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« Overview (Feed forward and convolution neural networks)
« Vanilla Recurrent Neural Network (RNN)

* Input-output structure of RNN’s

« Training Recurrent Neural Networks

« Simple examples

« Advanced models

« Advanced examples
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About today

Goals:
 Understand how to build a recurrent neural network

* Understand why long range dependencies is a challenge for recurrent
neural networks
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Readings

 Video:
— ¢s231n: Lecture 10 | Recurrent Neural Networks

e Read:
The Unreasonable Effectiveness of Recurrent Neural Networks

 Optional:
— Video: ¢s224d L8: Recurrent Neural Networks and Lanquage Models

— Video: ¢s224d L9: Machine Translation and Advanced Recurrent LSTMs
and GRUs



https://www.youtube.com/watch?v=6niqTuYFZLQ&list=PLzUTmXVwsnXod6WNdg57Yc3zFx_f-RYsq&index=10
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://www.youtube.com/watch?v=Keqep_PKrY8&list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6&index=8
https://www.youtube.com/watch?v=QuELiw8tbx8&index=9&list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6
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Progress

 Overview (Feed forward and convolution neural networks)
« Vanilla Recurrent Neural Network (RNN)

* Input-output structure of RNN’s

« Training Recurrent Neural Networks

« Simple examples

+ Advanced models

* Advanced examples
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Overview

« What have we learnt so far?
— Fully connected neural network
— Convolutional neural network

%
’r‘;‘xir‘«{

4
N
X

; //\\ output layer
« What worked well with these? e o ‘
u

— Fully connected neural network hidden layer 1 hidden layer 2

works well when the input data is

structured
— Convolutional neural network works dorth

well on images 65555550  height

"
o ~1000Q0H) ~
OOOOOW, vidth

« What does not work well?
— Processing data with unknown length
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Progress

* Overview (Feed forward and convolution neural networks)
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« Training Recurrent Neural Networks

« Simple examples

+ Advanced models

* Advanced examples
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Recurrent Neural Network (RNN)

Takes a new input
Manipulate the state
Reuse weights

Gives a new output

Yt

Page 8
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Recurrent Neural Network (RNN)

Unrolled view

x, : The input vector: Yt P e
h:: The hidden state of the RNN
y: . The output vector: T T T
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Recurrent Neural Network (RNN)

* Recurrence formula:
— Input vector: x;
— Hidden state vector: h; Yt

ht il fW (ht—la mt)

new state / old state input vector at
some time step

some function
with parameters W

Note: We use the same function and parameters
for very “time” step
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(Vanilla) Recurrent Neural Network

* Input vector: x;

« Hidden state vector: h;

« Qutput vector: y;

*  Weight matrices: Wy, Why, Wh,y,

General form:
hy = fw(ht—l;xt)

Vanilla RNN:
ht = tanh(Whhht_l + thxt + b)

Ve = Whyht

Yt

INF 5400
27.03.2019
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RNN: Computational Graph
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RNN: Computational Graph

h0 I fW — h1 £ fW > h2
A A
x1 X2
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RNN: Computational Graph

h0 :fw =h1 :fw—b-hz :fw :hs—b...—bh_l_
A A A
)(‘I X2 X3
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RNN: Computational Graph

h0 :fw—>h1—>fw :hz >fw >h3—>.-.—>hT
AN iRy &
X X, X,
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RNN: Computational Graph

Y4 Ys Y3 4]

T ! ! !

h0—>fw—>h1—>fw—>h2—>fw—>h3—> —»hT
prd Nl i M
W x1 x2 X3
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RNN: Computational Graph

Y 1 L Y, L Ys L Yr L
T T ! T
h0—>fw—>h1—>fw—>h2—>fw—>h3—>. .—>hT
pra il iy i
W = %o X3
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RNN: Computational Graph

/ L
Y, Ly Y, 1 L Y; " L3 Yr Ly
T ! ! !
h0—>fw =h1—>fw—>h2 :fW =h3—>...—>h_l_
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Example: Language model

« Task: Predicting the next character

« Training sequence: “hello”

