

> IN5400 Machine learning for image classification Lecture 14: Reinforcement learning April 24, 2019 Tollef Jahren

Outline

- Motivation
- Introduction to reinforcement learning (RL)
- Value function based methods (Q-learning)
- Policy based methods (policy gradients)
- Miscellaneous

About today

- Introduction to main concepts and terminology of reinforcement learning
- The goal is for you to be familiar with policy gradients and Q-learning

Readings

- Video:
 - CS231n: Lecture 14 | Deep Reinforcement Learning: https://www.youtube.com/watch?v=lvoHnicueoE&index=14&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&t=3s

• Text:

 Karpathy blog: (Reinforcement learning/Policy learning) <u>http://karpathy.github.io/2016/05/31/rl/</u>

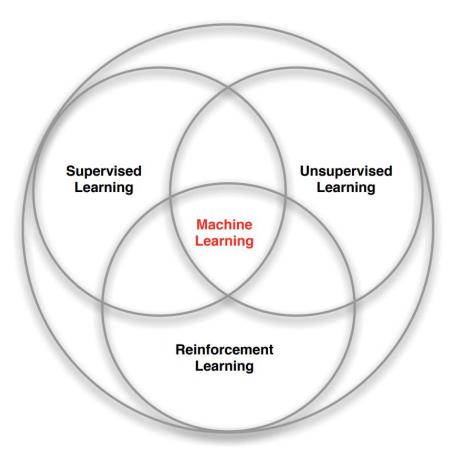
Optional:

 RL Course by David Silver: https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PL7-jPKtc4r78wCZcQn5lqyuWhBZ8fOxT&index=0 **UiO Department of Informatics**

University of Oslo

- Motivation
- Introduction to reinforcement learning (RL)
- Value function based methods (Q-learning)
- Policy based methods (policy gradients)
- Miscellaneous

Branches of Machine Learning



INF 5400

24.04.2019

Supervised learning

- Given a training set with input *x* and desired output *y*:
 - $\quad \Omega_{train} = \left\{ \left(x^{(1)}, y^{(1)} \right), \, (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)}) \right\}$
- The goal is to create a function *f* that "approximates" this mapping:

-
$$f(x) \approx y$$
, $\forall (x,y) \in \Omega_{train}$

• Hope that this generalizes well to unseen examples:

- $f(x) = \hat{y} \approx y$, $\forall (x,y) \in \Omega_{test}$

- Examples:
 - Classification, regression, object detection,
 - Segmentation, image captioning.

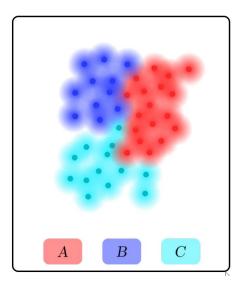
Unsupervised learning

• Our training set consists of input *x* only:

-
$$\Omega_{train} = \{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$$

• We do not have any labeled data. Our goal is to find an underlaying structure of the data.

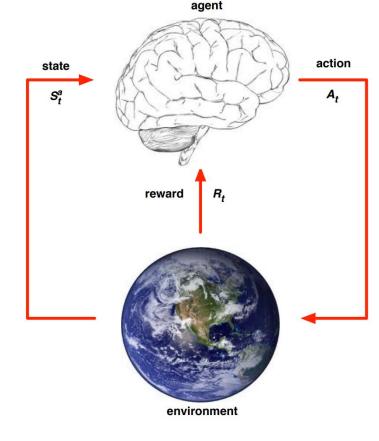
- Examples:
 - Data clustering
 - Anomality detection
 - Signal generation
 - Signal compression



Variational autoencoder (latent space z)

Reinforcement learning

- Reinforcement Learning ~ Science of • decision making
- In RL an agent learns from the ٠ experiences it gains by interacting with the environment.
- The goal is to maximize an accumulated • reward given by the environment.
- An agent interacts with the environment ٠ via states, actions and rewards.

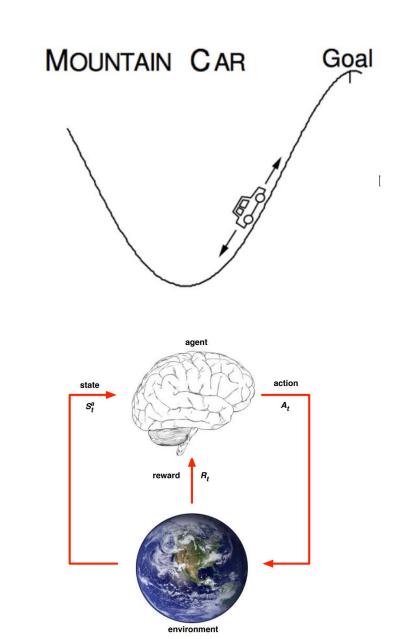


Reinforcement learning

- What makes reinforcement learning different from other machine learning paradigms?
 - There is no supervisor, only a reward signal
 - Feedback is delayed, not instantaneous
 - Time really matters (sequential, non i.i.d data)
 - Agent's actions affect the subsequent data it receives

Mountain Car

- Objective:
 - Get to the goal
- State variables:
 - Position and velocity
- Actions:
 - Motor: Left, Neutral, right
- Reward:
 - (-1) for each time step



Robots

Objective:

Get the robot to move forward

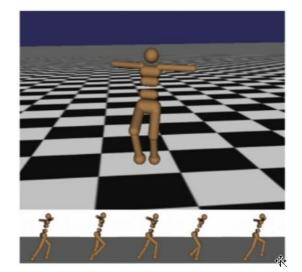
State variables: Angle and positions of the joints

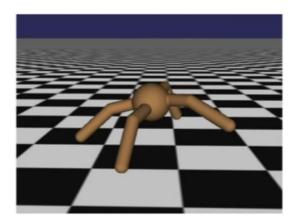
Actions:

Torques applied on joints

Reward:

(+1) at each time step upright + forward movement





UiO **Content of Informatics**

University of Oslo

https://www.youtube.com/watch?v=rhNxt0VccsE

Atari games

Objective:

Complete the game with the highest score

State variables:

Raw pixel inputs of the game state

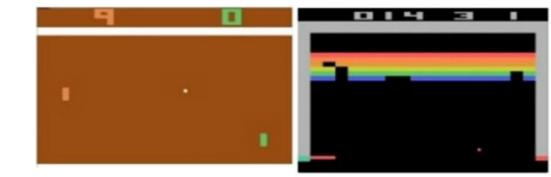
Actions:

Game controls, e.g. left, right, up, down, shoot.

