INTRODUCTION

IN 5400— Linear models for regression and classification

Anne Solberg
23.01.2019

University of Oslo

PLAN FOR TODAY

- Main focus: linear models for regression and classification
- Linear regression

- Logistic classification

- Softmax classification

- Loss functions

- Gradient descent optimization

READING MATERIAL AND RELEVANT VIDEO LINKS:

- Note on linear models for classification and regression is linked here (pages 1-7 and
16-19)

- Optimization note: http://cs231n.github.io/optimization-1

- Relevant video links: Lecture 2 and 3 from CS 231n at Stanford, link here
Note: they do not cover regression, but we do!

http://cs229.stanford.edu/notes/cs229-notes1.pdf
http://cs231n.github.io/optimization-1
https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv

SUPERVISED LEARNING

- Given a training set with input = and desired output y
Qurain = {5y V), (@™, 5™}
- Create a function f that “approximates” this mapping
f@)~y, VY(z,9) € Qyain
- Hope that this generalises well to unseen examples, such that
fl)=9~y, Y(x,y)€ Dpest

where Qqst 1S @ set of relevant unseen examples.
- Hope that this is also true for all unseen relevant examples.

- Today we approximate f based on linear regression, logistic regression and softmax
classification.

NOTATION

- ng: Input dimension

- n,: Output dimension (number of classes)

-z, X, X: Arrays representing input

-y, Y, Y: Arrays representing true output

- §, Y, Y: Arrays representing one-hot encoded true output.
- 4, Y Arrays representing predicted output

- Loss function: measures the discrepancy betwen the predicted and true output for
one sample.

- Cost function: aggregated loss over all training samples.

- Subscript j or jk: Element in vector, or matrix

- Superscript with parenthesis (¢): data example (i)

- Qqataset: A collection of examples {(z(, y(V)} constituting a dataset.
- m: Number of examples

LINEAR REGRESSION

INTRODUCTION

- Linear regression gives a nice introduction to neural nets
- Linear regression: predict a continuous value
- Logistic regression: binary classification, predict between two classes

- Softmax regression: a generalization to classification with multiple classes

LINEAR REGRESSION: TRAINING DATA

- Want to estimate y based on data z
- The data set Qgataser Nas m training samples = with true values y(),1 <i <m

THE LINEAR REGRESSION PROBLEM

- Predict the y-values based on data z in the

training data set. [Training set, X]
- gy denotes the predicted value.
-y is a continuous number. [Learning algorithm]

- Linear hypotesis: § = wz + b

v

- w and b are the unknown values that regression ()
x— Hypothesis

will estimate

- w has the same dimension as z(®, and b is a p
scalar in this case. Estimated value J

~

- Learning will be based on comparing y and ¢, so v
we need a measure of how well the model fits
the data.

LINEAR REGRESSION EXAMPLE

6
5t Blue: true data points
Red: estimated function
4t
3 I -
! The distance between the true (blue)
. and estimated (red) valug will be used
F y-3 to measure how good the fit is
1+ . T 1 This is Mean Square Errpr (MSE) if
summed over all sampleg.
D 1 1 ' 1 1 1 1 L

ERROR MEASURE (COST FUNCTION) FOR LINEAR REGRESSION: MEAN SQUARE ERROR (MSE)

- Mean square error between the true and predicted value of y summed over the m
samples in the training set.

1 . _
Y _ A0 ()72
J(m,b) = MSE 5 g [§ y']

- In vector form: L
J(m,b) = —I||7 — y||?, L2-norm
(m7) 277L||y y||27

OPTIMIZATION

GRADIENT DESCENT INTUITION

Start from a point and take a step downhill in the steepest possible direction.
Repeat this until we end up in a local minimum.
If we start from a neighboring point, we should end up in the same minimum.

10 -
5
*

o N

5 .\\\ (
10 3 ~

c T .

\"ﬁ\ .—/’(//‘\ 25
2 ~ - 0
e - 5
10 ™ - 10

ITERATIVE MINIMIZATION OUTLINE

- Have a function J(w, b) (can be generalized to more than two parameters)
- Want to find the value of w and b that minimize J(w, b)

- Outline

1. Start with some value of w, b, .8 w = 0,b= 0.

2. Compute J(w, b) for the given value of w and b

3. Change w and b in a manner that will decrease J(w, d)
4. Repeat step 2-3 until we hopefully end up in a minimum

GRADIENT DESCENT PRINCIPLE

- Given a function J(w, b)

- The directional derivative of J(w,b) in a given direction is the slope of J(w,b) in that
direction

- To iteratively minimize J(w, b), we want to find the direction in which J(w, b)
decreases fastest.

