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About today
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Goals:

• Understand how to build a recurrent neural network

• Understand why long range dependencies is a challenge for recurrent 

neural networks
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Readings

• Video:

– cs231n: Lecture 10 | Recurrent Neural Networks

• Read:

– The Unreasonable Effectiveness of Recurrent Neural Networks

• Optional:

– Video: cs224d L8: Recurrent Neural Networks and Language Models

– Video: cs224d L9: Machine Translation and Advanced Recurrent LSTMs 

and GRUs
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https://www.youtube.com/watch?v=6niqTuYFZLQ&list=PLzUTmXVwsnXod6WNdg57Yc3zFx_f-RYsq&index=10
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://www.youtube.com/watch?v=Keqep_PKrY8&list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6&index=8
https://www.youtube.com/watch?v=QuELiw8tbx8&index=9&list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6


INF 5400

27.03.2019

• Overview (Feed forward and convolution neural networks)

• Vanilla Recurrent Neural Network (RNN)

• Input-output structure of RNN’s

• Training Recurrent Neural Networks 

• Simple examples

• Advanced models

• Advanced examples

Page 5

Progress
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Overview

• What have we learnt so far?

– Fully connected neural network

– Convolutional neural network

• What worked well with these?

– Fully connected neural network 

works well when the input data is 

structured 

– Convolutional neural network works 

well on images

• What does not work well?

– Processing data with unknown length
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Recurrent Neural Network (RNN)

• Takes a new input

• Manipulate the state

• Reuse weights

• Gives a new output
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𝑦𝑡

𝑥𝑡
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Recurrent Neural Network (RNN)

• Unrolled view

• 𝑥𝑡 : The input vector:

• ℎ𝑡: The hidden state of the RNN

• 𝑦𝑡 : The output vector:
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𝑦𝑡

𝑥𝑡
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Recurrent Neural Network (RNN)

• Recurrence formula:

– Input vector: 𝑥𝑡
– Hidden state vector: ℎ𝑡
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𝑦𝑡

𝑥𝑡

Note: We use the same function and parameters 

for very “time” step
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(Vanilla) Recurrent Neural Network

• Input vector: 𝑥𝑡
• Hidden state vector: ℎ𝑡
• Output vector: 𝑦𝑡
• Weight matrices: 𝑊ℎℎ, 𝑊ℎ𝑥 ,𝑊ℎ𝑦

General form:

ℎ𝑡 = 𝑓𝑤 ℎ𝑡−1, 𝑥𝑡

Vanilla RNN:

ℎ𝑡 = tanh 𝑊ℎℎℎ𝑡−1 +𝑊ℎ𝑥𝑥𝑡 + 𝑏

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡
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𝑦𝑡

𝑥𝑡
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RNN: Computational Graph
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RNN: Computational Graph

Page 18



INF 5400

27.03.2019

Example: Language model

• Task: Predicting the next character

• Training sequence: “hello”

• Vocabulary:

– [h, e, l, o]

• Encoding: Onehot
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RNN: Predicting the next character

• Vocabulary:

– [h, e, l, o]

• At test time, we can sample from the 

model to synthesis new text.  
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Progress
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Input-output structure of RNN’s

• One-to-one 

• one-to-many 

• many-to-one 

• Many-to-many

• many-to-many (encoder-decoder)
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RNN: One-to-one

Normal feed forward neural network
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RNN: One-to-many
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Task:

• Image Captioning 

– (Image    Sequence of words)
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RNN: Many-to-one 
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Tasks:

• Sentiment classification

• Video classification
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RNN: Many-to-many
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Task:

• Video classification on frame level
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RNN: Many-to-many (encoder-

decoder)
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Task:

• Machine Translation

(English    French)
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Training Recurrent Neural Networks 

• The challenge in training a recurrent neural network is to preserve long range 

dependencies.

