
INF5400 — MACHINE LEARNING FOR IMAGE ANALYSIS

DEPARTMENT OF INFORMATICS, UNIVERSITY OF OSLO

2019

Exercise week 12: Unsupervised
learning

In this exercise, you are to implement autoencoders, a variational autoencoder, and
t-SNE in PyTorch.

This assignment text will tell you what to do, but not how to do it. If you are
stuck, you can look at the accompanying solution proposal. If you want, you can of
course experiment by changing configurations, the ones specified here are known
to work, but are probably far from ideal.

Task 1: Autoencoders

In this task, you should implement a basic autoencoder, and test it out on MNIST
images. You should implement three versions, a “compression autoencoder”, a “de-
noising autoencoder”, and a “sparse autoencoder” (see the lecture slides 1) All vari-
ants can share the same configurations and network architecture, and differs only
in their particularities.

The network consist of four fully-connected layers: 784 nodes in the input layer
(784 = 28×28, which is the spatial dimension of MNIST images), 128 nodes in the
first hidden layer of the encoder, 32 nodes in the coding layer (or latent layer), 128
nodes in the first hidden layer of the decoder, and 784 nodes in the output layer. You
can use sigmoid activation functions on all layers (including the last).

For the reconstruction loss, you can use the mean squared error between the
network output and the network input. Use the Adam optimization method with a
learning rate of 0.01, and train the network for 50 epochs (this should be sufficient)

1https://www.uio.no/studier/emner/matnat/ifi/IN5400/v19/material/week12/slides_
in5400_s19_week12.pdf

1

https://www.uio.no/studier/emner/matnat/ifi/IN5400/v19/material/week12/slides_in5400_s19_week12.pdf
https://www.uio.no/studier/emner/matnat/ifi/IN5400/v19/material/week12/slides_in5400_s19_week12.pdf


using a batch size of 256. Also, remember to store checkpoints of the training pro-
gression as you should run inference on trained models.

Task 1.1: Compression autoencoder

Implement a compression autoencoder. A compression autoencoder has the char-
acteristic bottleneck structure, and is what was explained above.

Task 1.2: Denoising autoencoder

Use your autoencoder to denoise images. You can use the same implementation as
in the compression autoencoder, only that you add some noise to the input exam-
ples, and compare the reconstructed images with the corresponding images without
noise. For generating noisy images, you could sample random vectors of the same
size as the input image, and add them to the the input image. Normal distributed
with a mean of 0 and standard deviation of 0.2 is sufficient for this demonstration
(assuming the values of the input images has been scaled to be in the range of 0 to
1).

Task 1.3: Sparse autoencoder

Implement the sparse autoencoder version. For this, you need to add an additional
regularizer to the cost function, otherwise the network should be the same. For the
sparsity (ρ in the lecture slides) you can use a value of 0.01.

Task 2: Variational autoencoder

Implement a variational autoencoder. You can reuse most of the code used for the
standard autoencoders. Remember that the encoder is used to produce the mean
and standard deviation of a standard normal distribution.

As in the autoencoder, we use a simple fully connected network. The encoder
should have 784 nodes in the input layer, 128 nodes in the first hidden layer, and
64 nodes in the second hidden layer. In the latent layer, use 10 nodes for the mean
vector and 10 nodes for the standard deviation vector. Sample a vector of size 10
from a standard normal distribution, and use it together with the mean and standard
deviation from the latent layer. This random vector of size 10 is then the input to
the first hidden layer of the decoder. Use 64 nodes for the first hidden layer of the
decoder, 128 nodes for the second hidden layer in the decoder, and 784 nodes for the
output layer of the encoder. Use relu activations everywhere, except for the latent
layer where you use the identity function, and the final layer of the decoder where
you use the sigmoid activation.

For the reconstruction loss, you can use the mean of the pixelwise cross entropy
between the network output and the network input. For the regularising latent loss,
you can use a regularisation strength of 0.001, so that loss = reconstruction_loss
+ 0.001 * latent_loss. Use the Adam optimisation method with a learning rate

2



of 0.0001, and train the network for 50 epochs using a batch size of 128. Try to use
a trained variational autoencoder to reconstruct the input (as with the standard au-
toencoders), generate new examples, and interpolate between examples.

Task 3: t-SNE

Implement t-SNE and apply it on a subset of MNIST. Below follows a brief walk-
through with pseudocode. First, load some MNIST images

1 data_loader = torch . utils .data. DataLoader (
2 torchvision . datasets . MNIST (
3 data_path , # TODO: Specify num_images
4 train =True ,
5 download =True ,
6 transform = torchvision . transforms . Compose ([ torchvision . transforms .

ToTensor () ]) ,
7 ),
8 batch_size = num_images , # TODO: Specify num_images
9 shuffle =False ,

10 )
11 images , labels = next(iter( data_loader ))
12 images = images .view (-1, 28 * 28)

Then, initialise the set of map points (the 2D points corresponding to the input im-
ages) at random. Note that these are the variables that are updated each iteration of
the method.

1 map_points = torch . randn (
2 num_images , # TODO: Specify num_images (same as above )
3 2,
4 device =device , # TODO: Specify device , normally ’cpu ’ or ’cuda :0’
5 dtype = torch .float ,
6 requires_grad =True ,
7 )

Then, simply run the method as long as you like (num_iterations).

1 for iteration in range (1, num_iterations + 1): # TODO: Specify num_iterations
2 p_ij = symmetric_gauss_neighbour_probability () # TODO: Implement this
3 q_ij = symmetric_student_t_neighbour_probability () # TODO: Implement this
4 loss = (p_ij * (p_ij/q_ij).log ()).sum ()
5 loss. backward ()
6
7 with torch . no_grad ():
8 map_points -= learning_rate * map_points .grad # TODO: Specify

learning_rate
9 map_points .grad. zero_ ()

Task 3.1: Implement t-SNE

Implement the functions computing p_ij and q_ij. For simplicity, use a fixed σi =
σ for all datapoints. (Implementing binary search to find an appropriate σi is a bit

3



cumbersome and is not the main focus of this exercise, but if you have time, you can
of course try to implement it.)

Test your implementation with 1000 images, a learning rate of 10, and a fixed
σ = 10. See tsne_sgd_animation.gif at the materials page for week 12 for an
illustration of the first 700 steps.

Task 3.2: Substitute optimisation method

Substitute the stochastic gradient descent update with an Adam optimizer, and test
it with a learning rate of 0.1 (feel free to use the pattern optimizer = torch.optim.Adam([map_points],
lr=learning_rate)). See tsne_adam_animation.gif at the materials page for
week 12 for an illustration of the first 700 steps.

4