Reward:

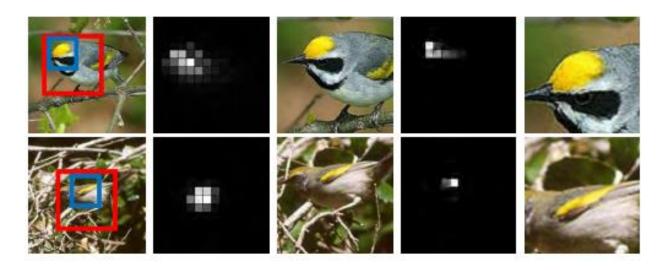
Score increases/decreases at each time step

Page 14



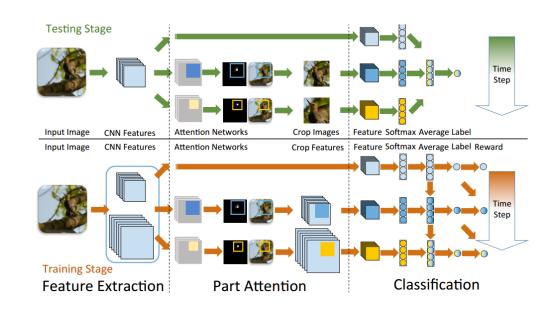
Distinguishing images with small differences

- You have high resolution images
- You separate classes based on small, but characteristic differences
 - Birds
 - Tumors
 - Brands



Distinguishing images with small differences

- Pre-trained CNN features
- Attention network output confidence map
- Spatial softmax for finding probabilities of locations
- Crop and resize image features



Fully Convolutional Attention Networks for Fine-Grained Recognition

INF 5400 Page 16 24.04.2019

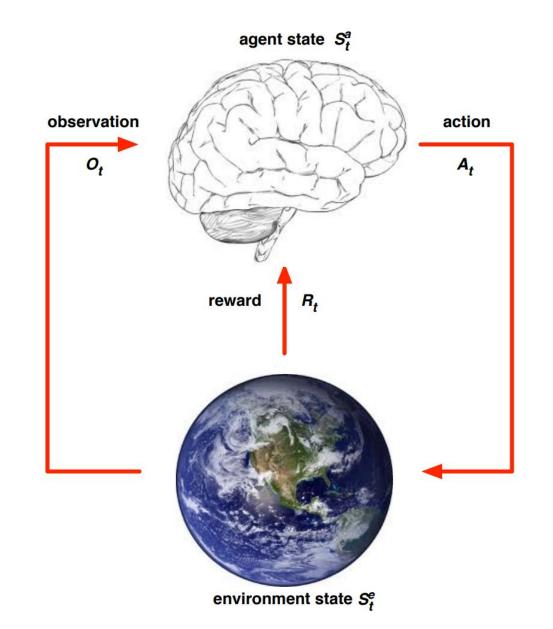
UiO **Content of Informatics**

University of Oslo

- Motivation
- Introduction to reinforcement learning (RL)
- Value function based methods (Q-learning)
- Policy based methods (policy gradients)
- Miscellaneous

UiO Department of Informatics

University of Oslo

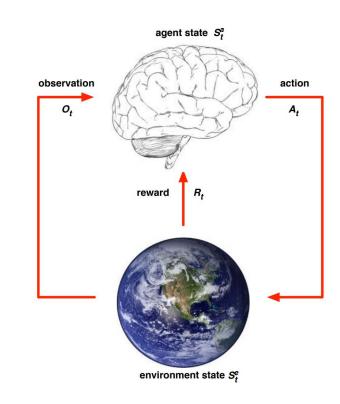


History (trajectory) and State

- History / trajectory :
 - $\quad H_t = \tau_t = R_1, O_1, A_1, \ R_2, O_2, A_2, \dots, \ R_t, O_t, A_t$
- State:
 - The state is a summary (of the actions and observations) that determines what happens next given an action.
 - $S_t = f(H_t)$
- Full observatory:
 - Agent direct observe the environment state.
 - $\quad O_t = S_t^e = S_t^a$
 - E.g. chess

Partially observability:

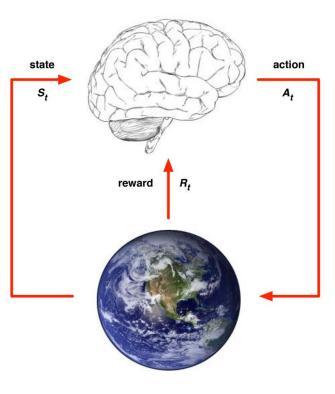
- The agent indirectly observes the environment.
- Robot with a camera



INF 5400 Page 19 24.04.2019

Markov Property

- Definition:
 - A state S_t is Markov if and only if: $\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1} | S_1, S_2, \dots, S_t]$
- The state capture all relevant information from the history
- The state is sufficient to describe the statistics of the future.

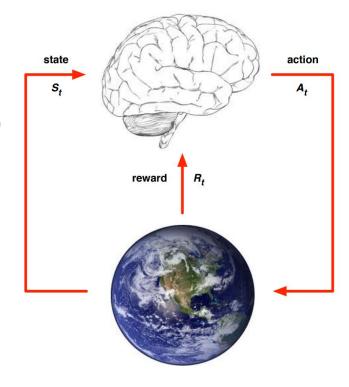


INF 5400 Page 21 24.04.2019

UiO **Department of Informatics** University of Oslo

Policy

- The agent's policy defines it's behavior.
- A policy, π , is a map from state to actions
 - **Deterministic** policy: $\pi(s_t) = a_t$
 - **Stochastic** policy: $\pi(a_t|s_t) = \mathbb{P}(A_t = a_t|S_t = s_t)$

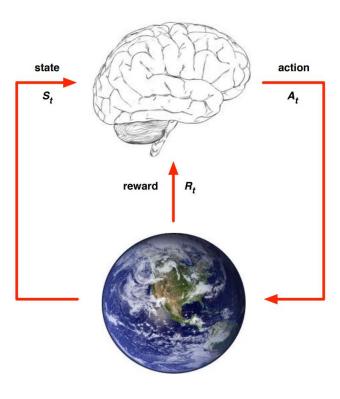


Reward and Return

- The **reward**, R_t , is a scalar value the agent receives for each step t.
- The **return**, G_t , is the total discounted accumulated reward form a given time-step t.