- This can be shown to be in the the opposite direction of the gradient

- So we can minimize J(w, b) by taking a sted in the direction of the negative gradient

- Gradient descent propose a new point

w=w — AV J(w,b),
b=0b—AV,J(w,b)

- Xis the learning rate, if A is too large, the algorithm may diverge, if A is too small, the
algorithm converges very slow

GRADIENT DESCENT FOR LINEAR REGRESSION, SINGLE (UNIVARIATE) FEATURE

- Let w andb be the two unknown parameters in the linear model y = wx + b
- We want to minimize the mean square error between the true values and the
predictions, J(w,b)

1 ~(2 % 1 7 i
J(w,b) = %Z(y()—y())Qz %Z(wx()+b—y())2

i

- Let us find the partial derivatives of J(w,b) with respect to w and b

0 0 1 ,) 2
il (2) _ g2 = 2 i) (2)
J(w,b) = D0 om g (wz' +b—y'") 5 EZ (wz® +b—y D)z

ow

0b b 2m

- Here, we sum the gradient over all samples in the trammg data set. This is called
batch gradient descent.

- Remark: This simple problem is quadratic and could be solved analytically, but we
will seek an iterative solution

0 0 1 ; ; 2 . ,
= J(w,b) = Z(wx(l) +b—y@D)? = 5 Z(wx(l) +b—y®)

GRADIENT DESCENT UPDATES FOR LINEAR REGRESSION

- Linear regression model y = wx + b
- Gradient descent: repeat until convergence

oJ 1 - N
— o — — o — i _ DD
w=w)\aw—w)\m % [we® +b—yD)z
oJ 1 , .
b=">b)\ab b)\m % [wz' + b —y'V]

Checkpoint: verify that you can derive these equations!

IMPLEMENTING GRADIENT DESCENT

- The sum over all samples (¥ can be done on vectors using np.sum()

aJ 1 , A
—W— A = w— \— (#) — DN
w=w)\aw w)\m % [wz' +b—y'V]x

a.J 1 . .
= — —_— = — —_ (l‘) — (L)
b=b—Agr=b-\ Ei [wz® + b -y

COMPUTATIONAL GRAPH FOR PREDICTION USING LINEAR REGRESSION

- The graph shows how to predict new samples
X,
xz(i) “\:\\

w2

- Corresponing graphs can be drawn for loss function also
- Computational graphs are useful for gradient computation also, more next week

LOGISTIC REGRESSION

INTRODUCTION TO LOGISTIC REGRESSION

- Let us see how a regression problem can be transformed into a binary (2-class)
classification problem using a nonlinear loss function.

- Below is an example:
- In this example deciding either class 1 or 0 could be done by introducing a threshold.

- An alternative way is to do a nonlinear transform that squeeze the data to either 0 or
1 (next)

Cod=1 ‘ X X XX X

Herring=0 l XX X X

20

FITTING WITH A SIGMOID FUNCTION

- Now introduce g(wz + b), @ nonlinear function of z.

- In classification we wanty =1ory =0

- In this example deciding either class 1 or 0 could be done by introducing a threshold
- An alternative is to do a nonlinear transform that squeeze the data to either 0 or 1

Cod=1 [KX N—X

Herring=0 [XXX %"

- Let g(2) = o—twerwy

- g(2) is called the sigmoid function

21

LOGISTIC REGRESSION MODEL WITH MULTIPLE FEATURES

- We can have multiple (n,) features for each samples = = xg.i),j € 1,n,.
- Decide and assign classy =1 if
g(z wjx;-i) +b) >05
J

otherwise decide y = 0.
- This gives a linear decision boundary for the classification

- If we want a non-linear boundary, we could add higher order combinations of the
features

- In classification we wanty =1ory =0

22

- gwizy + woxs +)

- Predicty =11if

xf g(wiz1 + wawg + b) > 0.5, 0 otherwize

- Decision boundary: wizy +wexe +b=10
and g(wix; + wexs +b) = 0.5

- If we know wq, wo, b, decision is based
on which side of the boundary we are.

23

INTRODUCING A LOGISTIC COST FUNCTION

- Assume we have a set of m 2D training images F*) (b, j, k)

- Each image has size C' x Ny x Ng, where C is the number of bands in the image (e.g.
3 for a RGB-image).

- For convenience, reshape these into a 1D vector () of length 1 x (C x Nj x Ng)
- The true class labels for each image in the training set is y(®.

24

LOGISTIC LOSS PER SAMPLE

- We need a function to measure the classification accuracy of the model, but using
the accuracy as a binary variable does not work so well.

