
unsupervised learning
IN5400 — Machine Learning for Image Analysis

Ole-Johan Skrede
03.04.2019

University of Oslo

Messages

∙ Mandatory 2 is ready soon (some technical difficulties)
∙ Exercise for this week is ready before tomorrow

1

Outline

∙ Introduction and motivation
∙ Repetition / background

∙ K nearest neighbours, k-means clustering
∙ Principal component analysis
∙ Independent component analysis

∙ t-SNE
∙ Autoencoders, variational autoencoders

2

introduction and motivation

Supervised learning

∙ Given a training set with pairs of inputs x and corresponding desired outputs y

Ωtrain = {(x(1), y(1)), . . . , (x(m), y(m))}

∙ Create a function f that “approximates” this mapping

f(x) ≈ y, ∀(x, y) ∈ Ωtrain

∙ Hope that this generalises well to unseen examples, such that

f(x) = ŷ ≈ y, ∀(x, y) ∈ Ωtest

where Ωtest is a set of relevant unseen examples.
∙ Hope that this is also true for all unseen relevant examples.

4

Unsupervised learning

∙ In contrast with supervised learning, we have no labeled data points in unsupervised
learning.

∙ Since there is no “ground truth”, there is no accuracy evaluation in the supervised
sense.

∙ Applications
∙ Data clustering
∙ Anomaly detection
∙ Signal generation
∙ Signal compression

5

Semi-supervised learning

∙ We have some labeled data
∙ Usually a majority of unlabeled data
∙ Can be thought of as supervised learning extended to utilise unlabeled data
∙ Will not be covered today

6

Methods

What we will cover today
∙ K-means clustering (background)
∙ Principal component analysis (PCA)
(background)

∙ t-SNE
∙ Autoencoders
∙ Variational autoencoders

What we will not cover today
∙ Independent component analysis (ICA)
∙ Matrix factorization and decomposition
∙ Expectation-maximization (EM)
algorithm

∙ Generative-adverserial networks (GAN)
(next lecture)

7

clustering

Data clustering

∙ Grouping together data based on some similarity metric
∙ Data points within the same group (cluster) will be more similar to each other than
to data points outside the group

∙ Many different versions of clustering

9

Connectivity-based clustering

∙ Also called hierarchical clustering
∙ See figures for example with the L2

distance metric measured from cluster
centroides

∙ Different level thresholds yields
different clusters

Figure 1: Raw data

Figure 2: Bottom up (agglomerative) hierarchy of clusters

10

Graph clustering — cliques

∙ A clique is a set of nodes
∙ A node in a clique shares an edge with
all other nodes in the clique

∙ Can have cliques of different sizes
∙ Useful in areas such as random fields

Figure 3: Undirected graph Figure 4: Top: Cliques with 2 members. Bottom: Cliques with 3 members. Nodes with
multiple colors belong to more than one clique.

11

Centroid-based clustering

∙ Clusters are represented by a central vector
∙ Example: K-means clustering

12

K-means clustering

∙ Conseptually simple clustering algorithm
∙ We want to partition a set of data {x(1), x(2), . . . , x(m)} into k clusters.
∙ x(i) ∈ Rn, i = 1, . . . ,m

∙ With some distance norm || · || the procedure is
1. Initialize at random k cluster centroids (or means) µj ∈ Rn, j = 1, . . . , k
2. Repeat until convergence

2.1 Assign every example x(i), i = 1, . . . ,m with the label of the nearest cluster centroid

c(i) = arg min
j

||x(i) − µj ||.

2.2 Update the position of every centroid µj , j = 1, . . . , k to the centroid of the cluster of points
with its label

µj =

∑m
i=1 I[c

(i) = j]x(i)∑m
i=1 I[c

(i) = j]
,

where the Iverson bracket is defined as

I[a = b] =

{
1, if a = b,

0, if a ̸= b
.