$$- \quad G_t = R_t + \gamma R_{t+1} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k}$$

- Discount factor:
 - − We can apply a discord factor, $\gamma \in [0,1]$, to weight how we evaluate return.
- The agent's goal is to maximize the return



Markov Decision Process (MDP)

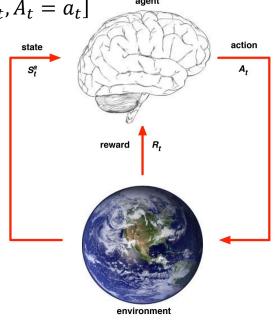
- The mathematical formulation of the reinforcement learning (RL) problem.
- A Markov Decision Process is a tuple, $\mathcal{M} = \langle S, A, P, R, \gamma \rangle$, where every state has the Markov property.
 - S: A finite set of states
 - A: A finite set of actions
 - *P*: The transition probability matrix $P_{S_tS_{t+1}}^a = \mathbb{P}[S_{t+1} = s_{t+1} | S_t = s_t, A_t = a_t]$
 - R: Reward function:

$$R_s^a = \mathbb{E}[S_t = s_t, A_t = a_t]$$

 γ : is a discount factor $\gamma \in [0,1]$

Markov Decision Process (timeline)

- The agent receives an initial reward, r_t , for time-step t=0.
- The environment samples an initial state, s_t , for time-step t=0.
- For time-step, t, until termination:
 - Agent selects an action given a policy: $a_t = \pi(a_t|s_t) = \mathbb{P}(A_t = a_t|S_t = s_t)$
 - Environment samples a reward: $r_{t+1} = \mathbb{P}[R_{t+1} = r_{t+1} | S_t = s_t, A_t = a_t]$
 - Environment samples next state: $s_{t+1} = \mathbb{P}[S_{t+1} = s_{t+1} | S_t = s_t, A_t = a_t]$

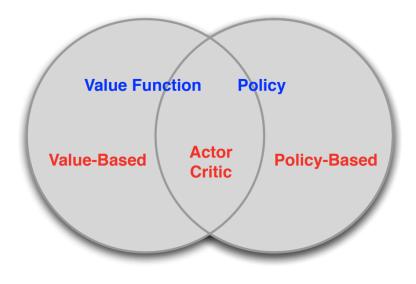


INF 5400 Page 25 24.04.2019

UiO **Department of Informatics** University of Oslo

Objective

- The objective in reinforcement learning (RL) is to find the optimal policy, π_* , which maximize the expected accumulated reward.
- Agent's taxonomy to find the optimal policy in reinforcement learning



UiO Department of Informatics

University of Oslo

- Motivation
- Introduction to reinforcement learning (RL)
- Value function based methods (Q-learning)
- Policy based methods (policy gradients)
- Miscellaneous

Objective

- Our goal is to find the policy which maximize the accumulated reward: $G_t = R_t + \gamma R_{t+1} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k}$
- Due to the randomness of the transition probability and the reward function, we use the expected value in the definition of the optimal policy.

 $\pi_* = \arg\max_{\pi} \mathbb{E}\left[G_t\right]$

State-value function and action-value function

- While we follow our policy, we would like to know if we are not a good or bad state/position. Imagine trajectory: $r_0, s_0, a_0, r_1, s_1, a_1, ...$
- Definition: a state-value function, $v_{\pi}(s)$, of an MDP is the expected return starting from state, s, and then following the policy π . In general, how good is it to be in this state.

 $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$

• Definition: an *action-value (q-value) function*, $q_{\pi}(s, a)$, is the expected return starting from state, s, taking action, a, and following policy, π . In general, how good it is to take this action.

 $q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t \mid A_t = a, S_t = s]$

State-value function and action-value function

- **Define**: $\pi \ge \pi'$ if $v_{\pi}(s) \ge v_{\pi'}(s)$, $\forall s$
- **Definition:** The optimal state-value function $v_*(s)$, is the maximum value function over all policies:
- $v_*(s) = \max_{\pi} v_{\pi}(s)$
- **Definition:** The optimal action-value function $q_*(s, a)$, is the maximum action-value function over all policies:
- $q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$
- **Note**: If we knew $q_*(s, a)$ the RL problem is solved.

Bellman (expectation) equation

- The Bellman equation is a recursive equation which can decompose the value function into two part:
 - Immediate reward, R_t
 - Discounted value of successor state, $\gamma v(S_{t+1})$

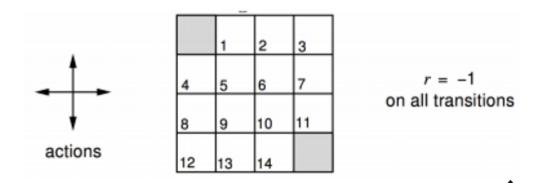
$$\begin{aligned} \mathbf{v}(s) &= \mathbb{E}_{\pi} \left[\begin{array}{c} G_{t} \mid S_{t} = s \right] \\ &= \mathbb{E}_{\pi} \left[R_{t} + \gamma R_{t+1} + \gamma^{2} R_{t+2} + \gamma^{3} R_{t+3} + \cdots \right] S_{t} = s \right] \\ &= \mathbb{E}_{\pi} \left[R_{t} + \gamma (R_{t+1} + \gamma^{2} R_{t+2} + \gamma^{3} R_{t+3} + \cdots) \right] S_{t} = s \right] \\ &= \mathbb{E}_{\pi} \left[R_{t} + \gamma G_{t+1} \right] S_{t} = s \right] \\ &= \mathbb{E}_{\pi} \left[R_{t} + \gamma V(S_{t+1}) \right] S_{t} = s \right] \end{aligned}$$

How to find the best policy?

• We will go though a simple example, Gridworld, to show how the Bellman equation can be used iteratively to evaluate a policy, π . The Goal is to give an intuition of how the **Bellman equation** is used.

$$v(s_t) = \mathbb{E}_{\pi} \left[R_t + \gamma v(S_{t+1}) \mid S_t = s_t \right]$$

Evaluating a Random Policy in Gridworld using the Bellman eq.