• Vanilla recurrent neural network 

– ℎ𝑡 = 𝑓 𝑊ℎℎℎ𝑡−1 +𝑊ℎ𝑥𝑥𝑡 + 𝑏

– 𝑓 = 𝑟𝑒𝑙𝑢() can easily cause exploding values and/or gradients

– 𝑓 = tanh() can easily cause vanishing gradients, difficult to remember 

more than ~7 steps.

• Finite memory available
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Exploding or vanishing gradients

• tanh() solves the exploding value problem

• tanh() does NOT solve the exploding gradient problem, think of a scalar input 

and a scalar hidden state.

ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊ℎℎℎ𝑡−1 +𝑊ℎ𝑥𝑥𝑡 + 𝑏

𝜕ℎ𝑡
𝜕ℎ𝑡−1

= 1 − tanh2(𝑊ℎℎℎ𝑡−1 +𝑊ℎ𝑥𝑥𝑡 + 𝑏) ⋅ 𝑊ℎℎ

The gradient can explode/vanish exponentially in time (steps)

• If |𝑊ℎℎ| < 1, vanishing gradients

• If |𝑊ℎℎ| > 1, exploding gradients
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Exploding or vanishing gradients

• Conditions for vanishing and exploding gradients for the weight matrix, 𝑊ℎℎ:

– If largest singular value > 1: Exploding gradients

– If largest singular value < 1: Vanishing gradients
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“On the difficulty of training Recurrent Neural Networks, Pascanu et al. 2013
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Gradient clipping

• To avoid exploding gradients, a simple 

trick is to set a threshold of the norm of 

the gradient matrix, 
𝜕ℎ𝑡

𝜕ℎ𝑡−1
.

• Error surface of a single hidden unit RNN

• High curvature walls

• Solid lines: Standard gradient descent 

trajectories

• Dashed lines gradient rescaled to fixes 

size
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“On the difficulty of training Recurrent Neural Networks, Pascanu et al. 2013
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Vanishing gradients - “less of a 

problem”

• In contrast to feed-forward networks, RNNs will not stop learning in spite of 

vanishing gradients.

• The network gets “fresh” inputs each step, so the weights will be updated.

• The challenge is to learning long range dependencies. This can be improved 

using more advanced architectures.

• Output at time step t is mostly effected by the states with to time t.
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Initialization of the weights

• Potential initialization schemes for the transition matrices, 𝑊ℎℎ:

– Activation (tanh): 𝑉𝑎𝑟[𝑊𝑙] =
2

𝑛𝑙 + 𝑛𝑙+1

– Activation (tanh): 𝑉𝑎𝑟[𝑊𝑙] =
1

𝑛𝑙

– Activation (relu): Orthogonal matrix

– Activation (relu): Identity matrix

• Initial state, ℎ0:

– Initialize to zeros or random

– Note: We can learn the initial state by backpropagate into it.
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Some initialization schemes can help 

RNNs

• Identity initialization of state 

transition matrix, 𝑊ℎℎ:

– Initially no state change can 

be a good start

– Avoid exploding/vanishing 

gradients

– May be able to use ReLu

– The output should be the 

sum of the two values which 

have “mask” value of 1. 
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A Simple Way to Initialize Recurrent Networks of Rectified Linear Units 

https://arxiv.org/abs/1504.00941
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Backpropagation through time (BPTT)

• Training of a recurrent neural network is done using backpropagation and 

gradient descent algorithms

– To calculate gradients you have to keep your inputs in memory until you 

get the backpropagating gradient

– Then what if you are reading a book of 100 million characters?
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Truncated Backpropagation thought 

time

• The solution is that you stop at some point and update the weight as if you 

were done.
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Truncated Backpropagation thought 

time

• Advantages:

– Reducing the memory requirement

– Faster parameter updates

• Disadvantage:

– Not able to capture longer dependencies then the truncated length.
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What effect do you get from stopping 

the gradients?
• You are not guarantied to remember interactions longer than the number of 

steps.

• Say a text call a person Anna then much later refer to her as “she”

• A model with a lot of steps could directly learn to remember Anna.