13

K-means clustering — properties

∙ Minimizes the objective function

J(c, µ) =
m∑
i=1

||x(i) − µc(i) ||

∙ Not guaranteed to find a global minimum
∙ Common to run the algorighm several times with different initializations, and then
pick the run with the smallest value of J

∙ The k-means clustering algorithm partitions the feature space into Voronoi cells

14

K-means clustering — example

Figure 5: A: Initialize centroids. B: Assign points to clusters. C: Move centroids. D, E, F: Assign points to clusters and move centroids. No change after F (convergence).
15

pca

Principal Component Analysis (PCA)

∙ Reducing the dimensionality of a dataset of correlated variables
∙ Retaining as much as possible of the variance present in the dataset

Figure 6: Representing 2D data as 1D

17

PCA — derivation outline

∙ Let X ∈ Rnd be a random vector
∙ We are looking for a set of uncorrelated variables Yk which we will call the principal
components of X

∙ The first component, Y1, will account for most of the variance in X

∙ The second component, Y2, will account for most of the variance in X , conditionied
on being uncorrelated with Y1

∙ The third component, Y3, will account for most of the variance in X , conditioned on
being uncorrelated with both Y1 and Y2

∙ We continue untill we have np << nd principal components that account for most of
the variance in X

18

PCA — first principal component

∙ Let Y1 ∈ R be some linear combination of the elements in X

Y1 =

Nd∑
i=1

a1iXi = a⊺1X,

∙ This random variable has variance

V ar[Y1] = V ar[a⊺1X] = a⊺1Σa1.

∙ Here, Σ is the covariance matrix of X with elements

Σij = Cov(Xi, Xj)

∙ We want to maximize the variance of Y1

∙ In order to achieve finite solutions, we constrain the optimization on

a⊺1a1 = 1

∙ It turns out that, for k = 1, . . . , np, ak well be an eigenvector of Σ corresponding to
the kth largest eigenvalue λk

19

PCA — estimating the covariance matrix

∙ For a dataset with ns samples {xi1, . . . , xins} for all features i = 1, . . . , nd, the
elements in the covariance matrix can be estimated as

Σ̂ij =
1

ns − 1

ns∑
q=1

(xiq − µ̂i)(xjq − µ̂j),

∙ Here µ̂i is the sample mean of the ith feature

µ̂i =
1

ns

ns∑
q=1

xiq

∙ Arranginging the feature samples and sample means into vectors of size nd

xq = [x1q, . . . , xndq]
⊺

µ̂ = [µ̂1, . . . , µ̂nd
]
⊺

∙ With this, the estimate of the covariance matrix can be written as

Σ̂ =
1

ns − 1

ns∑
q=1

(xq − µ̂)(xq − µ̂)
⊺
.

20

PCA — Optimizing the variance

∙ We use the technique of Lagrangian multipliers to incorporate the unit length
constraint

∙ This means that we are going to maximize the expression

J(a1) = a⊺1Σa1 − λ(a⊺1a1 − 1).

∙ Computing the gradient of J w.r.t. a1, and setting it equal to zero, yields

Σa1 − λa1 = 0,

or
(Σ− λI)a1 = 0,

where I is the nd × nd identity matrix.

21

PCA — Optimizing the variance

∙ From our last expression
(Σ− λI)a1 = 0,

we see that λ is an eigenvalue of Σ, and a1 is the corresponding eigenvector.
∙ Furthermore, λ is the largest eigenvalue
∙ This is because maximizing the variance subject to the constraint of unit length
coefficients is equivalent to choosing the largest eigenvalue

a⊺1Σa1 = a⊺1λa1

= λa⊺1a1

= λ.

∙ In general, the kth principal component of X is

a⊺kX

where ak is the eigenvector of the covariance matrix Σ of X , corresponding to the
kth largest eigenvalue λk

22

PCA — Applications

∙ Dimensionality reduction
∙ Preprocessing in supervised learning: acts as a regularizer
∙ Noise reduction

23

Problems with image data

24

MNIST clustering with PCA

Explains about 26% of the variance. Not very suited.

(a) Original (b) Reconstructed

25

t-sne

Stochastic Neighbour Embedding (SNE)

∙ Precursor to t-SNE (t-distributed Stochastic Neighbour Embedding)
∙ Introduced by Geoffrey Hinton and Sam Roweis in 2003 1

∙ A stochastic dimensionality reduction method
∙ Transforms high-dimensional (HD) data points to low-dimensional (LD) data points
∙ Aims to preserve neighbourhood relationship between data points
∙ Similar (close) HD points should also be similar (close) in the LD representation