« Vocabulary:
— [h, e, |, O]

« Encoding: Onehot

input layer

T |lococo-
o loo=0
= |lo=0co0
~ |lo=0co0o

input chars:



UiO ¢ Department of Informatics 7o o000 Page 20

University of Oslo

RNN: Predicting the next character

« Task: Predicting the next character

« Training sequence: “hello”

« Vocabulary:
— [h, e, |, O]

« Encoding: Onehot

0.1 0.3

0.3 ) m[ 1.0

hidden layer | .0.1 | 03 - 05| - 09

*  Model: 0.9} 0.1 03 | 0.7
[ e == —

ht = tanh(Whhht_l + thxt) “N b 4 ’

1 0 0 0

0 1 0 0

lé

input layer 0 0 1 1

0 0 0 0

input chars: *h" = | r
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RNN: Predicting the next character

« Task: Predicting the next character

« Training sequence: “hello” target chars: "€’ L L
1.0 0.5 0.1 0.2
« Vocabulary: output iayer TR 0.3 0.5 -1.5
3.0 1.0 1.9 -0.1
— [h, e, |, O] 4.1 12 1.1 2.2
. i ] 4 )
« Encoding: Onehot W_hy
0.3 1.0 0.1 |w nhnl-03
hidden layer | -0.1 ~ 0.3 > 05 == 09
 Model: 0.9 0.1 0.3 0.7
ht == tanh(Whhht_l + thxt + b) I t | IW hx
Vi = Whyhy 1 0 0 0
0 1 0 0
input layer 0 0 1 1
0 0 0 0
input chars: *“p" ‘e" Ar 5 =
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RNN: Predicting the next character

« Vocabulary:

“eu

- [h1 €, I’ O] Sample ,
.03

A3

Softmax .00

. .84

« At test time, we can sample from the ;
model to synthesis new text. 1.0
2.2
output layer 30

4.1

0.3

hidden layer | .01 ——

0.9

C

1

input layer g

0

input chars:  “h”

Page 22
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RNN: Predicting the next character

« Vocabulary:
“e”
- [h1 €, I’ O] Sample =
.03
Softmax 33
. .84
« At test time, we can sample from the :
model to synthesis new text. 10
2.2
output layer 30
4.1
0.3
hidden layer | -0.1
0.9
T N
1 0
: 0 1
input layer 0 0
0 0
input chars:  “h” ‘e”



UiO ¢ Department of Informatics o 5900 Page 24

University of Oslo

RNN: Predicting the next character

« Vocabulary:
uen “I"
— [h,e 1, 0] Sample y t
.03 .25
A3 .20
Softmax .00 .05
. .84 .50
« At test time, we can sample from the ; :
model to synthesis new text. 10 05
2.2 0.3
output layer 30 10
4.1 12
T A
0.3 1.0
hidden layer | -0.1 » 0.3
0.9 0.1
1 0
: 0 1
input layer 0 0
0 0
input chars:  “h” “e”
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RNN: Predicting the next character

« Vocabulary: ’\
w1 “I" "In uou
[h, e, |, 0] Sample ) L . }
03 25 11 11
A3 20 A7 02
Softmax 00 .05 68 .08
. B4 .50 03 79
« At test time, we can sample from the — ; r ;
model to synthesis new text. 1.0 0.5 01 0.2
2.2 0.3 0.5 15
outpul layer [ 1.0 1.9 0.1
4.1 1.2 -1.1 22
' ' &
T W_hy
_ 0.3 1.0 0.1 W hh -0.3
hidden layer | .0.1 = 0.3 e .05 —1-= 09
0.9 0.1 03 0.7
. ' ] ]
" | I | W_hx
1 0 0 0
input layer g a ? ?
0 0 0 0
input chars: “p" ) i 1
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Progress

* Overview (Feed forward and convolution neural networks)
« Vanilla Recurrent Neural Network (RNN)

* Input-output structure of RNN’s

« Training Recurrent Neural Networks

« Simple examples

+ Advanced models

* Advanced examples
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Input-output structure of RNN’s

