
introduction
IN 5400— Linear models for regression and classification

Anne Solberg
23.01.2019

University of Oslo



Plan for today

∙ Main focus: linear models for regression and classification
∙ Linear regression
∙ Logistic classification
∙ Softmax classification
∙ Loss functions
∙ Gradient descent optimization
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Reading material and relevant video links:

∙ Note on linear models for classification and regression is linked here (pages 1-7 and
16-19)

∙ Optimization note: http://cs231n.github.io/optimization-1
∙ Relevant video links: Lecture 2 and 3 from CS 231n at Stanford, link here
Note: they do not cover regression, but we do!
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http://cs229.stanford.edu/notes/cs229-notes1.pdf
http://cs231n.github.io/optimization-1
https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv


Supervised learning

∙ Given a training set with input x and desired output y

Ωtrain = {(x(1), y(1)), . . . , (x(m), y(m))}

∙ Create a function f that “approximates” this mapping

f(x) ≈ y, ∀(x, y) ∈ Ωtrain

∙ Hope that this generalises well to unseen examples, such that

f(x) = ŷ ≈ y, ∀(x, y) ∈ Ωtest

where Ωtest is a set of relevant unseen examples.
∙ Hope that this is also true for all unseen relevant examples.
∙ Today we approximate f based on linear regression, logistic regression and softmax
classification.
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Notation

∙ nx: Input dimension
∙ ny : Output dimension (number of classes)
∙ x, X , X : Arrays representing input
∙ y, Y , Y : Arrays representing true output
∙ ỹ, Ỹ , Ỹ : Arrays representing one-hot encoded true output.
∙ ŷ, Ŷ : Arrays representing predicted output
∙ Loss function: measures the discrepancy betwen the predicted and true output for
one sample.

∙ Cost function: aggregated loss over all training samples.
∙ Subscript j or jk: Element in vector, or matrix
∙ Superscript with parenthesis (i): data example (i)

∙ Ωdataset: A collection of examples {(x(i), y(i))} constituting a dataset.
∙ m: Number of examples
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linear regression



Introduction

∙ Linear regression gives a nice introduction to neural nets
∙ Linear regression: predict a continuous value
∙ Logistic regression: binary classification, predict between two classes
∙ Softmax regression: a generalization to classification with multiple classes
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Linear regression: training data

∙ Want to estimate y based on data x

∙ The data set Ωdataset has m training samples x(i) with true values y(i), 1 ≤ i ≤ m
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The linear regression problem

∙ Predict the y-values based on data x in the
training data set.

∙ ŷ denotes the predicted value.
∙ y is a continuous number.
∙ Linear hypotesis: ŷ = wx+ b

∙ w and b are the unknown values that regression
will estimate

∙ w has the same dimension as x(i), and b is a
scalar in this case.

∙ Learning will be based on comparing y and ŷ, so
we need a measure of how well the model fits
the data.
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Linear regression example
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Error measure (cost function) for linear regression: Mean square error (MSE)

∙ Mean square error between the true and predicted value of y summed over the m

samples in the training set.

J(m, b) = MSE =
1

2m

m∑
i=1

[ŷ(i) − y(i)]2

∙ In vector form:
J(m, b) =

1

2m
||ŷ − y||22, L2-norm
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optimization



Gradient descent intuition

Start from a point and take a step downhill in the steepest possible direction.
Repeat this until we end up in a local minimum.
If we start from a neighboring point, we should end up in the same minimum.
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Iterative minimization outline

∙ Have a function J(w, b) (can be generalized to more than two parameters)
∙ Want to find the value of w and b that minimize J(w, b)

∙ Outline
1. Start with some value of w, b, e.g. w = 0, b = 0.
2. Compute J(w, b) for the given value of w and b

3. Change w and b in a manner that will decrease J(w, d)

4. Repeat step 2-3 until we hopefully end up in a minimum
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Gradient descent principle

∙ Given a function J(w, b)

∙ The directional derivative of J(w, b) in a given direction is the slope of J(w, b) in that
direction

∙ To iteratively minimize J(w, b), we want to find the direction in which J(w, b)

decreases fastest.
∙ This can be shown to be in the the opposite direction of the gradient
∙ So we can minimize J(w, b) by taking a sted in the direction of the negative gradient
∙ Gradient descent propose a new point

w = w − λ∇wJ(w, b),

b = b− λ∇bJ(w, b)

∙ λ is the learning rate, if λ is too large, the algorithm may diverge, if λ is too small, the
algorithm converges very slow
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Gradient descent for linear regression, single (univariate) feature

∙ Let w andb be the two unknown parameters in the linear model y = wx+ b

∙ We want to minimize the mean square error between the true values and the
predictions, J(w, b)

J(w, b) =
1

2m

∑
i

(ŷ(i) − y(i))2 =
1

2m

∑
i

(wx(i) + b− y(i))2

∙ Let us find the partial derivatives of J(w, b) with respect to w and b

∂

∂w
J(w, b) =

∂

∂w

1

2m

∑
i

(wx(i) + b− y(i))2 =
2

2m

∑
i

(wx(i) + b− y(i))x(i)

∂

∂b
J(w, b) =

∂

∂b

1

2m

∑
i

(wx(i) + b− y(i))2 =
2

2m

∑
i

(wx(i) + b− y(i))

∙ Here, we sum the gradient over all samples in the training data set. This is called
batch gradient descent.