1http://papers.nips.cc/paper/2276-stochastic-neighbor-embedding.pdf
27

http://papers.nips.cc/paper/2276-stochastic-neighbor-embedding.pdf

SNE — overview

∙ The high-dimensional points have some dimension h

∙ The low-dimensional points have some desired predetermined dimension l << h

∙ For each point i, we are going to define two distributions:
∙ Pi(xj): Describes the probability that point j is the “neighbour” of point i, given its
location xi

∙ Qi(yj): Describes the probability that point j is the “neighbour” of point i, given its
location yi

∙ We are then going to define a similarity measure between these distributions
∙ The low-dimensional representations will be altered such as to minimize this
distribution similarity

28

SNE — high-dimension neighbour probability

∙ Let X be a h-dimensional random variable (RV) modelling a HD point
∙ Let S be a h-dimensional RV that is modelling a neighbour of X
∙ Given that X = xi, we want the probability that S is a neighbour of X to be
proportional to the Gaussian of the euclidian distance between the two

Pr(S = s|X = xi) =
1

ci

1√
2πσ2

i

exp
{
−||x− s||2

2σ2
i

}
where ci is a constant

∙ We define Pr(S = xi|X = xi) = 0

∙ We also want it to be a probability, so if we sum over all possible neighbours z ̸= xi∑
z ̸=xi

Pr(S = z|X = xi) = 1

∙ We end up with

Pr(S = s|X = xi) =
exp

{
− ||xi−s||2

2σ2
i

}
∑

z ̸=xi
exp

{
− ||xi−z||2

2σ2
i

}
29

SNE — high-dimension neighbour probability, notation

∙ The probability mass function that describes the probability that some neighbour S
of X is located at s given that X is located at xi is

Pi(s) := Pr(S = s|X = xi)

:=
exp

{
− ||xi−s||2

2σ2
i

}
∑

z ̸=xi
exp

{
− ||xi−z||2

2σ2
i

}
∙ Given a concrete set of points {x1, x2, . . . , xn}
∙ The probability that j is a neighbour of i, given that i is located at xi is then

pj|i :=
exp

{
− ||xi−xj ||2

2σ2
i

}
∑

k ̸=i exp
{
− ||xi−xk||2

2σ2
i

}

30

SNE — scaling parameter

∙ The scaling parameter σx can be set manually
∙ We want a larger σx in sparse areas
∙ We want a smaller σx in dense areas

31

SNE — perplexity

∙ σ is often found with binary search such that the perplexity equals k, which is
determined manually

∙ The perplexity of the distribution Pi is given by

Perp(Pi) = 2H(Pi)

where the Shannon entropy is given by

H(Pi) = −
∑
j

pj|i log2 pj|i

∙ Perplexity can be interpreted as a measure of how many neighbours we want to
influence a point

∙ Typical values are between 5 and 50
∙ See e.g. https://distill.pub/2016/misread-tsne/ how to interpret t-SNE
results

32

https://distill.pub/2016/misread-tsne/

SNE — low-dimension neighbour probability

∙ Let Y be a l-dimensional RV modelling a LD point
∙ Let T be a l-dimensional RV that is modelling a neighbour of Y
∙ Y are the lower-dimensional data points corresponding to X , so l << h

∙ Similarly to HD, we choose a Gaussian neighbourhood, but with fixed variance
σ2 = 1/2

Pr(T = t|Y = yi) =
exp

{
−||yi − t||2

}∑
z ̸=yi

exp {−||yi − z||2}

33

SNE — low-dimension neighbour probability, notation

∙ For every HD point xi, we have a corresponding LD point yi
∙ The probability mass function that describes the probability that some neighbour T
of Y is located at t given that Y is located at yi is

Qi(s) := Pr(T = t|Y = yi)

:=
exp

{
−||y − t||2

}∑
z ̸=xi

exp {−||yi − z||2}

∙ Given a concrete set of points {y1, y2, . . . , yn}
∙ The probability that j is a neighbour of i, given that i is located at yi is then

qj|i :=
exp

{
−||yi − yj ||2

}∑
k ̸=i exp {−||yi − yk||2}

∙ The goal is to place yi such that the LD distribution qj|i is similar to the HD

distribution pj|i

∙ We need a similarity metric, and a way to optimize it
34

Repetition: Kullback-Leibler divergence

∙ The Kullback-Liebler divergence over a discrete random variable X

DKL(pX ||qX) =
∑
x

pX(x) log pX(x)

qX(x)

∙ Measures the distance between two probability distributions pX and qX over the
same set of events, modeled with the random variable X .

