UNSUPERVISED LEARNING
IN5400 — Machine Learning for Image Analysis

Ole-Johan Skrede
03.04.2019

University of Oslo

MESSAGES

- Mandatory 2 is ready soon (some technical difficulties)
- Exercise for this week is ready before tomorrow

OUTLINE

- Introduction and motivation

- Repetition / background
- K nearest neighbours, k-means clustering
- Principal component analysis
- Independent component analysis

- t-SNE

- Autoencoders, variational autoencoders

INTRODUCTION AND MOTIVATION

SUPERVISED LEARNING

- Given a training set with pairs of inputs = and corresponding desired outputs y
Qprain = {(zW,yM), . (@™, 5™}
- Create a function f that “approximates” this mapping
f@)~y, VY(z,9) € QUyain
- Hope that this generalises well to unseen examples, such that
fl@) =9~y Y(@,y) € Quest

where Q. 1S a set of relevant unseen examples.
- Hope that this is also true for all unseen relevant examples.

UNSUPERVISED LEARNING

- In contrast with supervised learning, we have no labeled data points in unsupervised
learning.
- Since there is no “ground truth”, there is no accuracy evaluation in the supervised
sense.
- Applications
- Data clustering
- Anomaly detection
- Signal generation
- Signal compression

SEMI-SUPERVISED LEARNING

- We have some labeled data
- Usually a majority of unlabeled data

- Can be thought of as supervised learning extended to utilise unlabeled data
- Will not be covered today

METHODS

What we will cover today What we will not cover today
- K-means clustering (background) - Independent component analysis (ICA)
- Principal component analysis (PCA) - Matrix factorization and decomposition
(background) - Expectation-maximization (EM)
- t-SNE algorithm
- Autoencoders - Generative-adverserial networks (GAN)
- Variational autoencoders (next lecture)

CLUSTERING

DATA CLUSTERING

- Grouping together data based on some similarity metric

- Data points within the same group (cluster) will be more similar to each other than
to data points outside the group

- Many different versions of clustering

CONNECTIVITY-BASED CLUSTERING

- Also called hierarchical clustering

e o oo |2 D © OO O @ O
centroides Lvl 1 . . . - @
- Different level thresholds yield
fferentclusters . @O 00 B ©
s . 0000 G
MMICHCCONN |
FEOOGCONEN © 00
® ©

Figure 2: Bottom up (agglomerative) hierarchy of clusters

Figure 1: Raw data

GRAPH CLUSTERING — CLIQUES

- Aclique is a set of nodes

- Anode in a clique shares an edge with
all other nodes in the clique

- Can have cliques of different sizes o
- Useful in areas such as random fields

O @)

Figure 3: Undirected graph Figure 4: Top: Cliques with 2 members. Bottom: Cliques with 3 members. Nodes with

multiple colors belong to more than one clique.

CENTROID-BASED CLUSTERING

- Clusters are represented by a central vector
- Example: K-means clustering

K-MEANS CLUSTERING

- Conseptually simple clustering algorithm
- We want to partition a set of data {z™",z® ... 2™} into k clusters.
2@ eR™i=1,....m

- With some distance norm || - || the procedure is
1. Initialize at random k cluster centroids (or means) pu; € R™,j =1,...,k
2. Repeat until convergence
21 Assign every example z(¥) i = 1,..., m with the label of the nearest cluster centroid

o® = argmin|[z) — .
J

2.2 Update the position of every centroid 4,5 = 1,..., k to the centroid of the cluster of points

with its label)]
M@ = 4@

where the Iverson bracket is defined as

1l 0] 1, if a=0b,
a=>bl = .
0, if a#b

K-MEANS CLUSTERING — PROPERTIES

- Minimizes the objective function
T(e,pm) =D [a® = oo ||
1=1

- Not guaranteed to find a global minimum

- Common to run the algorighm several times with different initializations, and then
pick the run with the smallest value of J

- The k-means clustering algorithm partitions the feature space into Voronoi cells