• RNNs can in test time remember longer than the number of steps:

– You may have learned from earlier cases where “name” and “he/she” were 

much closer

– The model knows that it should save gender of the name
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A fun fix! Synthetic gradients

• Train a network to predict the gradients 

you would get if all steps were connected

• You can learn that if you see Anna in the 

state, you should expect gradients “asking 

for Anna” later

• This is of course not perfect since you 

don’t have all the coming information
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Decoupled Neural Interfaces using Synthetic Gradients

https://arxiv.org/abs/1608.05343
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Inputting Shakespeare

• Input a lot of text

• Try to predict the next character

• Learning spelling, quotes and 

punctuation.
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https://gist.github.com/karpathy/d4dee566867f8291f086

https://gist.github.com/karpathy/d4dee566867f8291f086
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Inputting Shakespeare

Page 50

https://gist.github.com/karpathy/d4dee566867f8291f086

https://gist.github.com/karpathy/d4dee566867f8291f086
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Inputting latex
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Inputting C code (linux kernel)
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Interpreting cell activations

• Semantic meaning of the hidden state vector
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Visualizing and Understanding Recurrent Networks

https://arxiv.org/abs/1506.02078
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Interpreting cell activations
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Visualizing and Understanding Recurrent Networks

https://arxiv.org/abs/1506.02078
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https://arxiv.org/abs/1506.02078
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Visualizing and Understanding Recurrent Networks

https://arxiv.org/abs/1506.02078
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Interpreting cell activations
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Visualizing and Understanding Recurrent Networks

https://arxiv.org/abs/1506.02078
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Progress
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Gated Recurrent Unit (GRU)

• A more advanced recurrent unit

• Uses gates to control information flow

• Used to improve long term dependencies
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Gated Recurrent Unit (GRU)
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Vanilla RNN

• Cell state ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏)

GRU

• Update gate Γ𝑢 = 𝜎(𝑊𝑢𝑥𝑡 + 𝑈𝑢ℎ𝑡−1 + 𝑏𝑢)

• Reset gate Γ𝑟 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)

• Candidate cell state ෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑥𝑡 + 𝑈(Γ𝑟∘ ℎ𝑡−1 + 𝑏)

• Final cell state ℎ𝑡 = Γ𝑢 ∘ ℎ𝑡−1 + 1 − Γ𝑢 ∘ ෨ℎ𝑡

GRU has the ability to adding and removing to the state, not “transforming the 

state” only.

With Γ𝑟 as ones and Γ𝑢 as zeros, GRU ՜ Vanilla RNN 
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Gated Recurrent Unit (GRU)

• Update gate Γ𝑢 = 𝜎(𝑊𝑢𝑥𝑡 + 𝑈𝑢ℎ𝑡−1 + 𝑏𝑢)

• Reset gate Γ𝑟 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)

• Candidate cell state ෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑥𝑡 + 𝑈(Γ𝑟∘ ℎ𝑡−1 + 𝑏)

• Final cell state ℎ𝑡 = Γ𝑢 ∘ ℎ𝑡−1 + 1 − Γ𝑢 ∘ ෨ℎ𝑡
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Summary:

• The update gate , Γ𝑢, can easily be close to 1 due to the sigmoid activation 

function. Copying the previous hidden state will prevent vanishing gradients.

• With Γ𝑢 = 0 and Γ𝑟 = 0 the GRU unit can forget the past.