∙ Expectation of logarithmic difference between p and q when expectation is taken
w.r.t. p.

∙ Measures the amount of information that is lost when using q to approximate p.
∙ It is non-negative
∙ Zero for p = q

∙ Increasing for “increasing difference” between p and q.

35

SNE — distribution similarity measure

∙ We want to measure the similarity between Pi and Qi, for all points i
∙ This is done by summing the KL-divergence between the original (Pi) and the
“induced” (Qi) distributions over all points

C =
∑
i

DKL(Pi||Qi)

=
∑
i

∑
j

pj|i log
pj|i

qj|i

∙ Large cost of confusing a small distance in the high-dimensional space with a large
distance in the low-dimensional space (small pj|i and large qj|i)

∙ Larger cost of confusing a large distance in the high-dimensional space with a small
distance in the low-dimensional space (large pj|i and small qj|i)

36

SNE — discussion

∙ The cost can be minimized with stochastic gradient descent
∙ Note that we are minimizing w.r.t. the LD points {y1, . . . , yn} corresponding to the
known HD points {x1, . . . , xn}

∙ Keeps nearby points in HD nearby in LD

∙ Also keeps distant points in HD relatively far apart in LD

∙ Drawback: Can be difficult to optimize
∙ Drawback: Tendency to crowd LD representations at the center of the map
(“crowding problem”)

37

t-distributed Stochastic Neighbour Embedding (t-SNE)

∙ A variant of the SNE method
∙ Introduced by Laurens van der Maaten and Geoffrey Hinton in 2008 2

∙ An improvemet over SNE
∙ Much easier to optimize
∙ Significantly better visualization

∙ Two major differences between t-SNE and SNE
∙ Symmetric Gaussian point similarity distribution for the HD data points
∙ Student-t point similarity distribution for the LD map points

2https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
38

https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf

Symmetric SNE

∙ Standard SNE use a sum over the KL-divergence between asymmetric conditional
probability distributions

C =
∑
i

DKL(Pi||Qi)

∙ Because of this, different types of errors in the pairwise distances in the map are
weighted differently

∙ In particular
∙ The cost of representing distant data points as close map points is smaller than
∙ The cost of representing close data points as distant map points

∙ A symmetric cost could ease optimization, and leviate the crowding problem

39

Symmetric SNE

∙ In stead, we could use the KL-divergence between symmetric joint probability
distributions

C = DKL(P ||Q)

=
∑
i

∑
j

pij log pij
qij

∙ The joint probability pij over all points Xi and their neighbours Xj is

pij = Pr(Xi = xi, Xj = xj)

∙ Again, we define pii = 0, and require that the sum over the entire possibility space (a
point and its neighbours for all points) is 1

∙ With the same Gaussian neighbourhoods as in SNE, we get

pij =
exp

{
− ||xi−xj ||2

2σ2
i

}
∑

k

∑
l ̸=k exp

{
− ||xk−xl||2

2σ2
k

}
40

Symmetric SNE

∙ Similarly, for the LD points

qij = Pr(Yi = yi, Yj = yj)

=
exp

{
− ||yi−yj ||2

2σ2
i

}
∑

k

∑
l ̸=k exp

{
− ||yk−yl||2

2σ2
k

}
∙ Note that pij = pji and qij = qji

∙ Note that this is not what is used in t-SNE, we will come back to that in two slides
∙ This is just motivation

41

Symmetric SNE — high-dimensional space

∙ We suggested a symmetric, joint probability

pij =
exp

{
− ||xi−xj ||2

2σ2
i

}
∑

k

∑
l ̸=k exp

{
− ||xk−xl||2

2σ2
k

}
∙ The problem is that for an outlier xi, ||xi − xj || will be very large (and pij very small)
for all points

∙ The placement of the corresponding point yi will have very little effect on the cost

C =
∑
i

∑
j

pij log pij
qij

∙ We can fix this by simply using our previous conditional probabilities as

pij =
pj|i + pi|j

2n

where n is the number of data points
∙ With this, we ensure that

∑
j pij > 1/(2n) for all data points xi

∙ Hence, all points xi are guaranteed to make significant contributions to the cost
42

t-SNE — Crowding problem

∙ Standard SNE (and other similar methods) suffer from what is known as the
crowding problem