∙ Remark: This simple problem is quadratic and could be solved analytically, but we
will seek an iterative solution
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Gradient descent updates for linear regression

∙ Linear regression model y = wx+ b

∙ Gradient descent: repeat until convergence

w = w − λ
∂J

∂w
= w − λ

1

m

∑
i

[wx(i) + b− y(i)]x(i)

b = b− λ
∂J

∂b
= b− λ

1

m

∑
i

[wx(i) + b− y(i)]

Checkpoint: verify that you can derive these equations!
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Implementing gradient descent

∙ The sum over all samples x(i) can be done on vectors using np.sum()

w = w − λ
∂J

∂w
= w − λ

1

m

∑
i

[wx(i) + b− y(i)]x(i)

b = b− λ
∂J

∂b
= b− λ

1

m

∑
i

[wx(i) + b− y(i)]
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Computational graph for prediction using linear regression

∙ The graph shows how to predict new samples

∙ Corresponing graphs can be drawn for loss function also
∙ Computational graphs are useful for gradient computation also, more next week
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logistic regression



Introduction to logistic regression

∙ Let us see how a regression problem can be transformed into a binary (2-class)
classification problem using a nonlinear loss function.

∙ Below is an example:
∙ In this example deciding either class 1 or 0 could be done by introducing a threshold.
∙ An alternative way is to do a nonlinear transform that squeeze the data to either 0 or
1 (next)
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Fitting with a sigmoid function

∙ Now introduce g(wx+ b), a nonlinear function of x.
∙ In classification we want y = 1 or y = 0

∙ In this example deciding either class 1 or 0 could be done by introducing a threshold
∙ An alternative is to do a nonlinear transform that squeeze the data to either 0 or 1

∙ Let g(z) = 1
1+e−(wx+b)

∙ g(z) is called the sigmoid function
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Logistic regression model with multiple features

∙ We can have multiple (nx) features for each samples x = x
(i)
j , j ∈ 1, nx.

∙ Decide and assign class y = 1 if

g(
∑
j

wjx
(i)
j + b) ≥ 0.5

otherwise decide y = 0.
∙ This gives a linear decision boundary for the classification
∙ If we want a non-linear boundary, we could add higher order combinations of the
features

∙ In classification we want y = 1 or y = 0
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A 2D example

∙ g(w1x1 + w2x2 + b)

∙ Predict y = 1 if
g(w1x1 + w2x2 + b) ≥ 0.5, 0 otherwize

∙ Decision boundary: w1x1 +w2x2 + b = 0

and g(w1x1 + w2x2 + b) = 0.5

∙ If we know w1, w2, b, decision is based
on which side of the boundary we are.
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Introducing a logistic cost function

∙ Assume we have a set of m 2D training images F (i)(b, j, k)

∙ Each image has size C ×NJ ×NK , where C is the number of bands in the image (e.g.
3 for a RGB-image).

∙ For convenience, reshape these into a 1D vector x(i) of length 1× (C ×NJ ×NK)

∙ The true class labels for each image in the training set is y(i).
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Logistic loss per sample

∙ We need a function to measure the classification accuracy of the model, but using
the accuracy as a binary variable does not work so well.

∙ Instead, let the cost function for one sample be such that:
∙ Loss = 0 if y(i) = 1 and g

(∑
j wjx

(i)
j + b

)
= 1

∙ Loss = 0 if y(i) = 0 and g
(∑

j wjx
(i)
j + b

)
= 0

∙ Loss→ ∞ if y(i) = 1 and g
(∑

j wjx
(i)
j + b

)
→ 0

∙ Loss→ ∞ if y(i) = 0 and g
(∑

j wjx
(i)
j + b

)
→ 1
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Logistic loss per sample

∙ The sigmoid g
(∑

j wjx
(i)
j + b

)
will mimic a probability and give a number between 0

and 1.
∙ Let us assume that

P
(
y(i) = 1|x(i), w, b

)
= g

∑
j

wjx
(i)
j + b


P
(
y(i) = 0|x(i), w, b

)
= 1− g

∑
j

wjx
(i)
j + b


∙ This can be written more compactly as:

p
(
y(i)|x(i), w, b

)
= g

∑
j

wjx
(i)
j + b

y(i) 1− g

∑
j

wjx
(i)
j + b

1−y(i)