K-MEANS CLUSTERING — EXAMPLE

Figure 5:

PCA

PRINCIPAL COMPONENT ANALYSIS (PCA)

- Reducing the dimensionality of a dataset of correlated variables
- Retaining as much as possible of the variance present in the dataset

Figure 6: Representing 2D data as 1D

PCA — DERIVATION OUTLINE

- Let X € R™ be a random vector

- We are looking for a set of uncorrelated variables Y}, which we will call the principal
components of X

- The first component, Y7, will account for most of the variance in X

- The second component, Ys, will account for most of the variance in X, conditionied
on being uncorrelated with Y;

- The third component, Y3, will account for most of the variance in X, conditioned on
being uncorrelated with both Y; and Y5

- We continue untill we have n, << ng principal components that account for most of
the variance in X

PCA — FIRST PRINCIPAL COMPONENT

- Let Y7 € R be some linear combination of the elements in X

E (437) 7,—0'1

- This random variable has variance
Var[Y1] = Varla] X] = a]Xa;.
- Here, ¥ is the covariance matrix of X with elements
ij = Cov(Xi, Xj)

- We want to maximize the variance of ¥;
- In order to achieve finite solutions, we constrain the optimization on

ala; =1

- Itturns out that, for k = 1,...,n,, ai well be an eigenvector of ¥ corresponding to
the kth largest eigenvalue g

PCA — ESTIMATING THE COVARIANCE MATRIX

- For a dataset with ngs samples {z;1, ...,z } for all featuresi = 1,...,ng, the
elements in the covariance matrix can be estimated as
. 1 s

ij = > (wig — fui) (g — 1),

ng—1

q=1

- Here fi; is the sample mean of the ith feature

1 &

il = . Tig
q=1

- Arranginging the feature samples and sample means into vectors of size ny

Tg = [T1gs- s Tnyg)"
/l = [/ll? v 7ﬂnd]T
- With this, the estimate of the covariance matrix can be written as

1

$= _1§(xq_ﬂ)($q_ﬂ)T~

Ng
20

PCA — OPTIMIZING THE VARIANCE

- We use the technique of Lagrangian multipliers to incorporate the unit length
constraint

- This means that we are going to maximize the expression
J(a1) = al¥a; — Mala; —1).
- Computing the gradient of J w.rt. a1, and setting it equal to zero, yields
Yai1 — day; =0,

or
(S — A)ay =0,

where I is the ng x ng identity matrix.

21

PCA — OPTIMIZING THE VARIANCE

- From our last expression
(E —)\I)al = 0,
we see that X is an eigenvalue of ¥, and a; is the corresponding eigenvector.
- Furthermore, X is the largest eigenvalue
- This is because maximizing the variance subject to the constraint of unit length
coefficients is equivalent to choosing the largest eigenvalue
al¥a, = a] \aq
= Xalay
=\
- In general, the kth principal component of X is
af X

where ay, is the eigenvector of the covariance matrix ¥ of X, corresponding to the
kth largest eigenvalue Ay

22

PCA — APPLICATIONS

- Dimensionality reduction
- Preprocessing in supervised learning: acts as a regularizer
- Noise reduction

23

PROBLEMS WITH IMAGE DATA

original shifted messed up darkened

(all 3 images have same L2 distance to the one on the left)

24

25

of the variance. Not very suited.

Explains about 26%

<
O
a
T
E
=
O
=
2
L
T
0
>
|
O
T
2]
=2
=

T-SNE

STOCHASTIC NEIGHBOUR EMBEDDING (SNE)

- Precursor to t-SNE (t-distributed Stochastic Neighbour Embedding)

- Introduced by Geoffrey Hinton and Sam Roweis in 2003 '

- A stochastic dimensionality reduction method

- Transforms high-dimensional (H D) data points to low-dimensional (LD) data points
- Aims to preserve neighbourhood relationship between data points

- Similar (close) HD points should also be similar (close) in the LD representation