∙ Too many map points are placed near the center of the map
∙ This can be leviated by forcing moderately distant data points to be placed far apart

43

t-SNE — Low-dimensional space pairwise distribution

∙ To mitigate the crowding problem, we want to give more weight to representing
moderately distant data points as close map points

∙ The Student-t distribution with one degree of freedom is used

qij =

(
1 + ||yi − yj ||2

)−1∑
k ̸=l (1 + ||yk − yl||2)−1

∙ Notice that it is symmetric qij = qji

∙ The Student-t distribution has a much heavier tail than the Gaussian distribution
∙ Moderate distances in the HD data space are then represented by larger distances
in the LD map space

44

autoencoders

Autoencoders — introduction

∙ An autoencoder is a neural network which purpose is to discover interesting
representations of data

∙ The idea is to create identity mappings, that is, functions f such that f(x) ≈ x for
some input x

∙ It is able to discover interesting representations by enforcing constraints on the
network

∙ The method requires no labeled data, and is therefore unsupervised

46

Autoencoders — introduction

∙ An autoencoder consist of an encoder g and an decoder h
∙ The encoder maps the input x to some representation z

g : x 7→ z

∙ The decoder maps this representation z to some output x̂

h : z 7→ x̂

∙ We want to train the encoder and decoder such that

f(x) = h(g(x))

= h(z)

= x̂

≈ x̂

47

Autoencoders — variants

∙ Different network constraints leads to different representations z
∙ Compression autoencoder

∙ If x has dx dimensions and z has dz dimensions, and dx > dz

∙ Most common way of constraining the network
∙ Denoising autoencoder

∙ Distorting the input x with some random noise
∙ Leads to robust representations, resiliant to corrupted input

∙ Sparse autoencoder
∙ z can actually have a greater dimension than x

∙ Only allowing a subset of the hidden units to fire at the same time

48

Compression autoencoder — MNIST example

∙ Encoder:
∙ Input -> first hidden layer: fully connected 784 -> 128, relu
∙ 1. hidden -> 2. hidden: fully connected, 128 -> 32, relu

∙ Decoder:
∙ 2.hidden -> 3. hidden: fully connected 32 -> 128, relu
∙ 3. hidden -> output: fully connected, 128 -> 784, sigmoid

49

Compression autoencoder — MNIST example

(a) Original (b) Reconstructed
50

Denoising encoder

∙ Same set-up as in a compression autoencoder
∙ Add noise to the input
∙ Compare the reconstruction to the input without noise

51

Denoising autoencoder — MNIST example

Same setup as for the compression autoencoder. Zero mean Gaussian noise with
standard deviation 0.1 is added to the input. The input values are clipped to lay in [0, 1].

(a) Original (b) Reconstructed

52

Sparse autoencoder

∙ We want to constrain the number of active nodes in the coding layer
∙ We can think of a node being active (or firing) if is

∙ close to 1 for the sigmoid tanh activation functions
∙ We can think of a node being inactive

∙ close to 0 for the sigmoid activation function
∙ close to -1 for the tanh activation function

∙ We would like to constrain the nodes to be inactive most of the time

53

Sparse autoencoder

∙ Let a[c]j (x(i)) be the activation in node j in the coding layer [c] given an input x(i) to
the network

∙ Then, activation for this node averaged over all m input examples is

ρ̂ =
1

m

m∑
i=1

a
[c]
j (x(i))

∙ We would like to limit this average activation by enforcing the constraint

ρ̂ = ρ

for some predetermined sparsity parameter ρ
∙ Choosing a small ρ (e.g. 0.1) forces the activations to be small

54

Sparse autoencoder

∙ The way we enforce this constraint is to regularize the loss function

L = Lreconstruction + βLsparsity

with some regularization strength β ∈ R.
∙ We are going to use the KL-divergence between the distributions p and qj summed
over the entire latent layer as our sparsity loss

Lsparsity =

n[c]∑
j=1

DKL(p||qj)

where n[c] is the number of nodes in layer [c]
∙ p will be a Bernoulli distribution with mean ρ for a node j

∙ qj will be a Bernoulli distribution with mean ρ̂j for a node j

∙ The Bernoulli distribution describes the probability of an event with two outcomes
(e.g. coin toss)

∙ In our case p will represent a node being active with probability ρ, and qj a node
being active with probability ρ̂j 55