- Terminal states are shown as shaded
- Actions leading out of the grid leave state unchanged
- Reward is (-1) until a terminal state is reached
- Agent follows uniform random policy

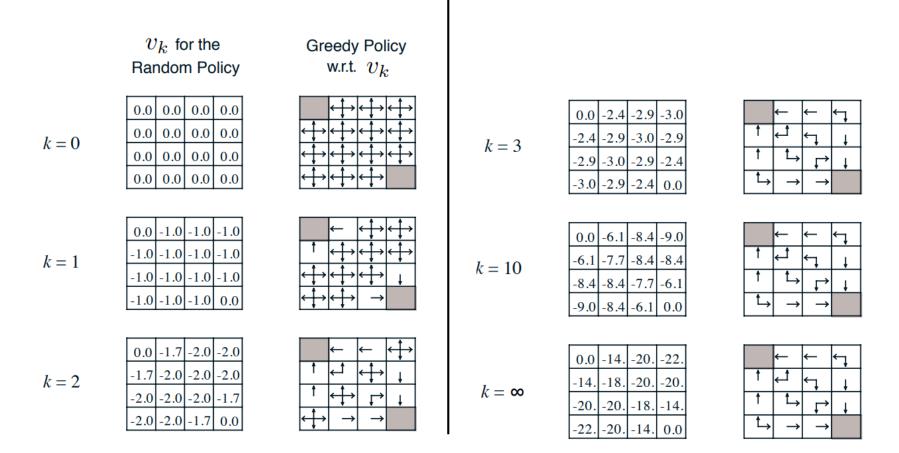
 $\pi(n|\,\cdot) = \pi(s|\,\cdot) = \pi(e|\,\cdot) = \pi(w|\,\cdot) = 0.25$

INF 5400

24.04.2019

UiO **Department of Informatics**

University of Oslo



$$v_{k+1}(s) = \mathbb{E}_{\pi} \left[R_t + \gamma v_k(S_{t+1}) \mid S_t = s \right]$$

$$v_{k=1}(s[1,1]) = -1 + 0.25 \cdot (\underbrace{v_{k=0}(s[0,1])}_{0} + \underbrace{v_{k=0}(s[2,1])}_{0} + \underbrace{v_{k=0}(s[1,0])}_{0} + \underbrace{v_{k=0}(s[1,2])}_{0}) = -1.0$$
$$v_{k=2}(s[1,1]) = -1 + 0.25 \cdot (\underbrace{v_{k=1}(s[0,1])}_{-1} + \underbrace{v_{k=1}(s[2,1])}_{-1} + \underbrace{v_{k=1}(s[1,0])}_{-1} + \underbrace{v_{k=1}(s[1,2])}_{-1}) = -2.0$$

INF 5400 Page 33

24.04.2019

Policy evaluation

• We can **evaluate** the policy π , by iteratively update the state-value function.

 $v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_t + \gamma v(S_{t+1}) \mid S_t = s \right]$

• We can **improve** the policy by acting greedily with respect to v_{π} .

 $\pi' = greedy(v_{\pi})$

- In our example, we found the optimal policy, $\pi' = \pi^*$, after three iterations only.
- In general, iterating between policy evaluation and policy improvement is required before finding the optimal policy
- This was an example with a known MDP, we knew the rewards and the transitions probabilities.

 v_k for the
Random PolicyGreedy Policy
w.r.t. v_k 0.00.00.00.00.00.00.00.00.00.00.00.0

0.0

0.0	-1.0	-1.
-1.0	-1.0	-1.
-1.0	-1.0	-1.

	←	↔	\leftrightarrow
1	↔	↔	
↔	\Leftrightarrow	ᢗ	Ļ
	\Leftrightarrow	\rightarrow	

	←	←	\Leftrightarrow
1	Ļ,		Ļ
1	↔	Ļ	Ļ
↔	\rightarrow	\rightarrow	

k = 0	0.0	0.0	0.0	
$\kappa = 0$	0.0	0.0	0.0	
	0.0	0.0	0.0	

24.04.2	2019	

Page 34

INF 5400

$$k = 2$$

k = 1

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

-1.0 -1.0 -1.0 0.0

0 0 -1 7 -2 0 -2 0

Bellman (optimality) equation

• Lets define the optimal Q-value (*action-value*) function, Q_* , to be the maximum expected reward given an state, action pair.

$$Q_*(s_t, a_t) = \max_{\pi} \mathbb{E}_{\pi} [G_t | A_t = a_t, S_t = s_t]$$

• The optimal Q-value function, Q_* , satisfy the following form of the bellman equation:

$$Q_*(s_t, a_t) = \mathbb{E}\left[R_t + \gamma \max_{a_{t+1}} Q_*(s_{t+1}, a_{t+1}) \mid A_t = a_t, S_t = s_t\right]$$

- Note: The optimal policy, π_* , is achieved by taking the action with the highest Q-value.
- Note: We still need the expectation, as the randomness of the environment is unknown.

Solving for the optimal policy

The goal is to find a Q-value function which satisfy the Bellman (optimality) equation. An algorithm, **value iteration**, can be used to iteratively update our Q-value function.

$$Q_i(s_t, a_t) = \mathbb{E}\left[R_t + \gamma \max_{a_{t+1}} Q_{i-1}(s_{t+1}, a_{t+1}) \mid A_t = a_t, S_t = s_t\right]$$

- **Notation**: *i*, is the iteration update step, *t*, is the sequential time-step in an episode.
- The Q-value, Q_i , will converge to Q_* under some mathematical conditions.
- While solving for the optimal Q-value function, we normally encounter two challenges:
 - The "max" property while sampling new episodes can lead to suboptimal policy.
 - The state-action space is too large to store.

Exploration vs Exploitation

- "The "*max*" property while sampling new episodes can lead to suboptimal policy"
- Exploitation:
 - By selecting the action with the highest q-value while sampling new episodes, we can refine our policy efficiently from an already promising region in the state action space.

• Exploration:

- To find a new and maybe more promising region within the state action space, we do not want to limit our search in the state action space.
- We introduce a randomness while sampling new episodes.
- With a probability of ϵ lets choose a random action:

$$\pi(a|s) = \begin{cases} a_* = \operatorname*{argmax}_{a \in A} Q(s, a), & \text{with probability } 1 - \epsilon \\ a \in A \\ random \ action, & \text{with probability } \epsilon \end{cases}$$

Function approximation

- In the Gridworld example, we stored the state-values for each state. What if the state-action space is too large to be stored e.g. continuous?
- We approximate the Q-value using a parameterized function e.g. neural network.