'http://papers.nips.cc/paper/2276-stochastic-neighbor-embedding.pdf

http://papers.nips.cc/paper/2276-stochastic-neighbor-embedding.pdf

- The high-dimensional points have some dimension h

- The low-dimensional points have some desired predetermined dimension I << h
- For each point ¢, we are going to define two distributions:
- Pi(z;): Describes the probability that point j is the “neighbour” of point ¢, given its
location z;
- Qi(y;): Describes the probability that point j is the “neighbour” of point 4, given its
location y;
- We are then going to define a similarity measure between these distributions

- The low-dimensional representations will be altered such as to minimize this
distribution similarity

28

SNE — HIGH-DIMENSION NEIGHBOUR PROBABILITY

- Let X be a h-dimensional random variable (RV) modelling a HD point

- Let S be a h-dimensional RV that is modelling a neighbour of X

- Given that X = x;, we want the probability that S is a neighbour of X to be
proportional to the Gaussian of the euclidian distance between the two

1 1 x — s||?
PI‘(SI S|X IIE@) = C—Wexp{—%}
4 i i

where ¢; is a constant

- We define Pr(S =z X =x;) =0
- We also want it to be a probability, so if we sum over all possible neighbours z # x;

Z Pr(S=zX=2;)=1

z#x;
- We end up with
2
exp {_ Lo sl }
Pr(S=sX=u;) = Hl —
o, exp { Lol
29

SNE — HIGH-DIMENSION NEIGHBOUR PROBABILITY, NOTATION

- The probability mass function that describes the probability that some neighbour S
of X is located at s given that X is located at z; is

Pi(s) :=Pr(S = s|X = ;)

exp{ s }

— 2
S, 5P {—“—Lﬁ”;ag °}

- Given a concrete set of points {z1,x2,...,Zn}

- The probability that j is a neighbour of 4, given that ¢ is located at z; is then

iy ?
exp Ty
K2

- 2
3 pi OXD { 1 Iacl%wgk | }

Pjli -=

30

SNE — SCALING PARAMETER

- The scaling parameter o, can be set manually
- We want a larger o, in sparse areas
- We want a smaller o, in dense areas

1.0 A

0.8

J

0.6

(x;—9)?
207

0.4 4

exp{—

0.2 1

0.0 4

-4 -2 0 2 4

3

SNE — PERPLEXITY

- o is often found with binary search such that the perplexity equals k, which is
determined manually

- The perplexity of the distribution P; is given by
Perp(P;) = 21"
where the Shannon entropy is given by

H(P) == pjjilog, pjj:
J

- Perplexity can be interpreted as a measure of how many neighbours we want to
influence a point
- Typical values are between 5 and 50

- Seeeg https://distill.pub/2016/misread-tsne/ how to interpret t-SNE
results

32

https://distill.pub/2016/misread-tsne/

SNE — LOW-DIMENSION NEIGHBOUR PROBABILITY

- Let Y be a l-dimensional RV modelling a LD point
- Let T be a I-dimensional RV that is modelling a neighbour of Y/
- Y are the lower-dimensional data points correspondingto X, sol << h
- Similarly to HD, we choose a Gaussian neighbourhood, but with fixed variance
o2 =1/2
exp {—|ly: —t|I*}
2y, xp{—llyi — 2[[*}

Pr(T=tY =y;) =

33

SNE — LOW-DIMENSION NEIGHBOUR PROBABILITY, NOTATION

- For every HD point x;, we have a corresponding LD point y;
- The probability mass function that describes the probability that some neighbour T
of Y is located at ¢ given that Y is located at y; is
Qi(s):=Pr(T =tlY =y,)

o exp{-lly -t}

e oxp { =y — 22
- Given a concrete set of points {y1,y2,.--,Yn}
- The probability that 5 is a neighbour of 4, given that 4 is located at y; is then

e el i)

D S e I

- The goal is to place y; such that the LD distribution g;; is similar to the HD
distribution p;;

- We need a similarity metric, and a way to optimize it

34

REPETITION: KULLBACK-LEIBLER DIVERGENCE

- The Kullback-Liebler divergence over a discrete random variable X

x(@)
ax (@)

- Measures the distance between two probability distributions px and ¢x over the
same set of events, modeled with the random variable X.