- Instead, let the cost function for one sample be such that:
: Loss—0|fy(>—1andg(2 w;T)+b)

- Loss = 0 if :Oandg(ijjxg’)er) =0
- Loss — oo if y® :landg(z‘wja:(‘“#—b) -0

-Loss—>oo|fy(>—0andg(z w;T)+b>—>1

25

LOGISTIC LOSS PER SAMPLE

- The sigmoid ¢ (Z w;iT; @ 4 b) will mimic a probability and give a number between 0
and 1.
- Let us assume that

P (y(i) = l\z(i),w,b) =g (Z wjxlgi) + b)
J
p(y(i):0|x(i)7)_1_ (ij <>+b>

- This can be written more compactly as:

y® 1—y®

(()|x()wb)—g Zw])+ b l—g(ijmg)
J

Checkpoint: verify that this is the same as the equation above

26

LOGISTIC COST FUNCTION

- The cost function L(w,b) considers the loss over all samples

- Assume that the samples are independent, we want to maximize the likelihood of
the parameters:

L (w,b) =TI p (y 9@, w, b)
I (5w 40)" [1-g (5wl +0)]
- It is easier to maximize the log likelihood:
I (w,b) =log L (w,b)
= 521y 1og (9 (30, wial” + b)) + (1 =y) log [1 =g (5, wyal” +)]

- We will use gradient descent to minimize —/ (w, b).

DERIVATIVE OF THE SIGMOID FUNCTION

For gradient descent of the log likelihood, we need the derivative of the sigmoid function

/ d 1 1 1 (1

9 (=) -)= e 1 Tre

e) =)0 2)

Note that we can actually compute the derivative by using the function itself. This will
come in handy later.

28

DERIVATIVE OF LOGISTIC LOSS FOR A SINGLE SAMPLE

- Consider one sample and a univariate model with a single feature.
- The loss for one sample with this model is

l(w, b)(i) =y log (g(wx(i) + b)) + (1 —yD)log [1 — glwz® + b)}

- We need the derivative with respect to w and b.

0 . 1 . 1 0 ;
o= D) =) = @ 4 p
ow (w,5) (y g(wz() + b) 1=y }1 — g(wz(+ b) awg(wx +9)
(L o) s) (1 g (e b)) 2 (wa 1)
g(wz(® +b) 1 — g(wz(® + b) Ow

=y (1= glwa® + 1)) = (1 = yD)(g(wa + p)]a?
= [y — g(wa® + b))
- Verify this!

29

DERIVATIVE OF LOGISTIC LOSS FOR A SINGLE SAMPLE

- Correspondingly we find the derivative with respect to b:

0 ; 1 ; 1 0 .
7l b — (1)7 - 1 - (l) - . N N - /(l) b
b (w,) (y g(wz() +b) -y }1 — g(wz® + b) abg(w +9)
= y(i);. —[1- y(i)];. g(wx(i)—l—b)(l—g(wx(i)—i-b))ﬁ(wx(i)—l-b)
g(wz() +b) 1 — g(wz® + b) b

= [y (1 - g(we® +8)) = (1= y)(g(wa +)
= [y — glwa +b)
- Verify this!

30

GRADIENT DESCENT FOR LOGISTIC CLASSIFIER

- Given the cost function for all samples:

m

l(w,b) = — Z ¥ log (g(ww(i) + b)) + (1 —y)log [1 — glwz® + b)}
i=1

- Find w and b using gradient descent to maximize the likelihood:

- Repeat
[y — g(wz® + b))z

NE

1
g

[y — g(wa +b)]

S
Il
S
I
>
3|~
s L

1

o
Il

31

COMPUTATIONAL GRAPH FOR PREDICTION USING LOGISTIC REGRESSION

- The graph shows how to predict new samples

Sigmoid(z)

x, 0 N

DRUNIAN _ _
py®=1]w,bx®)

—

- Choose class 1if p(y = 1|w,b,z()) > 0.5, otherwise class 0

32

SOFTMAX CLASSIFICATION AND CROSS ENTROPY COST

FROM 2 TO n, CLASSES USING SOFTMAX

- In a logistic classifier, we apply a sigmoid function to z = wx + b, to predict output
close to 0 for class 0 and output close to 1 for class 1.

- In the generalization to multiple classes, we will approximate a probability between
0 and 1 for each class, and choose the class with the highest probability.

- We use the softmax function for this.

- Given sample z(?, we want to predict the class label y® € [1,....,n,] as one of n,
predefined classes.

- The true class labels for the training data set is known.

- y(7) can take of of n, discrete values and follows a multinomial distrubtion.

- We assume that the probability (or score) that y(i) = k is

W k] T (3)+b[k]

ZZ;I eW e Ta(i)+b[k]

p(y"” = ke, W, k], b[K]) =

- Note that we will fit one set of weights W:, k], b[k] to each class.