 One-to-one

* one-to-many

* many-to-one

* Many-to-many

* many-to-many (encoder-decoder)
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RNN: One-to-one

Normal feed forward neural network one to one
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RNN: One-to-many

Task: one to many
« Image Captioning
— (Image » Sequence of words)
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RNN: Many-to-one

Tasks: many to one

« Sentiment classification
* Video classification
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RNN: Many-to-many

Task:
Video classification on frame level

INF 5400 Page 31
27.03.2019

many to many
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RNN: Many-to-many (encoder-
decoder)

Task:
Machine Translation
(English -+ French)
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Progress

* Overview (Feed forward and convolution neural networks)
« Vanilla Recurrent Neural Network (RNN)

* Input-output structure of RNN’s

« Training Recurrent Neural Networks

« Simple examples

+ Advanced models

* Advanced examples
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Training Recurrent Neural Networks

« The challenge in training a recurrent neural network is to preserve long range
dependencies.

 Vanilla recurrent neural network
- hy = f(Wpphe—1 + Wyxxe + b)

- f =relu() can easily cause exploding values and/or gradients

- f = tanh() can easily cause vanishing gradients, difficult to remember
more than ~7 steps.

« Finite memory available
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Exploding or vanishing gradients

e tanh() solves the exploding value problem

e tanh() does NOT solve the exploding gradient problem, think of a scalar input
and a scalar hidden state.

h’t = tanh(Whhht_l + thxt + b)

oh,
Ohy—q

= [1 — tanh2 (Whhht—l + thxt + b)] : Whh

The gradient can explode/vanish exponentially in time (steps)

o If |Wyn| < 1, vanishing gradients
o If |Wyn| > 1, exploding gradients



UiO ¢ Department of Informatics e o Page 36

University of Oslo

Exploding or vanishing gradients

« Conditions for vanishing and exploding gradients for the weight matrix, Wy,:
— If largest singular value > 1: Exploding gradients
— If largest singular value < 1: Vanishing gradients

“On the difficulty of training Recurrent Neural Networks, Pascanu et al. 2013
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Gradient clipping

Algorithm 1 Pseudo-code for norm clipping the gra-
dients whenever they explode

« To avoid exploding gradients, a simple

trick is to set a threshold of the norm of 5o o
, . dh 8 < B9
the gradient matrix, —=. if ||g| > threshold then
aht_]_ & threshold »
& Tal 8
end if

« Error surface of a single hidden unit RNN

0.35
0.30
0.25
o
0.20 =
[
0.15
0.10
0.05

* High curvature walls

« Solid lines: Standard gradient descent
trajectories

« Dashed lines gradient rescaled to fixes
Size

“On the difficulty of training Recurrent Neural Networks, Pascanu et al. 2013
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Vanishing gradients - “less of a
problem”

* In contrast to feed-forward networks, RNNs will not stop learning in spite of
vanishing gradients.

« The network gets “fresh” inputs each step, so the weights will be updated.

« The challenge is to learning long range dependencies. This can be improved
using more advanced architectures.

« Output at time step t is mostly effected by the states with to time t.

T e R )
++ ¢+ ¢t ¢ ¢t ¢ ¢ ¢ # + + £ + + t+ % %
777777777777777777b;
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Initialization of the weights

« Potential initialization schemes for the transition matrices, Wy,

— Activation (tanh): Var[W;] = —2

np+npq

— Activation (tanh): Var[W;] = —

ny
— Activation (relu): Orthogonal matrix
— Activation (relu): Identity matrix

« Initial state, hy:
— Initialize to zeros or random
— Note: We can learn the initial state by backpropagate into it.

Page 39
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Some Initialization schemes can help

RNNS

* Identity initialization of state
transition matrix, Wy,:

— Initially no state change can
be a good start

— Avoid exploding/vanishing
gradients

— May be able to use RelLu

— The output should be the
sum of the two values which
have “mask” value of 1.