 $\hat{Q}(s,a,\theta) \approx Q(s,a)$

- We want the function to generalize:
 - Similar states should get similar action-values, $\hat{Q}(s, a, \theta)$ can also generalize to unseen states. A table version would just require to much data.
- In supervised learning:
 - Building a function approximation vs memorizing all images (table).

Solving for the optimal policy: Q-learning

- **Goal**: Find a Q-function satisfying the Bellman (optimality) equation.
- **Idea**: The Q-value at the last time step is bounded by the true Q-value, the correctness of the Q-value estimates increase with time-steps.
- **Init:** Initialize the weights in the neural network e.g. randomly.
- D_i is your dataset with state action pairs s_t , s_{t+1} , a_t , r_t

$$Q_*(s_t, a_t, \theta_i) = \mathbb{E}\left[R_t + \gamma \max_{a_{t+1}} Q_*(s_{t+1}, a_{t+1}, \theta_{i-1}) \mid A_t = a_t, S_t = s_t\right]$$

• Reference:

$$y_{i} = \mathbb{E}\left[R_{t} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}, \theta_{i-1}) | A_{t} = a_{t}, S_{t} = s_{t}\right]$$

• Loss:

$$L_i(\theta_i) = \mathbb{E}_{s_t, s_{t+1}, a_t, r_t \sim D_i} \left[\left(y_i - Q(s_t, a_t, \theta_i) \right)^2 \right]$$

Solving for the optimal policy: Q-learning

• Loss:

$$L_i(\theta_i) = \mathbb{E}_{s_t, s_{t+1}, a_t, r_t \sim D_i} \left[\left(y_i - Q(s_t, a_t, \theta_i) \right)^2 \right]$$

• Compute gradients:

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}_{s_t, s_{t+1, a_t}, r_t \sim D_i} \Big[2 \big(y_i - Q(s_t, a_t, \theta_i) \big) \cdot \nabla_{\theta_i} Q(s_t, a_t, \theta_i) \Big]$$

• Update weights θ :

 $\theta_i = \theta_{i-1} - \alpha \, \nabla_{\theta_i} L_i(\theta_i)$

Example: Deep Q-learning (Atari Games)

Objective:

Complete the game with the highest score

State variables:

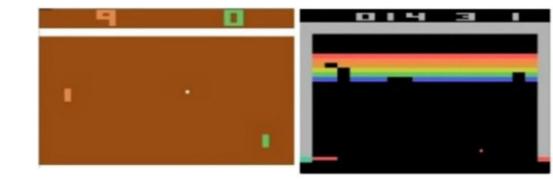
Raw pixel inputs of the game state

Actions:

Game controls, e.g. left, right, up, down, shoot.

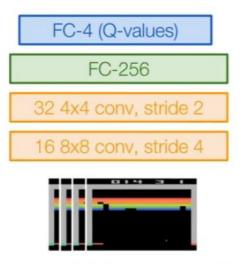
Reward:

Score increases/decreases at each time step



Deep Q-learning (Atari Games)

- Example taken from: [Mnih er al. NIPS Workshop 2013; Nature 2015]
- Q-network architecture:
 - FC-4 outputs Q values for all actions
 - A state, s_t , is a set pixels from stacked frames



Current state s_t: 84x84x4 stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

Experience replay

• Loss:

$$L_i(\theta_i) = \mathbb{E}_{s_t, s_{t+1}, a_t, r_t \sim D_i} \left[\left(y_i - Q(s_t, a_t, \theta_i) \right)^2 \right]$$

- The loss function is defined by two state action pairs, (s_t, r_t, a_t, s_{t+1}). We can store a **replay memory** table form the episodes played. The table is updated when new episodes are available.
- Normally, state action pairs from the same episode are used to update the network. However, we can select random mini batches for the **replay memory.** This breaks the correlation between the data used to update the network.
- More data efficient as we can reuse the data.

University of Oslo

[Mnih et al. NIPS Workshop 2013; Nature 2015]

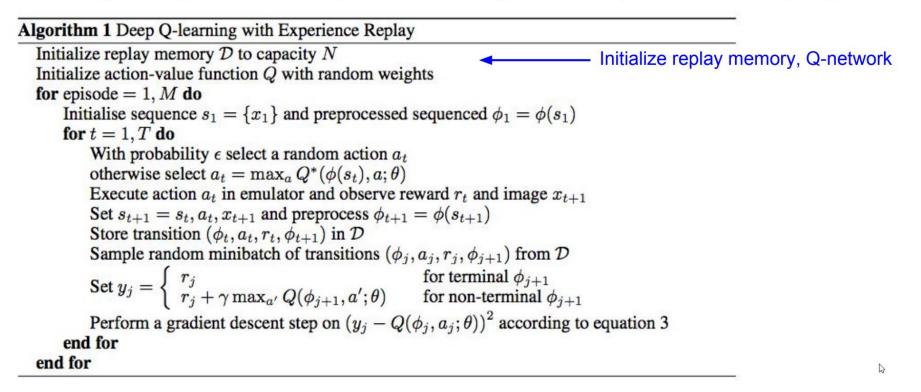
Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_i, a_i, r_i, \phi_{i+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

University of Oslo

[Mnih et al. NIPS Workshop 2013; Nature 2015]

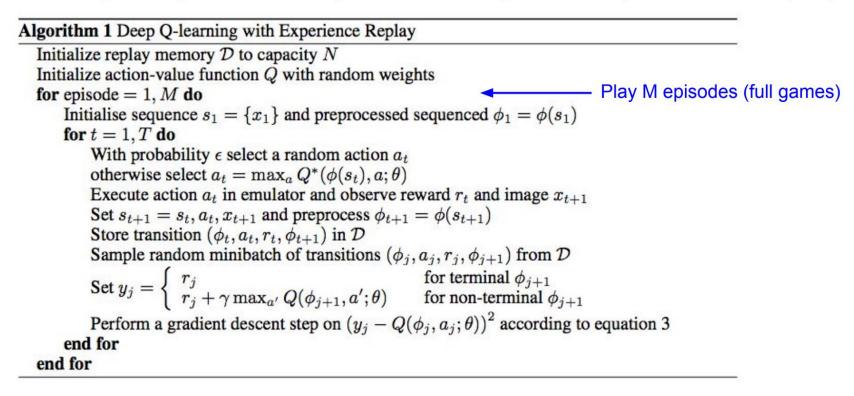
Putting it together: Deep Q-Learning with Experience Replay



University of Oslo

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay



University of Oslo

[Mnih et al. NIPS Workshop 2013; Nature 2015]

