−1 + Γ𝑖 ∘ ǁ𝑐𝑡

Final cell state ℎ𝑡 = Γ𝑜 ∘ tanh(𝑐𝑡)

LSTM training

• One can initialize the biases of the forget

gate such that the values in the forget gate

are close to one.

INF 5400

27.03.2019

Multi-layer Recurrent Neural Networks

• Multi-layer RNNs can be used to enhance

model complexity

• Similar as for feed forward neural networks,

stacking layers creates higher level feature

representation

• Normally, 2 or 3 layer deep, not as deep as

conv nets

• More complex relationships in time

Page 63

INF 5400

27.03.2019

Bidirectional recurrent neural network

• The blocks can be vanilla, LSTM and GRU recurrent units

• Real time vs post processing

Page 64

ℎ𝑡 = 𝑓 𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡−1

ℎ𝑡 = 𝑓 𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡+1

ℎ𝑡 = ℎ𝑡 , ℎ𝑡

𝑦𝑡 = 𝑔(𝑊ℎ𝑦ℎ𝑡 + 𝑏)

INF 5400

27.03.2019

Bidirectional recurrent neural network

• Example:

– Task: Is the word part of a person’s name?

– Text 1: He said, “Teddy bear are on sale!”

– Text 2: He said, “Teddy Roosevelt was a great President!”

Page 65

ℎ𝑡 = 𝑓 𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡−1

ℎ𝑡 = 𝑓 𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡+1

ℎ𝑡 = ℎ𝑡, ℎ𝑡

𝑦𝑡 = 𝑔(𝑊ℎ𝑦ℎ𝑡 + 𝑏)

INF 5400

27.03.2019

• Overview (Feed forward and convolution neural networks)

• Vanilla Recurrent Neural Network (RNN)

• Input-output structure of RNN’s

• Training Recurrent Neural Networks

• Simple examples

• Advanced models

• Advanced examples

Page 66

Progress

INF 5400

27.03.2019

Image Captioning

• Combining text RNN with image CNN

• Learning RNN to interpret top features from CNN

Page 67

Deep Visual-Semantic Alignments for Generating Image Descriptions

https://cs.stanford.edu/people/karpathy/cvpr2015.pdf

INF 5400

27.03.2019

Image Captioning

Page 68

INF 5400

27.03.2019

Image Captioning

Page 69

INF 5400

27.03.2019

Image Captioning

Page 70

INF 5400

27.03.2019

Image Captioning

Page 71

INF 5400

27.03.2019

Image Captioning

Page 72

INF 5400

27.03.2019

Image Captioning

Page 73

INF 5400

27.03.2019

Image Captioning

Page 74

INF 5400

27.03.2019

Image Captioning: Results

Page 75

NeuralTalk2

https://github.com/karpathy/neuraltalk2

INF 5400

27.03.2019

Image Captioning: Failures

Page 76

NeuralTalk2

https://github.com/karpathy/neuraltalk2

INF 5400

27.03.2019

Generating images

• Input top and left pixel to predict a new pixel.

• Fill in holes.

Page 77

INF 5400

27.03.2019

Machine translation

• Example:

– German to English:

– “Echt dicke Kiste” to “Awesome sauce”

• Tokenize each word/character, e.g. as a onehot vector.

• <EOS> token

• Can use cross-entropy loss for every timestep

• Character model vs vocabulary model:

– Pros character model :

• Much smaller class size (input/ouput vector length)

• You don’t need to worry about unknown words

– Pros vocabulary model

• Shorter sequences, easier to capture long term dependencies

• Less computationally expensive to train

Page 78

INF 5400

27.03.2019

Machine translation

Page 79

• RNN: Many-to-many (encoder-decoder)

• Tips which may help:

• Different 𝑊 for the encoder and the decoder

• Concatenate the last hidden state of the encoder to all hidden state in the

decoder

• In the decoder, pass in 𝑦𝑛 as 𝑥𝑛+1
• Reverse the order:

• ABC XY

• CBA XY

Encoder

Decoder

INF 5400

27.03.2019

CNN + RNN

• With RNN on top of CNN features,

you capture a larger time horizon

Page 80

Long-term Recurrent Convolutional Networks for Visual Recognition

and Description

https://arxiv.org/abs/1411.4389

INF 5400

27.03.2019

A network can be both convolutional

and recurrent

• By simply changing the matrix

multiplications to convolutions

Page 81

Learning Video Object Segmentation with Visual Memory

https://arxiv.org/abs/1704.05737