Random signals

1.2 | Target

o Mask

o5 07 03| 01| 02| 06| 05| 0.9 08| 01
0 1 0 0 L 0 1 0
4 A
T

Adding two numbers in a sequence of 150 numbers

e
™

LSTM
— RNN + Tanh
RNN + RelUs
—— IRNN

e
o

Test MSE
5 2 & &

o
s

bl

o
o

1 2 3 5 ] 7 8

Adding two numbers in a sequence of 300 numbers

4
Steps x10°

9

08

LSTM
s RNN + Tanh
07 RNN + ReLUs
e |RNN

06F

4
n

W
w
= 04
8
hd
03
0z Il |
-
0.1 ll
0
o 1 2 3 4 5 6 7 8 9
Steps 10°

Test MSE

Test MSE

Adding two numbers in a sequence of 200 numbers

LSTM
—— RNN + Tanh
07F RMM + ReLUs
—— IRNN
06
05
04-
03
02
01
0 1 2 3 4 5 3 7 9
Steps x10°
Adding two numbers in a sequence of 400 numbers
08
LSTM
RNN + Tanh
0.7 RNN + ReLUs
IRNN
0.6
0.5
0.4
0.3
0.2
01
[} o 3
0 1 2 3 4 5 6 7 L ar 9
Steps x10°

A Simple Way to Initialize Recurrent Networks of Rectified Linear Units



https://arxiv.org/abs/1504.00941
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Backpropagation through time (BPTT)

« Training of a recurrent neural network is done using backpropagation and
gradient descent algorithms

— To calculate gradients you have to keep your inputs in memory until you
get the backpropagating gradient

— Then what if you are reading a book of 100 million characters?

_— TN\

N TR TN N T N N N

>
L
>
L
Ly
L
>
>
>

>
|_>{
na
L
L]
l.,l
N
na
|_>|
o]
na
|_>{

IR T T TN IR N

\ i

Al
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Truncated Backpropagation thought
time

The solution is that you stop at some point and update the weight as if you
were done.

)_>|
-
>
}_>|
N
>
L

H
-
>
M
-
-
L

\/




UiO ¢ Department of Informatics

University of Oslo

Truncated Backpropagation thought

time

The solution is that you stop at some point and update the weight as if you

were done.

na

>

na

Ba

-

ST

AW

‘Y|

INF 5400
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Truncated Backpropagation thought
time

The solution is that you stop at some point and update the weight as if you
were done.

TREE

< 1 1 1 A N

>
>
l_._|
|_>_|
>
Ba
>
Ba
ng
|_>1
>
Ba
>
|_>|
I_.,|
-
Ba
-

-
-
I_>|
-
-
-
—
-
-
l_..|
|_.1
-
-
—
|_>|
-
-
-
-

‘VI




UiO ¢ Department of Informatics o 5900 Page 45
University of Oslo

Truncated Backpropagation thought
time
« Advantages:

— Reducing the memory requirement
— Faster parameter updates

« Disadvantage:
— Not able to capture longer dependencies then the truncated length.
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What effect do you get from stopping
the gradients?

You are not guarantied to remember interactions longer than the number of
steps.

Say a text call a person Anna then much later refer to her as “she”

A model with a lot of steps could directly learn to remember Anna.

RNNSs can in test time remember longer than the number of steps:

— You may have learned from earlier cases where “name” and “he/she” were
much closer

— The model knows that it should save gender of the name

R R
& a&\
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A fun fix! Synthetic gradients

« Train a network to predict the gradients
you would get if all steps were connected

* You can learn that if you see Anna in the
state, you should expect gradients “asking
for Anna” later

« This is of course not perfect since you
don’t have all the coming information

Synthetic Synthetic
gradient gradient

W ..... MW

Sequence Length Solved

~J
o

N w B~ W, )]
o o o o o

=

o

DD

INF 5400
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Repeat Copy

Page 47

67

6 8

59

DNI+Aux T=5

BPTT T=5

s DNI+Aux T=4
e BETT T=4
DNI+Aux T=3

BPTT T=3

w— DNI+Aux T=2
"""" BPTT T=2

10 12

Data Time (millions)

14

Decoupled Neural Interfaces using Synthetic Gradients



https://arxiv.org/abs/1608.05343
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Progress

* Overview (Feed forward and convolution neural networks)
« Vanilla Recurrent Neural Network (RNN)