Sparse autoencoder

In this case, the KL divergence for a single node j is

DKL(p||qj) =
∑

p(x) log p(x)

qj(x)

=
∑

p(x) log p(x)−
∑

p(x) log qj(x)

The support of the distributions is only two outcomes x ∈ {0, 1}, and the pmf is

p(x) =

{
(1− ρ), x = 0 (the node is inactive)
ρ, x = 1 (the node is active)

and conversely for qj(x). With this, our KL divergence is simply

DKL(p||qj) = ρ log ρ+ (1− ρ) log(1− ρ)− [ρ log ρ̂+ (1− ρ) log(1− ρ̂j)]

= ρ log ρ

ρ̂j
+ (1− ρ) log (1− ρ)

(1− ρ̂j)
.

56

Sparse autoencoder

∙ With this, we get our final loss

L = Lreconstruction + β

n[c]∑
j=1

ρ log ρ

ρ̂j
+ (1− ρ) log (1− ρ)

(1− ρ̂j)

∙ Remember that ρ̂j is the jth component of ρ̂ = 1
m

∑m
i=1 a

[c]
j (x(i))

∙ This means that we need to average over all examples to compute ρ̂

∙ This means that we have to encode all said examples
∙ In practice, with batch optimization, we average over all examples in a batch

57

Sparse autoencoder — MNIST example

(a) Original (b) Reconstructed
58

variational autoencoders

Introduction

∙ Popular method for signal generation (images, sound, language, etc.)
∙ Creating completely new signals
∙ Or altering existing data
∙ Especially powerful when you want to alter your data in a specific way, not just
randomly

60

Problems with autoencoders for signal generation

∙ An autoencoder works great if you want to reconstruct a
replica of the input

∙ Not well suited for generating new signal
∙ The reason for this is an “unintuitive” latent variable
space

∙ The latent space might be discontinuous
∙ Random sampling from an “unseen” region of the latent
space produces unpredictable results

∙ No reasonable way to interpolate between categories in
the latent space

61

Variational autoencoders

∙ A variational autoencoder is designed to have a
continuous latent space

∙ This makes them ideal for random sampling and
interpolation

∙ It achieve this by forcing the encoder g to generate
Gaussian representations, z ∼ N (µ, σ2)

∙ More precisely, for one input, the encoder generates a
mean µ and a variance σ2

∙ We then sample a zero-mean, unit-variance Gaussian
z̃ ∼ N (0, 1)

∙ Construct the input z to the decoder from this

z = µ+ z̃ · σ

∙ With this, z is sampled from q = N (µ, σ2)
62

Intuition

∙ This is a stochastic sampling
∙ That is, we can sample different z from the same set of
(µ, σ2)

∙ The intuition is that the decoder “learns” that for a given
input x:

∙ the point z is important for reconstruction
∙ but also a neighbourhood of z

∙ In this way, we have smoothed the latent space, at least
locally

63

Problem

∙ No restriction on µ or σ2

∙ Realisticly, clusters of different classes can be placed far apart
∙ Leaves “empty space” in between with unknown sampling features

64

Guiding the generative distribution

∙ We can guide the solutions by restricting the generative distribution q

∙ We do this by making it approximate some distribution p

∙ In that way, the latent vectors, even for different categories, will be relatively close
∙ The desired distribution used in variational autoencoders is the standard normal
p = N (0, 1)

∙ We use the familiar KL-divergence between the desired and the generated
distribution as a regularizer in the loss function

∙ With this, the total loss for an example xi is something like

L(xi) = ||x(i) − f(x(i))||+DKL(p||qµi,σi)

∙ That is, the sum of what we call the reconstruction loss and the latent loss
∙ The latent loss for a single input x(i) can be shown to be equal to

DKL(p||qµi,σi
) =

1

2
(µ2

i + σ2
i − logσ2

i − 1)

65

KL Divergence between Gaussian distributions

For reference, I will spend some slide deriving the KL Divergence between two Gaussian
distributions p = N (µp, σ

2
p) and q = N (µq, σ

2
q).