Dk r(pxllax) pr)log 2

- Expectation of logarithmic difference between p and ¢ when expectation is taken
w.rt. p.

- Measures the amount of information that is lost when using ¢ to approximate p.
- Itis non-negative
- Zeroforp=g¢q

- Increasing for “increasing difference” between p and q.

35

SNE — DISTRIBUTION SIMILARITY MEASURE

- We want to measure the similarity between P; and Q;, for all points 4

- This is done by summing the KL-divergence between the original (P;) and the
“induced” (Q;) distributions over all points

C= ZDKL(Pi”Qi)
= Zzpmlogﬂ
P qj)i

- Large cost of confusing a small distance in the high-dimensional space with a large
distance in the low-dimensional space (smallpj” and large qj|i)

- Larger cost of confusing a large distance in the high-dimensional space with a small
distance in the low-dimensional space (large p;j; and small qj|i)

36

- The cost can be minimized with stochastic gradient descent

- Note that we are minimizing w.rt. the LD points {y1,...,y,} corresponding to the
known HD points {z1,...,z,}

- Keeps nearby points in HD nearby in LD
- Also keeps distant points in HD relatively far apart in LD
- Drawback: Can be difficult to optimize

- Drawback: Tendency to crowd LD representations at the center of the map
(“crowding problem”)

T-DISTRIBUTED STOCHASTIC NEIGHBOUR EMBEDDING (T-SNE)

- Avariant of the SNE method
- Introduced by Laurens van der Maaten and Geoffrey Hinton in 2008 ?

- An improvemet over SNE

- Much easier to optimize
- Significantly better visualization

- Two major differences between t-SNE and SNE

- Symmetric Gaussian point similarity distribution for the H D data points
- Student-t point similarity distribution for the LD map points

Zhttps://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf

38

https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf

SYMMETRIC SNE

- Standard SNE use a sum over the KL-divergence between asymmetric conditional

probability distributions
C=> Dkr(PlQ)

- Because of this, different types of errors in the pairwise distances in the map are
weighted differently

- In particular
- The cost of representing distant data points as close map points is smaller than
- The cost of representing close data points as distant map points

- A symmetric cost could ease optimization, and leviate the crowding problem

39

SYMMETRIC SNE

- In stead, we could use the KL-divergence between symmetric joint probability

distributions
C =Dkr(P||Q)

Pij
=S los 22
i j sz
- The joint probability p;; over all points X; and their neighbours X; is
pij = PI‘(X,L‘ = xi,Xj = .’IJJ’)

- Again, we define p;; = 0, and require that the sum over the entire possibility space (a
point and its neighbours for all points) is 1
- With the same Gaussian neighbourhoods as in SNE, we get

i
exXp = a—

— 2
Dk 2otk €XP {‘“%’L}

Dij =

40

SYMMETRIC SNE

- Similarly, for the LD points

¢ij = Pr(Yi = v, Y; = y;)
12
exp { ~Lul)

Zk Zz;ékeXp{ [lyx— yzll2}

- Note that Pij = Dji and qij = 4ji
- Note that this is not what is used in t-SNE, we will come back to that in two slides
- This is just motivation

41

SYMMETRIC SNE — HIGH-DIMENSIONAL SPACE

- We suggested a symmetric, joint probability

[|zs—=;|
exp {2l
EkZl;ﬁkeXp{ ||xk xl |2}

- The problem is that for an outlier z;, ||z; — ;|| will be very large (and p;; very small)
for all points
- The placement of the corresponding point y; will have very little effect on the cost

C= Z Zpij log 22
P qij

- We can fix this by simply using our previous conditional probabilities as
Pyl P
. 2n
where n is the number of data points
- With this, we ensure that 3, p;; > 1/(2n) for all data points z;
- Hence, all points x; are guaranteed to make significant contributions to the cost