* Input-output structure of RNN’s

« Training Recurrent Neural Networks

 Simple examples

+ Advanced models

* Advanced examples
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Inputting Shakespeare

o Ir]r)ljt a I()t ()f text tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

train more
« Try to predict the next character “Taoot thithey" fomesscarliund
eushey. Thom here

sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

- Learning spelling, quotes and | Vigagnane,
A
F)Ljr](:tljéitIC)r1' Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

train more

A

"Why do what that day," replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

https://gist.qithub.com/karpathy/d4dee566867f8291f086



https://gist.github.com/karpathy/d4dee566867f8291f086
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Inputting Shakespeare

PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

Page 50

To grace my hand reproach within, and not a fair are hand,

That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

https://gist.qgithub.com/karpathy/d4dee566867f8291f086



https://gist.github.com/karpathy/d4dee566867f8291f086
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Proof. Omitted. a This since F € F and z € G the diagram
Lemma 0.1. Let C be a set of the construction. g
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We l
have to show that § Oy
Ooy = O0x(£L) [ \
gor,
Proof. This is an algebraic space with the composition of sheaves F on Xzq. we
have =a —
Ox(F) = {morphy xo, (G,F)}
where G defines an isomorphism F — F of O-modules. a SR e X

Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ??. (]

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. LetUd C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
b: X=2Y' aY a3 YaY ' xx Y X.

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox (U) which is locally of
finite type. 0O

Spec(Ky) Morsets  d(Oxy,,. G)

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and
e the composition of G is a regular sequence,
e Oy is a sheaf of rings.
=]

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. =]

Proof. This is clear that G is a finite presentation, see Lemmas ?7.
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxe —Fz -UOx4u) — 0}:0.\‘;\(0}(',,)
is an isomorphism of covering of Oy,. If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme O y-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. a

If F is a finite direct sum Oy, is a closed immersion, see Lemma ??. This is a
sequence of F is a similar morphism.
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Inputting C code (linux kernel)

static void do_command(struct seq file *m, void *v)

{
: int column = 32 << (cmd[2] & 0x80);
? if (state)
i cmd = (int)(int_state * (in_8(&ch->ch flags) & Cmd) ? 2 : 1);
else
vesa_slot_addr_pack seq = 1;

e e s bl for (i = 0; i < 16; i++) {

. . if (k & (1 << 1))

te pipe = (in_use & UMXTHREAD UNCCA) +

ot unaligned child ((count & 0x00000000ff£f£f£ff8) & 0x000000f) << B;

2 ( 3 X ( 3 \ if (count == ()

e sub(pid, ppc_md.kexec_handle, 0x20000000);
pipe_set bytes(i, 0);

static void stat PC SEC _ read mostly offsetof(struct seq argsqueue, \

pe>(1]); }
static void subsystem_info = &of changes[PAGE_SIZE];
os_prefix(unsigned long sys) rek_controls(offset, idx, &soffset);

( * Now we want t ieliberate y put =
PUT_PARAM RAID(2, sel) = get state state(); control check polarity(&context, val, 0);
set_pid sum((unsigned long)state, current_state_str(), for (i = 0; i < COUNTER; i++)

(unsigned long)-1->lr full; low; seq_puts(s, "policy ");
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Interpreting cell activations

« Semantic meaning of the hidden state vector

R R N R e
ol |O o] | |0 (0| |0 |© ol |0 o

o] (O

R R I N R I I N )

lter fiflle ld"SWString rE@pres@ntation firom Wser-space
ack_string(W@iid *®Mbufp, silze_t NMrEmst , slize_t kem)

¥
d : l1ds, PITHINNX
SRR

Visualizing and Understanding Recurrent Networks



https://arxiv.org/abs/1506.02078

UiO ¢ Department of Informatics N 5400 Page 54

University of Oslo

Interpreting cell activations

quote detection cell 5

Visualizing and Understanding Recurrent Networks
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Interpreting cell activations
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Visualizing and Understanding Recurrent Networks
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Interpreting cell activations

if statement cell

Visualizing and Understanding Recurrent Networks
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Interpreting cell activations

fdef CONFIG_AUDITSYSCALL
atic inline int audit_match_class_bits(int class, u32 *mask)