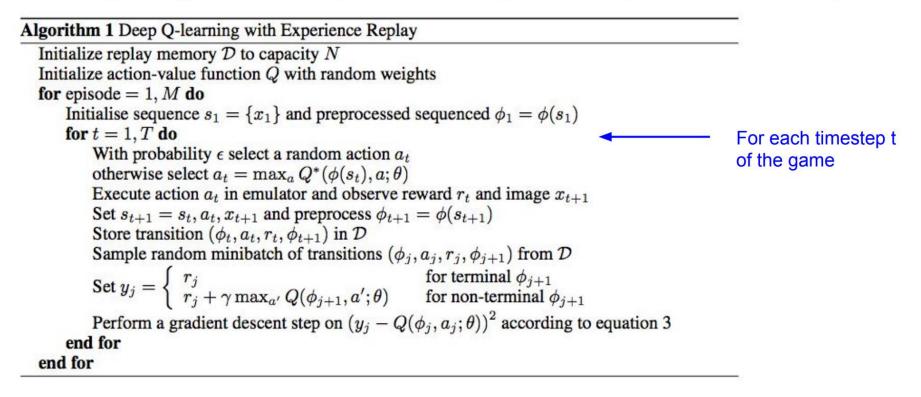
Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ Initialize state for t = 1, T do (starting game With probability ϵ select a random action a_t screen pixels) at the otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ beginning of each Execute action a_t in emulator and observe reward r_t and image x_{t+1} episode Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

University of Oslo

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay



University of Oslo

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t With small probability, otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ select a random Execute action a_t in emulator and observe reward r_t and image x_{t+1} action (explore), Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ otherwise select Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} greedy action from Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} current policy Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

University of Oslo

[Mnih et al. NIPS Workshop 2013; Nature 2015]

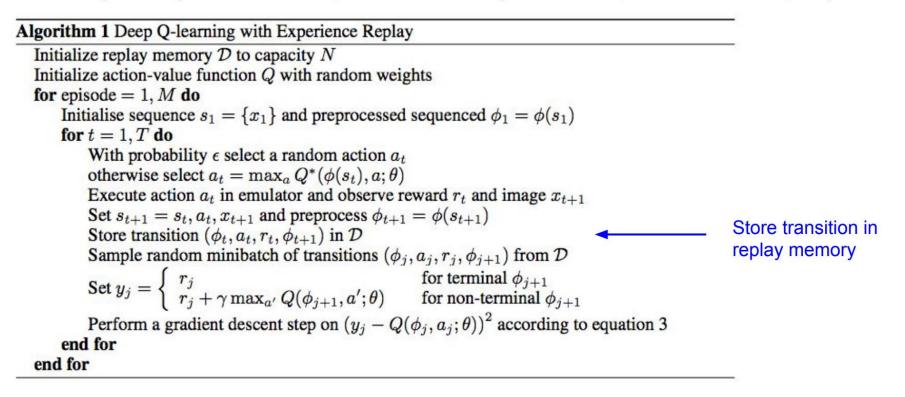
Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Take the action (a_{i}) , Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} and observe the Sample random minibatch of transitions $(\phi_i, a_i, r_i, \phi_{i+1})$ from \mathcal{D} reward r, and next Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ state s₊₊₁ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

University of Oslo

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay



University of Oslo

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Experience Replay: Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Sample a random Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ minibatch of transitions Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 from replay memory and perform a gradient end for descent step end for

University of Oslo

https://www.youtube.com/watch?v=V1eYniJ0Rnk

UiO Department of Informatics

University of Oslo

- Motivation
- Introduction to reinforcement learning (RL)
- Value function based methods (Q-learning)
- Policy based methods (policy gradients)
- Miscellaneous

Policy based methods

- Value function based methods:
 - Learning the expected future reward for a given action.
 - The policy was to act greedily or epsilon-greedily on the estimated values.
- Policy based methods:
 - Learning the probability that an action is good directly.
- Advantage of Policy based methods:
 - We might need a less complex function for approximating the best action compared to estimate the final reward.
 - Example: Think of Pong

Policy based methods

- Goal:
 - The goal is to use experience/samples to try to make a policy better.
- Idea:
 - If a trajectory achieves a high reward, the actions were good
 - If a trajectory achieves a low reward, the actions were bad
 - We will use gradients to enforce more of the good actions and less of the bad actions. Hence the method is called Policy Gradients.

Policy Gradients

- Our policy, π_{θ} , is a parametric function of parameter θ .
- We can define an objective function for a given policy as:

 $\mathcal{J}(\boldsymbol{\theta}) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | \pi_{\boldsymbol{\theta}} \right]$

- Note:
 - γ is the discord factor
 - r_t is the reward at time-step t.
- Assuming our policy is differentiable we can use gradient ascent to maximum $\mathcal J$ w.r.t to θ

REINFORCE algorithm

• Our environment and sampling of our action is stochastic. Lets define the return as the expected accumulated reward.

 $\begin{aligned} \mathcal{J}(\theta) &= \mathbb{E}_{\tau \sim p(\tau,\theta)}[r(\tau)] \\ &= \int_{\tau} r(\tau) p(\tau,\theta) d\tau \end{aligned}$

- Note:
 - Trajectory: $\tau_t = r_0, s_0, a_0, r_1, s_1, a_1, ..., r_t, s_t, a_t$
- We need the gradient of the objective function to update the parameters, θ .

 $\nabla_{\theta} \mathcal{J}(\theta) = \int_{\tau} r(\tau) \nabla_{\theta} p(\tau, \theta) d\tau$

REINFORCE algorithm (not curriculum)

 $\nabla_{\theta} \mathcal{J}(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim p(\tau,\theta)}[r(\tau)]$

 $= \int_{\tau} r(\tau) \nabla_{\theta} p(\tau, \theta) d\tau$

Intractable! Gradient of an expectation is problematic when p depends on θ

• We can rewrite the equation to become an expectation of an gradient using the following trick:

$$\nabla_{\theta} p(\tau, \theta) = p(\tau, \theta) \frac{\nabla_{\theta} p(\tau, \theta)}{p(\tau, \theta)} = p(\tau, \theta) \nabla_{\theta} \log p(\tau, \theta)$$

 $\nabla_{\theta} \mathcal{J}(\theta) = \int_{\tau} p(\tau, \theta) [r(\tau) \ \nabla_{\theta} \log p(\tau, \theta)] d\tau$ $= \mathbb{E}_{\tau \sim p(\tau, \theta)} [r(\tau) \ \nabla_{\theta} \log p(\tau, \theta)]$

REINFORCE algorithm (not curriculum)

 $\nabla_{\theta} \mathcal{J}(\theta) = \mathbb{E}_{\tau \sim p(\tau,\theta)} \left[r(\tau) \ \nabla_{\theta} \log p(\tau,\theta) \right]$

• Expanding the probability of a trajectory based on the term, $\nabla_{\theta} \log p(\tau, \theta)$:

 $p(\tau, \theta) = \prod_{t \ge 0} p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t)$ $\log p(\tau, \theta) = \sum_{t \ge 0} (\log p(s_{t+1}|s_t, a_t) + \log \pi_{\theta}(a_t|s_t))$ $\nabla_{\theta} \log p(\tau, \theta) = \sum_{t \ge 0} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$

• We can sample a trajectory to get an estimate of the gradient.