34

PREDICTION /CLASSIFICATION WITH SOFTMAX

- Given a trained model with weights W, b

- W is a matrix of size [n,,n,] with one row for each input dimension, and one column
per class, and b is a vector of length n,,.

- W{:, k] and b[k] corresponds to the weights for class k.
- The probability or score for class k is:
o (WK T2 (i)+b[K])

S (WEe Te () +ble])

i) = py? = klz®, W1 K], blk]) =

- Compute p(y® = k|z@ W, k], b[k]) for all classes and choose the class that
maximize it

35

IMPLEMENTING THE SOFTMAX FUNCTION

- Numerical instability can be a problem, because of the exponential function, and
division.

- Two common “tricks” that can help this follows

- Shift exponential arguments to max zero

ek
ék(z) = Zn ez
1=1

ezk—max(z)

- Z?:l ezi—max(z)
- Take logarithm and exponentiate it to get rid of division

t(2), = logs(2),
=z — logZezi
i=1

5(2), = !

- The above can be combined

36

ONE-HOT ENCODING ¥

- Since we will compare the predicted output for each class, y](:) to the true label y(®,
it is conventient to use the one-hot encoded vector §(?:

1, if y@D=k
k(1) = (1)
{0, else

- A compact notation for the predicted score/probability for all classes is then:

Ny

py(ylX = z:0) = [[9(=:0),™ (2)
k=1

CROSS-ENTROPY COST FUNCTION FOR LEARNING O = [W, D]

- We will use gradient descent to fit W and b to the training data set.
- The cost function will be the cross entropy between the predicted and the true class
labels (this will be derived next lecture):

é—argmln{ Zzyk logy }
=1 k=1
- The optimization objective function will therefore be the cross entropy cost
C(® Qtranﬂ thr‘nn = Z Z y;(c g log 5l) (3)
=1 k=1

- We will reserve loss function to the discrepancy between the predicted and true
output for a
- Our cross entropy loss is then (for a single sample we sum over alll classes k)

Ly, 5% = =35 log gy ()
k=1

38

WORKING ON A BATCH OF SAMPLES

- In gradient descent, updating the weights for each sample is time consuming.
- We organize the traning data in batches, and update the cost function summed over
each batch of m;, samples

my My

Zzyk)bg)

zlk:l

- We can predict a batch of samples X = z(),4 € [1,my] using a dot product between
X and W then add b.

39

GRADIENT DESCENT SOFTMAX UPDATES

- Gradient descent updates are very similiar to logistic classfication

- Next we we derive the gradients for batches and look at vectorized implementations.
Here is the per sample gradient updates:

W = w0 —avy6 L, §v)
— W@ _ (g(z‘) _ gg‘)) o)
pd = pd _)\Vb(i)ﬁ(y(i)’g(i))

p() _ (g(i) _ 171(:))

40

COMPUTATIONAL GRAPH FOR SOFTMAX CLASSIFICATION

- The graph shows how to predict new samples

class 1

Wixil+h] ‘{ Softmax for] > ply®=1]w,b,x0)

X \ { Class1

/ 7 | Softmax for > ply®=2|w,b,xl)
/' class 1

x (7 wixi+b / & Softmax for i "
" b { Classn_y class n_y 7 plyP=n_ylw.b.x®)

- Choose the class k that has the highest probability if p(y?k1|w,b,2®) > 0.5

Il

COMMENT ABOUT IMAGE CLASSIFICATION

- Reshape the image into a long 1D-vector.

- If color image, append the (r,g,b)-channels also into the vector.

- Note: no spatial information concering pixel neighbors is used here.
- All images must be standardized to the same size!

- If a classifier is trained on CIFAR-10 images of size 32 x 32 rgh-images, all testimages
must also be resized to 32 x 32 rgb-images

42

LEARNING GOALS

- Understand linear regression and the loss function

- Be able to compute by hand and implement the gradient descent updates

- Understand logistic regression and the loss function

- Be able to compute by hand and implement the logistic gradient descent updates
- Understand softmax classification

- Cross-entropy loss will be derived in detail next week

- Implement softmax and gradient descents for cross-entropy loss
- This will come in handy for Mandatory 1

- Theory exercises relevant for exam

43

NEXT WEEK

- Feed forward nets and learning by backpropagation including vectorization
- Reading material

- Note on backpropagation: http://cs231n.github.io/optimization-2/
- Neural networks introduction: http://cs231n.github.io/neural-networks-1/

"

http://cs231n.github.io/optimization-2/
http://cs231n.github.io/neural-networks-1/

QUESTIONS?