Dij =

42

T-SNE — CROWDING PROBLEM

- Standard SNE (and other similar methods) suffer from what is known as the
crowding problem

- Too many map points are placed near the center of the map
- This can be leviated by forcing moderately distant data points to be placed far apart

43

T-SNE — LOW-DIMENSIONAL SPACE PAIRWISE DISTRIBUTION

- To mitigate the crowding problem, we want to give more weight to representing
moderately distant data points as close map points

- The Student-t distribution with one degree of freedom is used

-1

0 = (1 + llyi — ;11?)

ij = =)
>kt (L 1lye — will?)

- Notice that it is symmetric ¢;; = ¢;;

- The Student-t distribution has a much heavier tail than the Gaussian distribution

- Moderate distances in the HD data space are then represented by larger distances
in the LD map space

"

AUTOENCODERS

AUTOENCODERS — INTRODUCTION

- An autoencoder is a neural network which purpose is to discover interesting
representations of data

- The idea is to create identity mappings, that is, functions f such that f(z) ~ « for
some input

- It is able to discover interesting representations by enforcing constraints on the
network

- The method requires no labeled data, and is therefore unsupervised

46

AUTOENCODERS — INTRODUCTION

- An autoencoder consist of an encoder g and an decoder h
- The encoder maps the input = to some representation z Input

g:x =z
- The decoder maps this representation z to some output &
h:z—12

- We want to train the encoder and decoder such that

f(z) = h(g(z)) Decoder
= h(z)
=z Output

47

AUTOENCODERS — VARIANTS

- Different network constraints leads to different representations z

- Compression autoencoder
- If x has d, dimensions and z has d. dimensions, and d, > d.
- Most common way of constraining the network
- Denoising autoencoder
- Distorting the input = with some random noise
- Leads to robust representations, resiliant to corrupted input
- Sparse autoencoder

- z can actually have a greater dimension than z
- Only allowing a subset of the hidden units to fire at the same time

48

COMPRESSION AUTOENCODER — MNIST EXAMPLE

- Encoder:

- Input -> first hidden layer: fully connected 784 -> 128, relu
- 1. hidden -> 2. hidden: fully connected, 128 -> 32, relu

- Decoder:

- 2.hidden -> 3. hidden: fully connected 32 -> 128, relu
- 3. hidden -> output: fully connected, 128 -> 784, sigmoid

49

DENOISING ENCODER

- Same set-up as in a compression autoencoder +
- Add noise to the input I?I
- Compare the reconstruction to the input without noise

Decoder

Output

51

Same setup as for the compression autoencoder. Zero mean Gaussian noise with
standard deviation 0.1 is added to the input. The input values are clipped to lay in [0, 1].

2 [£

EENE
EE

52

SPARSE AUTOENCODER

- We want to constrain the number of active nodes in the coding layer
- We can think of a node being active (or firing) if is

- close to 1 for the sigmoid tanh activation functions
- We can think of a node being inactive

- close to 0 for the sigmoid activation function
- close to -1 for the tanh activation function

- We would like to constrain the nodes to be inactive most of the time

53

SPARSE AUTOENCODER

- Let a[c]((1)) be the activation in node j in the coding layer [¢] given an input z(to
the network

- Then, activation for this node averaged over all m input examples is
=1 i ()
m—
- We would like to limit this average activation by enforcing the constraint
p=p
for some predetermined sparsity parameter p

- Choosing a small p (e.g. 01) forces the activations to be small

54

SPARSE AUTOENCODER

- The way we enforce this constraint is to regularize the loss function

L= Lreconstruction + 5Lsparsity

with some regularization strength 8 € R.
- We are going to use the KL-divergence between the distributions p and ¢; summed
over the entire latent layer as our sparsity loss
nlel
Lsparsity = ZDKL(pHCIj)
j=1
where nl is the number of nodes in layer []
- p will be a Bernoulli distribution with mean p for a node j
- g; will be a Bernoulli distribution with mean p; for a node j
- The Bernoulli distribution describes the probability of an event with two outcomes
(e.g. coin toss)
- In our case p will represent a node being active with probability p, and ¢; a node
being active with probability p;