!or (! = 0; 1 < AUDIT_BITMASK_S

= D
if inaokill & classes[class][i]

}

#1i
st

ZES ve)
)

code depth cell

Visualizing and Understanding Recurrent Networks
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Progress

* Overview (Feed forward and convolution neural networks)
« Vanilla Recurrent Neural Network (RNN)

* Input-output structure of RNN’s

« Training Recurrent Neural Networks

« Simple examples

+ Advanced models

* Advanced examples
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Gated Recurrent Unit (GRU)

« A more advanced recurrent unit

« Uses gates to control information flow y

« Used to improve long term dependencies
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Gated Recurrent Unit (GRU)

GRU has the ability to adding and removing to the state, not “transforming the

state” only.
Vanilla RNN
« Cell state h, = tanh(W™x, + Wh,_, + b)
GRU
« Update gate ‘= o(W4x; + U%ht_1 + b%)
» Reset gate "= ocW"x; +U"h{_q +b")
- Candidate cell state he = tanh(Wx, + U(T"o he_1) + b)
* Final cell state he=T%ohi_;+(1—-T%)oh,

With I'" as ones and I'* as zeros, GRU — Vanilla RNN
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Gated Recurrent Unit (GRU)

Summary:
« The update gate ,I'*%, can easily be close to 1 due to the sigmoid activation
function. Copying the previous hidden state will prevent vanishing gradients.

« WithT* =0 and I'" = 0 the GRU unit can forget the past.

« In a standard RNN, we are transforming the hidden state regardless of how
useful the input is.

« Update gate 't = o(W%x; + U%h;_; + b%)
« Reset gate "= oW"x; +U"h_q +b")
« Candidate cell state he = tanh(Wx, + U(T"o hy_q) + b)

« Final cell state he=T%ohi;+(1—T%) oh,
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Long Short Term Memory (LSTM)
(for reference only)

GRU
Update gate

Reset gate

Candidate cell
state

Final cell state

Fu = O-(Wuxt + Uuht_l + bu)
I“T =S O-(Wrxt + Urht_l + bT)

iit = tanh(Wxt + U(FTO ht—l) + b)

ht: Fuoht_1+(1—ru)oﬁt

INF 5400 Page 62
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LSTM

Forget gate M= o(W'x, + U hy_y + b))
Input gate ‘= o(Wix, +U'h,_; +bY)
Output gate [°= o(W°x; +U°hs_1 + b°)

Potential cell memory & = tanh(W x; + U€ hy_; + b°)

Final cell memory ce =T oc, i +T o ¢,

Final cell state hs = T'° o tanh(c;)

LSTM training

« One can initialize the biases of the forget
gate such that the values in the forget gate
are close to one.
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Multi-layer Recurrent Neural Networks

« Multi-layer RNNs can be used to enhance
model complexity

« Similar as for feed forward neural networks,
stacking layers creates higher level feature
representation

 Normally, 2 or 3 layer deep, not as deep as
conv nets

* More complex relationships in time

depth

]

]
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Bidirectional recurrent neural network

The blocks can be vanilla, LSTM and GRU recurrent units
Real time vs post processing

- — RN ® o ® o
hy = f(thxt + Whhht—l) : : 3 "-.
Et = f(thxt + Whhzt+1) :"-._I

Ve = g(Wyyhi + b)

Y
h

X
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Bidirectional recurrent neural network

« Example:

— Task: Is the word part of a person’s name?

— Text 1: He said, “Teddy bear are on sale!”