• In a standard RNN, we are transforming the hidden state regardless of how 

useful the input is.
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Long Short Term Memory (LSTM)

(for reference only)
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GRU LSTM

Update gate Γ𝑢 = 𝜎(𝑊𝑢𝑥𝑡 + 𝑈𝑢ℎ𝑡−1 + 𝑏𝑢) Forget gate Γ𝑓 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓 ℎ𝑡−1 + 𝑏𝑓)

Reset gate Γ𝑟 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) Input gate Γ𝑖 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖 ℎ𝑡−1 + 𝑏𝑖)

Output gate Γ𝑜 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)

Candidate cell 

state

෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑥𝑡 + 𝑈(Γ𝑟∘ ℎ𝑡−1 + 𝑏) Potential cell memory ǁ𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐 ℎ𝑡−1 + 𝑏𝑐)

Final cell state ℎ𝑡 = Γ𝑢 ∘ ℎ𝑡−1 + 1 − Γ𝑢 ∘ ෨ℎ𝑡 Final cell memory 𝑐𝑡 = Γ𝑓 ∘ 𝑐𝑡−1 + Γ𝑖 ∘ ǁ𝑐𝑡

Final cell state ℎ𝑡 = Γ𝑜 ∘ tanh(𝑐𝑡)

LSTM training

• One can initialize the biases of the forget 

gate such that the values in the forget gate 

are close to one. 
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Multi-layer Recurrent Neural Networks

• Multi-layer RNNs can be used to enhance 

model complexity 

• Similar as for feed forward neural networks, 

stacking layers creates higher level feature 

representation

• Normally, 2 or 3 layer deep, not as deep as 

conv nets

• More complex relationships in time
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Bidirectional recurrent neural network

• The blocks can be vanilla, LSTM and GRU recurrent units

• Real time vs post processing
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ℎ𝑡 = 𝑓 𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡−1

ℎ𝑡 = 𝑓 𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡+1

ℎ𝑡 = ℎ𝑡 , ℎ𝑡

𝑦𝑡 = 𝑔(𝑊ℎ𝑦ℎ𝑡 + 𝑏)
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Bidirectional recurrent neural network

• Example: 

– Task: Is the word part of a person’s name?

– Text 1: He said, “Teddy bear are on sale!”

– Text 2: He said, “Teddy Roosevelt was a great President!”
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ℎ𝑡 = 𝑓 𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡−1

ℎ𝑡 = 𝑓 𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡+1

ℎ𝑡 = ℎ𝑡, ℎ𝑡

𝑦𝑡 = 𝑔(𝑊ℎ𝑦ℎ𝑡 + 𝑏)
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Progress
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Image Captioning

• Combining text RNN with image CNN

• Learning RNN to interpret top features from CNN
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Deep Visual-Semantic Alignments for Generating Image Descriptions

https://cs.stanford.edu/people/karpathy/cvpr2015.pdf
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Image Captioning
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Image Captioning
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Image Captioning
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Image Captioning: Results

Page 75

NeuralTalk2

https://github.com/karpathy/neuraltalk2
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Image Captioning: Failures 
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NeuralTalk2

https://github.com/karpathy/neuraltalk2
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Generating images

• Input top and left pixel to predict a new pixel.

• Fill in holes.
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Machine translation

• Example: 

– German to English:

– “Echt dicke Kiste” to “Awesome sauce”

• Tokenize each word/character, e.g. as a onehot vector.

• <EOS> token

• Can use cross-entropy loss for every timestep

• Character model vs vocabulary model:

– Pros character model : 

• Much smaller class size (input/ouput vector length)

• You don’t need to worry about unknown words

– Pros vocabulary model

• Shorter sequences, easier to capture long term dependencies

• Less computationally expensive to train
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Machine translation

Page 79

• RNN: Many-to-many (encoder-decoder)

• Tips which may help:

• Different 𝑊 for the encoder and the decoder

• Concatenate the last hidden state of the encoder to all hidden state in the 

decoder 

• In the decoder, pass in 𝑦𝑛 as 𝑥𝑛+1
• Reverse the order:

• ABC     XY

• CBA     XY

Encoder

Decoder
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CNN + RNN

• With RNN on top of CNN features, 

you capture a larger time horizon
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Long-term Recurrent Convolutional Networks for Visual Recognition 

and Description

https://arxiv.org/abs/1411.4389
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A network can be both convolutional 

and recurrent

• By simply changing the matrix 

multiplications to convolutions
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Learning Video Object Segmentation with Visual Memory

https://arxiv.org/abs/1704.05737