We are going to derive it for the continuous case, where the KL-Divergence can be
expressed as

DKL(p||q) =
∫

p(x) log p(x)

q(x)
dx

=

∫
p(x) log p(x)dx−

∫
p(x) log q(x)dx

We will derive the two terms in the last line seperately

66

KL Divergence between Gaussian distributions

First, for the first term∫
p(x) log p(x)dx =

∫
p(x) log

[
(2πσ2

p)
− 1

2 exp
{
− (x− µp)

2

2σ2
p

}]
dx

= −1

2
log(2πσ2

p)

∫
p(x)dx− 1

2

∫
p(x)

(x− µp)
2

σ2
p

dx

= −1

2
log(2πσ2

p)−
1

2σ2
p

∫
p(x)(x2 − 2xµp + µ2

p)dx.

(1)

Similarly, for the second term∫
p(x) log q(x)dx = −1

2
log(2πσ2

q)−
1

2σ2
q

∫
p(x)(x2 − 2xµq + µ2

q)dx. (2)

67

KL Divergence between Gaussian distributions

Remember that for a random variable X with pdf f , the expectation is given by

E[X] =

∫
f(x)xdx.

Also, we have

E[X2] =

∫
f(x)x2 dx

= V ar[X] + E[X]
2

For the integral in eq. (1), we then get

1

2σ2
p

∫
p(x)(x2 − 2xµp + µ2

p)dx =
1

2σ2
p

[(σ2
p + µ2

p)− 2µ2
p + µ2

p]

=
1

2
.

(3)

68

KL Divergence between Gaussian distributions

The integral in eq. (2) is similar,

1

2σ2
q

∫
p(x)(x2 − 2xµq + µ2

q)dx =
1

2σ2
q

[(σ2
p + µ2

p)− 2µpµq + µ2
q]

=
σ2
p + (µp − µq)

2

2σ2
q

.

(4)

69

KL Divergence between Gaussian distributions

Finishing up, using eq. (1) and eq. (2) via eq. (3) and eq. (4), we finally get

DKL(p||q) =
∫

p(x) log p(x)

q(x)
dx

=

∫
p(x) log p(x)dx−

∫
p(x) log q(x)dx

= −1

2
log(2πσ2

p)−
1

2
+

1

2
log(2πσ2

q) +
σ2
p + (µp − µq)

2

2σ2
q

=
1

2

[
log

σ2
q

σ2
p

+
σ2
p + (µp − µq)

2

σ2
q

− 1

]
(5)

When, as in our case p = N (µ, σ) and q = N (0, 1), we get

DKL(p||q) =
1

2

[
µ2 + σ2 − logσ2 − 1

]
.

70

Generate new signals

∙ With a trained variational autoencoder f = h ◦ g you can
generate new signals

∙ Sample z ∼ Nn[c](0, 1), where n[c] is the number of nodes
in the coding layer

∙ Feed z into the trained decoder h
∙ h(z) should now be a randomly generated sample from
the training distribution

71

Generate new signals — interpolation

∙ Say you want to generate a signal c that
is an interpolation between two signals
a and b

∙ First, train a variational autoencoder
f = h ◦ g on the desired distribution

∙ Compute mean vectors µa and µb from
encodings g(a) and g(b)

∙ Compute the average of the two mean
vectors

µc =
1

2
(µa + µb)

∙ Then, set the latent variable z = µc

∙ c = h(z) should then be an
interpolation between a and b

72

Generate new signals — adding features

∙ Say you want to add a feature of a signal a to the signal b
∙ You can do this by finding a signal c that is equal to a, except for the specific feature
you want

∙ You can then subtract the latent variable of c from the latent variable of a, and add it
to the latent variable of b

∙ Then you simply decode the new latent variable
∙ Example: “Face with glasses = face + (face with glasses — face)”
∙ See examples on the next slides

73

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 11: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 74

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 12: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 75

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 13: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 76

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 14: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 77

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 15: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 78

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 16: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 79

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 17: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 80

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 18: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 81

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 19: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 82

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 20: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 83

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 21: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 84

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 22: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 85

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 23: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 86

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 24: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 87

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 25: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 88

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 26: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 89

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 27: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 90

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 28: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 91

https://houxianxu.github.io/assets/project/dfcvae

Variational autoencoders — Interpolation and combination example

(a) Interpolation between genders (b) Add or remove facial features

Figure 29: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae 92

https://houxianxu.github.io/assets/project/dfcvae

Questions?

93

	Introduction and motivation
	Clustering
	PCA
	t-SNE
	Autoencoders
	Variational autoencoders