— Text 2: He said, “Teddy Roosevelt was a great President!”

flt = f(thxt + Whhﬁt—l)
Et = f(thxt + Whhzt+1)
hy = [Et; Et]

Ve = g(Wyyhi + b)
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Progress

* Overview (Feed forward and convolution neural networks)
« Vanilla Recurrent Neural Network (RNN)

* Input-output structure of RNN’s

« Training Recurrent Neural Networks

« Simple examples

+ Advanced models

« Advanced examples
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Image Captioning

« Combining text RNN with image CNN

« Learning RNN to interpret top features from CNN

“hat”

“straw” END

START “straw” “hat”

Deep Visual-Semantic Alignments for Generating Image Descriptions



https://cs.stanford.edu/people/karpathy/cvpr2015.pdf
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Image Captioning

~ image | =

conv-64

conv-64
maxpool
conv-128
conv-128
maxpool

conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096

FC-4096

F 0
sogax
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Image Captioning

_image @ =

test image

conv-64
conv-64
maxpool

conv-128

conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096 ©

<STA
FC-4096 ST

<START>
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Image Captioning

conv-64

conv-64

mal_pool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

\'

—

-

Wih

x0
<8TA
RT=

<START>

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)
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Image Captioning

image | <

conv-64

test image

conv-64
maxpool

conv-128

conv-128
maxpool

conv-256 yO
conv-256

maxpool A

conv-512
conv-512 Sample!

maxpool hO

conv-512

conv-512
maxpool

FC-4096 -

STA tr:
FC-4096 <R T straw

<START>



UiO ¢ Department of Informatics

University of Oslo

Image Captioning

__image | =

conv-64
conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool
FC-4096
FC-4096

4

x0
<STA
RT>

straw

<START>

test image
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Image Captioning

| image |
conv-64
conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool
FC-4096
FC-4096

\

x0
<STA
RT>

straw

hat

<START>

test image

sample!

INF 5400
27.03.2019

Page 73



UiO ¢ Department of Informatics

University of Oslo

Image Captioning

conv-64
conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096
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test image

\ sample

<END> token

=> finish.

RT=

y0 y1 y2
A [ A
h0 | h1 > h2
A A '
x0

<STA straw hat

<START>

Page 74
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Image Captioning: Results

A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in
suitcase on the floor branch grass with a frisbee the grass

s

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track

NeuralTalk2


https://github.com/karpathy/neuraltalk2
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Image Captioning: Failures

' A bird is perched on
= "~ atree branch

Amanina
baseball uniform
throwing a ball

N3
A woman standing on a
beach holding a surfboard

A person holding a
computer mouse on a desk

NeuralTalk2


https://github.com/karpathy/neuraltalk2
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Generating images

* Input top and left pixel to predict a new pixel.

 Fillin holes.

occluded completions original

2 2) 2 o e ) "\ '
g re—
: 4"“ Y
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Machine translation

Example:
— German to English:
— “Echt dicke Kiste” to “Awesome sauce”

« Tokenize each word/character, e.g. as a onehot vector.
« <EOS> token
« Can use cross-entropy loss for every timestep

« Character model vs vocabulary model:
— Pros character model :
« Much smaller class size (input/ouput vector length)
* You don’t need to worry about unknown words
— Pros vocabulary model
« Shorter sequences, easier to capture long term dependencies
» Less computationally expensive to train
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Machine translation

 RNN: Many-to-many (encoder-decoder)
* Tips which may help:
« Different W for the encoder and the decoder
* Concatenate the last hidden state of the encoder to all hidden state in the
decoder
* Inthe decoder, passin y, as x,4+1
 Reverse the order:
« ABC—» XY
« CBA—+>XY

rU
(eeee] [(eoee) ....]

Echt dicke Kiste :

Decoder
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CNN + RNN
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With RNN on top of CNN features,
you capture a larger time horizon

Long-term Recurrent Convolutional Networks for Visual Recognition

and Description



https://arxiv.org/abs/1411.4389
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A network can be both convolutional

and recurrent

« By simply changing the matrix
multiplications to convolutions

Learning Video Object Segmentation with Visual Memory

< o - (=)-7-c- -
; ‘ iy Motion 64 w
¥ network
tical fl

I
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(T(W;.Xf + U:hf_l).
U(Wrxt 5 Urht—l)~

tanh(Wx; + U(r; ©® hy—1)

(1 —z)hy—1 + Z{l-lt.

!

o(W!. xx! + UL «hl_,),
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https://arxiv.org/abs/1704.05737