Checkpoint: verify that this is the same as the equation above
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Logistic cost function

∙ The cost function L(w, b) considers the loss over all samples
∙ Assume that the samples are independent, we want to maximize the likelihood of
the parameters:

L (w, b) =
∏m

i=1 p
(
y(i)|x(i), w, b

)
=

∏m
i=1 g

(∑
j wjx

(i)
j + b

)y(i) [
1− g

(∑
j wjx

(i)
j + b

)]1−y(i)

∙ It is easier to maximize the log likelihood:

l (w, b) = logL (w, b)

=
∑m

i=1 y
(i) log

(
g
(∑

j wjx
(i)
j + b

))
+ (1− y(i)) log

[
1− g

(∑
j wjx

(i)
j + b

)]
∙ We will use gradient descent to minimize −l (w, b).
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Derivative of the sigmoid function

For gradient descent of the log likelihood, we need the derivative of the sigmoid function

g
′
(z) =

d

dz

1

1 + e−z
=

1

(1 + e−z)2
(e−z) =

1

1 + e−z

(
1− 1

1 + e−z

)
= g(z)(1− g(z))

Note that we can actually compute the derivative by using the function itself. This will
come in handy later.
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Derivative of logistic loss for a single sample

∙ Consider one sample and a univariate model with a single feature.
∙ The loss for one sample with this model is

l (w, b)
(i)

= y(i) log
(
g(wx(i) + b)

)
+ (1− y(i)) log

[
1− g(wx(i) + b)

]
∙ We need the derivative with respect to w and b.

∂

∂w
l(w, b) =

(
y(i)

1

g(wx(i) + b)
− [1− y(i)]

1

1− g(wx(i) + b)

)
∂

∂w
g(wx(i) + b)

=

(
y(i)

1

g(wx(i) + b)
− [1− y(i)]

1

1− g(wx(i) + b)

)
g(wx(i)+b)(1−g(wx(i)+b))

∂

∂w
(wx(i)+b)

= [y(i)
(
1− g(wx(i) + b)

)
− (1− y(i))(g(wx(i) + b)]x(i)

= [y(i) − g(wx(i) + b)]x(i)

∙ Verify this!
29



Derivative of logistic loss for a single sample

∙ Correspondingly we find the derivative with respect to b:

∂

∂b
l(w, b) =

(
y(i)

1

g(wx(i) + b)
− [1− y(i)]

1

1− g(wx(i) + b)

)
∂

∂b
g(wx(i) + b)

=

(
y(i)

1

g(wx(i) + b)
− [1− y(i)]

1

1− g(wx(i) + b)

)
g(wx(i)+b)(1−g(wx(i)+b))

∂

∂b
(wx(i)+b)

= [y(i)
(
1− g(wx(i) + b)

)
− (1− y(i))(g(wx(i) + b)]

= [y(i) − g(wx(i) + b)]

∙ Verify this!
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Gradient descent for logistic classifier

∙ Given the cost function for all samples:

l (w, b) = −
m∑
i=1

y(i) log
(
g(wx(i) + b)

)
+ (1− y(i)) log

[
1− g(wx(i) + b)

]
∙ Find w and b using gradient descent to maximize the likelihood:
∙ Repeat

w = w − λ
1

m

m∑
i=1

[y(i) − g(wx(i) + b)]x(i)

b = b− λ
1

m

m∑
i=1

[y(i) − g(wx(i) + b)]
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Computational graph for prediction using logistic regression

∙ The graph shows how to predict new samples

∙ Choose class 1 if p(y(i) = 1|w, b, x(i)) ≥ 0.5, otherwise class 0
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softmax classification and cross entropy cost



From 2 to ny classes using Softmax

∙ In a logistic classifier, we apply a sigmoid function to z = wx+ b, to predict output
close to 0 for class 0 and output close to 1 for class 1.

∙ In the generalization to multiple classes, we will approximate a probability between
0 and 1 for each class, and choose the class with the highest probability.

∙ We use the softmax function for this.
∙ Given sample x(i), we want to predict the class label y(i) ∈ [1, ...., ny] as one of ny

predefined classes.
∙ The true class labels for the training data set is known.
∙ y(i) can take of of ny discrete values and follows a multinomial distrubtion.
∙ We assume that the probability (or score) that y(i) = k is

p(y(i) = k|x(i),W [:, k], b[k]) =
eW [:,k]T x(i)+b[k]∑ny

c=1 e
W [:,c]T x(i)+b[k]

∙ Note that we will fit one set of weightsW [:, k], b[k] to each class.
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Prediction/classification with Softmax

∙ Given a trained model with weightsW, b

∙ W is a matrix of size [nx, ny] with one row for each input dimension, and one column
per class, and b is a vector of length ny .