 $\nabla_{\theta} \mathcal{J}(\theta) \approx \sum_{t \ge 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$

REINFORCE algorithm (Pseudocode)

- Update parameters by stochastic gradient ascent
- Using r_t as the return at time-step t.

$$\Delta \theta_t = \alpha \, \nabla_\theta \log \pi_\theta(a_t | s_t) \, r_t$$

function **REINFORCE**

```
Initialize \theta arbitrarily

for each episode {\tau_t = s_0, a_0, r_0, s_1, a_1, r_1, ..., s_t, a_t, r_t} ~\pi_{\theta} do

for t = 1 to T - 1 do

\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) r_t

end

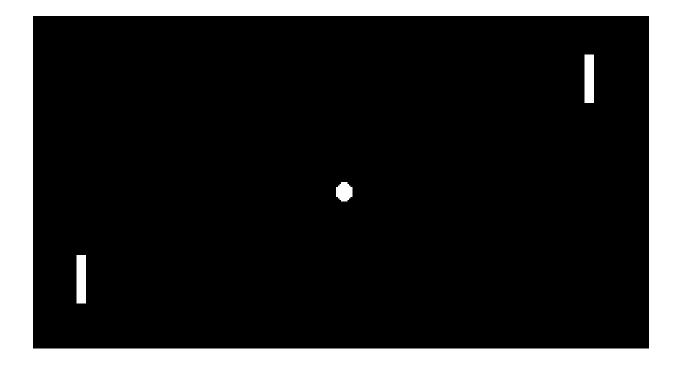
end

return \theta

end function
```

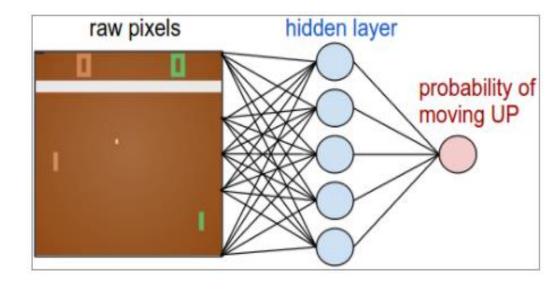
INF 5400 Page 62 24.04.2019

Game of Pong



Policy learning: Pong

- Policy learning
 - We take input images as states
 - Output probability of being good action
 - Choose an action
 - Observe: reward (/punishment)
 - Improve
- The game:
 - Actions:
 - Up
 - Down
 - Reward:
 - Winning = +1
 - Losing = -1

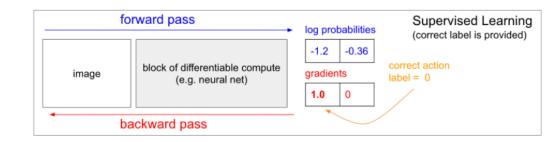


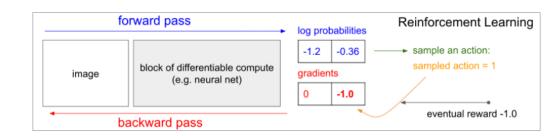
Supervised learning vs Reinforcement learning

- Imagine you play pong and the agent predicts:
 - Up $\rightarrow \log p = -1.2$ (30%)
 - Down → $\log p = -0.36$ (70%)
 - correct action is "Up"
- Supervised learning:
 - You choose the output with the highest probability
 - You get an immediate reward

Policy learning:

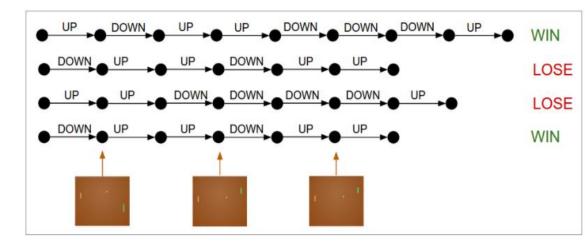
- You sample an action given the probability distribution
- Wait until you get a reward to backprop (may be many steps)





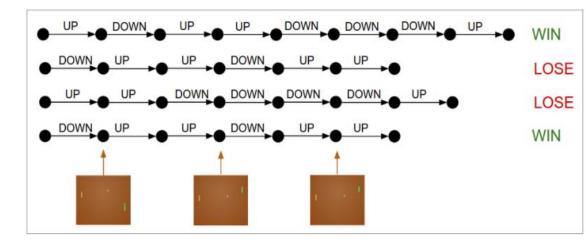
Playing games of Pong

- Examples of games/episodes
- You selects a lot of actions and receive a reward at the end
- You get a result, WIN! Great, but how do you know which action, caused the victory?
 - Well... you don't



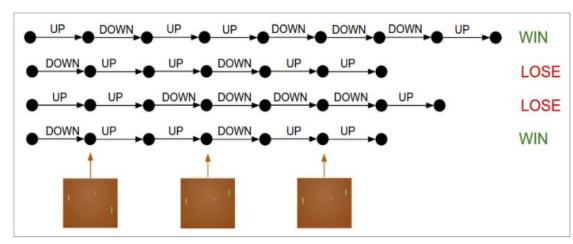
Which action caused the final results?