55

SPARSE AUTOENCODER

In this case, the KL divergence for a single node j is

p(x)
D r(pllg;) p(x)log
L (pllg; E e

=Y p(x)logp(z) =Y p(x)logg;(z

The support of the distributions is only two outcomes z € {0,1}, and the pmfis

(@) (1-p), x=0 (thenode isinactive)
€Tr) =
P P, z =1 (the node is active)

and conversely for g;(z). With this, our KL divergence is simply

Drr(pllg;) = plogp + (1 — p)log(1 — p) — [plog p+ (1 — p)log(1 — p;)]

_ p (1-p)
=plog s+ (1= p)los 75,

56

SPARSE AUTOENCODER

- With this, we get our final loss

nlel
P I—p
L = Lieconstruction + 3 Z plog — + (1 — p)log (Py)
et Pj (1= p;)

- Remember that p; is the jth component of p = L "7 ag.c] ()
- This means that we need to average over all examples to compute p
- This means that we have to encode all said examples

- In practice, with batch optimization, we average over all examples in a batch

57

VARIATIONAL AUTOENCODERS

INTRODUCTION

- Popular method for signal generation (images, sound, language, etc.)
- Creating completely new signals
- Or altering existing data

- Especially powerful when you want to alter your data in a specific way, not just
randomly

60

PROBLEMS WITH AUTOENCODERS FOR SIGNAL GENERATION

- An autoencoder works great if you want to reconstruct a o g 2lle

replica of the input RN
- Not well suited for generating new signal . "::' -':,::':?:
- The reason for this is an “unintuitive” latent variable "- .:h.:‘“:
space *? "; ;*
- The latent space might be discontinuous T,
- Random sampling from an “unseen” region of the latent o
space produces unpredictable results Poes

- No reasonable way to interpolate between categories in

the latent space W @m o

61

VARIATIONAL AUTOENCODERS

- Avariational autoencoder is designed to have a
continuous latent space

- This makes them ideal for random sampling and
interpolation

- It achieve this by forcing the encoder g to generate
Gaussian representations, z ~ N (p, 0?)

- More precisely, for one input, the encoder generates a
mean p and a variance o2

- We then sample a zero-mean, unit-variance Gaussian
Z~ N(0,1)
- Construct the input z to the decoder from this

z=pu+z-0

- With this, z is sampled from ¢ = N (i, 0?)

Input

Decoder

Output

62

INTUITION

- This is a stochastic sampling

- That is, we can sample different z from the same set of
(1,07)

- The intuition is that the decoder “learns” that for a given
input a:

- the point z is important for reconstruction
- but also a neighbourhood of z

- In this way, we have smoothed the latent space, at least
locally

63

PROBLEM

- No restriction on yu or o2
- Realisticly, clusters of different classes can be placed far apart
- Leaves “empty space” in between with unknown sampling features

64

GUIDING THE GENERATIVE DISTRIBUTION

- We can guide the solutions by restricting the generative distribution ¢

- We do this by making it approximate some distribution p

- In that way, the latent vectors, even for different categories, will be relatively close

- The desired distribution used in variational autoencoders is the standard normal
p= N(Ov 1)

- We use the familiar KL-divergence between the desired and the generated
distribution as a regularizer in the loss function

- With this, the total loss for an example z; is something like

L(z:) = [le? = @) + Drcr (pllap; o)

- That is, the sum of what we call the reconstruction loss and the latent loss
- The latent loss for a single input z(* can be shown to be equal to

1
Dicp(pllduie:) = 5 (7 + 07 = logoy = 1)

65

KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

For reference, | will spend some slide deriving the KL Divergence between two Gaussian
distributions p = N (up,02) and g = N (ug, 02).