∙ W [:, k] and b[k] corresponds to the weights for class k.
∙ The probability or score for class k is:

ŷ
(i)
k = p(y(i) = k|x(i),W [: k], b[k]) =

e(W [:,k]T x(i)+b[k])∑ny

c=1 e
(W [:,c]T x(i)+b[c])

∙ Compute p(y(i) = k|x(i),W [:, k], b[k]) for all classes and choose the class that
maximize it
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Implementing the softmax function

∙ Numerical instability can be a problem, because of the exponential function, and
division.

∙ Two common “tricks” that can help this follows
∙ Shift exponential arguments to max zero

sk(z) =
ezk∑n
i=1 e

zi

=
ezk−max(z)∑n
i=1 e

zi−max(z)

∙ Take logarithm and exponentiate it to get rid of division

t(z)k = log s(z)k

= zk − log
n∑

i=1

ezi

s(z)k = et(z)k

∙ The above can be combined
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One-hot encoding y

∙ Since we will compare the predicted output for each class, ˆ
y
(i)
k to the true label y(i),

it is conventient to use the one-hot encoded vector ỹ(i):

ỹk(i) =

{
1, if y(i) = k

0, else
(1)

∙ A compact notation for the predicted score/probability for all classes is then:

pY(y|X = x; Θ) =

ny∏
k=1

ŷ(x; Θ)k
ỹk (2)
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Cross-entropy cost function for learning Θ = [W, b]

∙ We will use gradient descent to fitW and b to the training data set.
∙ The cost function will be the cross entropy between the predicted and the true class
labels (this will be derived next lecture):

Θ̂ = arg min
Θ

{
− 1

m

m∑
i=1

ny∑
k=1

ỹ
(i)
k log ŷ(i)k

}
.

∙ The optimization objective function will therefore be the cross entropy cost

C(Θ,Ωy
train,Ω

x
train) = − 1

m

m∑
i=1

ny∑
k=1

ỹ
(i)
k log ŷ(i)k . (3)

∙ We will reserve loss function to the discrepancy between the predicted and true
output for a

∙ Our cross entropy loss is then (for a single sample we sum over alll classes k)

L(y(i), ŷ(i)) = −
ny∑
k=1

ỹ
(i)
k log ŷ(i)k . (4)
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Working on a batch of samples

∙ In gradient descent, updating the weights for each sample is time consuming.
∙ We organize the traning data in batches, and update the cost function summed over
each batch of mb samples

Cb =
1

mb

mb∑
i=1

ny∑
k=1

ỹ
(i)
k log ŷ(i)k

∙ We can predict a batch of samples X = x(i), i ∈ [1,mb] using a dot product between
X and W then add b.
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Gradient descent softmax updates

∙ Gradient descent updates are very similiar to logistic classfication
∙ Next we we derive the gradients for batches and look at vectorized implementations.
Here is the per sample gradient updates:

W (i) = W (i) − λ∇W (i)L(y(i), ŷ(i))

= W (i) − λ
(
ŷ(i) − ỹ

(i)
k

)
x(i)

b(i) = b(i) − λ∇b(i)L(y
(i), ŷ(i))

= b(i) − λ
(
ŷ(i) − ỹ

(i)
k

)
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Computational graph for softmax classification

∙ The graph shows how to predict new samples

∙ Choose the class k that has the highest probability if p(y(i)k1|w, b, x(i)) ≥ 0.5

41



Comment about image classification

∙ Reshape the image into a long 1D-vector.
∙ If color image, append the (r,g,b)-channels also into the vector.
∙ Note: no spatial information concering pixel neighbors is used here.
∙ All images must be standardized to the same size!
∙ If a classifier is trained on CIFAR-10 images of size 32× 32 rgb-images, all testimages
must also be resized to 32× 32 rgb-images
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Learning goals

∙ Understand linear regression and the loss function
∙ Be able to compute by hand and implement the gradient descent updates
∙ Understand logistic regression and the loss function
∙ Be able to compute by hand and implement the logistic gradient descent updates
∙ Understand softmax classification
∙ Cross-entropy loss will be derived in detail next week
∙ Implement softmax and gradient descents for cross-entropy loss

∙ This will come in handy for Mandatory 1

∙ Theory exercises relevant for exam
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Next week

∙ Feed forward nets and learning by backpropagation including vectorization
∙ Reading material

∙ Note on backpropagation: http://cs231n.github.io/optimization-2/
∙ Neural networks introduction: http://cs231n.github.io/neural-networks-1/
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Questions?
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