- In a winning series there may be many non-optimal actions
- In a losing series there may be good actions
- The true effect is found by averaging out the noise, as winnings series tend to have more good action and visa versa

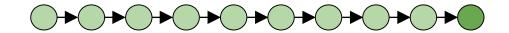


A chain of actions can cause large variations in performance

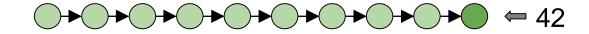
- If we change one action early in the network, we can easily move into uncharted territory.
- Imagine a self-driving car model that is used to driving on roads.
 If it happens to miss the road, it may have no idea what to do.
- If one action in the chain changes, other earlier actions may go from WIN, WIN, WIN to LOSE, LOSE, LOSE
- This high variance gradients
 make learning slow



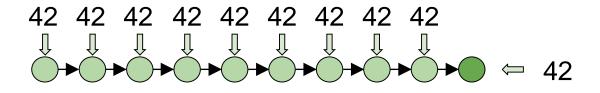
Policy gradients: High variance



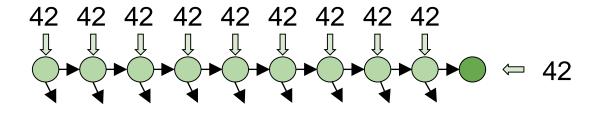
Policy gradients: High variance



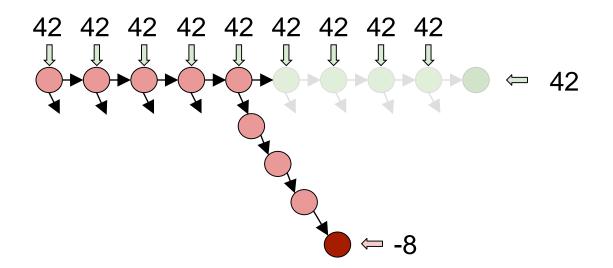
Variance - all choices get the reward



Variance - other possible paths



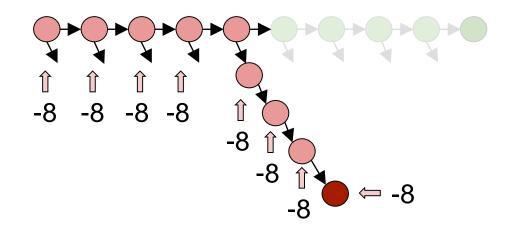
Variance - high probability to chose some other path



INF 5400

24.04.2019

Variance - same actions for same state: now negative

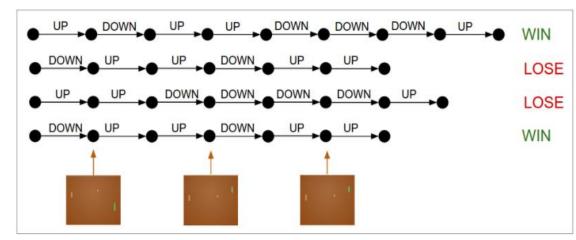


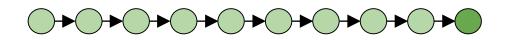
INF 5400

24.04.2019

Variance reduction

 In pong and many other applications, the final actions leading up to the win relate more to the final result than other actions.





Variance reduction

• Gradient estimator:

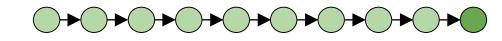
$$\nabla_{\theta} \mathcal{J}(\theta) \approx \sum_{t \ge 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

• First idea: The return can be the accumulative reward from the state and to the end.

$$\nabla_{\theta} \mathcal{J}(\theta) \approx \sum_{t \ge 0} \left(\sum_{t' \ge t} r_{t'} \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

• Second idea: Add the discount factor, γ , to reduce the effect of delayed rewards

$$\nabla_{\theta} \mathcal{J}(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} \gamma^{t'-t} r_{t'} \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$



Variance reduction: Baseline (not curriculum)

- The accumulated discounted reward is not necessarily a reasonable value to be used for changing our probability distribution of the agent e.g. all reward are positive.
- What we care about is whether an action is better or worse then expected. We can subtract an estimate of the goodness of the state (**baseline**).

$$\nabla_{\theta} \mathcal{J}(\theta) \approx \sum_{t \ge 0} \left(\sum_{t' \ge t} \gamma^{t'-t} r_{t'} - b(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

• The most naive form of the baseline could be to use an moving average of the return experienced by all trajectories so far.

Variance reduction: Baseline (not curriculum)

• **Question**: Can we find a better alternative?

$$\nabla_{\theta} \mathcal{J}(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} \gamma^{t'-t} r_{t'} - b(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

• In general, we want to increase the probability of choosing an action if the action is better than the expected return from the particular state.

$$\nabla_{\theta} \mathcal{J}(\theta) \approx \sum_{t \ge 0} (Q(a_t, s_t) - V(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

- *Q*: Is the q-value (action value) function
- *V*: Is the state-value function

Q-learning vs Policy learning

Policy learning:

- More stabile
- The policy can be simpler to represent
- Imagine pong:
 - It can be easy to find out that you have to move in one direction
 - It can be hard to estimate the actual return for that step
- Effective:
 - You get the policy directly
- "Built-in" stochastic polices
- Poor sample (data) efficiency

Q-learning

- Can converge faster
- Can be more flexible as you need state action pairs to learn only
 - Experience replay
 - Don't need full episodes

Actor-Critic Algorithm (not curriculum)

• From policy gradients, we wanted to find values for *Q* and *V*:

$$\nabla_{\theta} \mathcal{J}(\theta) \approx \sum_{t \ge 0} (Q(a_t, s_t) - V(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

- **Solution**: We can use Q-learning to estimate Q and V. The Actor-Critic algorithm is a combination of Policy gradients and Q-learning.
 - The **actor** (policy) is defined by Policy gradients
 - The **critic** is defined by Q-learning

Actor-Critic Algorithm (not curriculum)

- The actor (policy) decides which action to take, the critic reverts back with how good the action was compared to the average action.
- We don't get the same variance problem since we only learn transition between steps at a time.

Basic actor-critic method:

Start with state s, and sample action a

- 1. get reward r from critic for s and a
- 2. sample action a' from actor
- 3. estimate new reward r' from critic
- 4. update **critic** with difference between r and r' (or real reward)
- 5. update actor based on estimated reward r'
- 6. set a <- a', s <- s'

University of Oslo

- Motivation
- Introduction to reinforcement learning (RL)
- Value function based methods (Q-learning)
- Policy based methods (policy gradients)
- Miscellaneous

Model based RL (not curriculum)

- We can model the environment using e.g. a neural network. The network can be trained in a supervised way.
- By modeling the environment, we can "look ahead" and use search trees for evaluating our action.
- Important in e.g. games as chess and go where a single wrong action can make you loose.