We are going to derive it for the continuous case, where the KL-Divergence can be
expressed as

Drr(pllg) = /p(w) log% dz
= /p(x) log p(z) da — /p(a?) log ¢(x) dx

We will derive the two terms in the last line seperately

66

KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

First, for the first term

/P(»’L') log p(x) de = /p(a:) log [(27?012,)_% exp {—%H dz

p

= —% 10g(27r012)) /p(x) dx — %/p(aﬂ)@c;%)2 dx (1)

P

1
=3 log(27raf,) - /p(ac)(ac2 — 2z, + uf,) dz.

Similarly, for the second term

/p(x) log q(x)dz = —% log(2moz) — % /p(m)(x2 = 2apq + pi7) da. (2)

67

KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

Remember that for a random variable X with pdf f, the expectation is given by

EX] = / F@)z da.
Also, we have
BIX?] = / F@)a? do
= Var[X] + E[X]?

For the integral in eq. (1), we then get

1
20%

=

(o3 + p3) — 2p2 + 1]

[pla)e 2o+ i) do = 5
;)

N = D

68

KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

The integral in eq. (2) is similar,

1

1
207 [PO = 2oy i) dn = (0 42) ~ 2t +)
q q

2
_ ‘712> + (kp — Hq)
203 '

69

KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

Finishing up, using eq. (1) and eq. (2) via eq. (3) and eq. (4), we finally get

Dkr(pllg) = / p(z) log%dx

= /p(g:) logp(x) da — /p(w) log g(z) dz

‘712; + (pp — ,uq)Q (5)

202

1 1 1
=3 log(2may) — 2t 3 log(2moz) + 2

2
1 lgﬂg U;%"'(Np_luq)
2

Zay Cp Tl T el
2 2
Ip 94

When, as in our case p = N(u,0) and ¢ = N(0, 1), we get

1
Dk r(pllg) = B [u2 + 0% —logo? — 1] .

70

GENERATE NEW SIGNALS

- With a trained variational autoencoder f = h o g you can

generate new signals

- Sample z ~ N, (0,1), where nld is the number of nodes

in the coding layer

- Feed z into the trained decoder h
- h(z) should now be a randomly generated sample from

the training distribution

Input

2l

boo
2N 1)
\@(@9

zy

Decoder

Output

i

GENERATE NEW SIGNALS — INTERPOLATION

- Say you want to generate a signal ¢ that
is an interpolation between two signals
aand b

- First, train a variational autoencoder /
f = hogon the desired distribution

Label 9 Label 4 Interpolated

- Compute mean vectors pu, and p, from . .
encodings g(a) and g(b) ‘I Lf Lf

Label 8 Label 9 Interpolated

- Compute the average of the two mean . .
vectors ? 9 ?

Label 9 Label 9 Interpolated

MCZ%(“G+“b)

- Then, set the latent variable z = p.

- ¢ = h(z) should then be an
interpolation between a and b

GENERATE NEW SIGNALS — ADDING FEATURES

- Say you want to add a feature of a signal a to the signal b

- You can do this by finding a signal ¢ that is equal to a, except for the specific feature
you want

- You can then subtract the latent variable of ¢ from the latent variable of a, and add it
to the latent variable of b

- Then you simply decode the new latent variable
- Example: “Face with glasses = face + (face with glasses — face)”
- See examples on the next slides

(a) Interpolation between genders (b) Add or remove facial features

Figure 11: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 12: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

= o

(

-
.
N

>N

(a) Interpolation between genders (b) Add or remove facial features

Figure 13: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 14: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 15: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 16: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 17: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 18: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 19: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 20: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 21: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 22: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 23: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 24: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 25: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 26: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 27: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 28: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

(a) Interpolation between genders (b) Add or remove facial features

Figure 29: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

92

https://houxianxu.github.io/assets/project/dfcvae

QUESTIONS?

	Introduction and motivation
	Clustering
	PCA
	t-SNE
	Autoencoders
	Variational autoencoders

